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ABSTRACT

In this paper, results are presented which demon-
strate removal of image defocus and motion blur ef-
fects using an algorithm based on nonlinear interpola-
tive vector quantization (NLIVQ). The algorithm is
trained on original and diffraction-limited image pairs
which are representative of the class of images of inter-
est. The discrete cosine transform is used in the code-
book design process to control complexity. Imagery
processed with this algorithm demonstrate both qual-
itative and quantitative improvements (as measured
by the peak signal-to-noise-ratio before and after pro-
cessing).

I. INTRODUCTION

In the context of image coding, vector Quantiza-
tion (VQ) is generally considered a data compression
technique [1]. However, VQ algorithms have been pre-
sented which perform other signal processing tasks
concurrently with compression [2]. In earlier work {3,
4, 5], the authors presented a novel algorithm based on
nonlinear interpolative vector guantization (NLIVQ)
[6] intended to address the removal of blur caused by
diffraction-limited optics [7, 8]. The results presented
in this paper demonstrate the usefulness of the algo-
rithm for removing the effects of image defocus and
motion blur.

II. DESCRIPTION OF THE ALGORITHM

In order to perform image restoration, the algo-
rithm must take as its input a block of pixel data
from the blurred input image and estimate the orig-
inal pixel values. In other words, it must implement
a mapping between the two image spaces. The gen-
eral framework for using VQ in this manner is known
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Figure 1: Lapped decoder for 3 x 3 blocks

as NLIVQ. This section will discuss the algorithm in
general terms. For more information, please see ref-
erences (3, 4, 5].

The algorithm is trained on blocks of pixels drawn
from original and degraded image pairs. The imagery
in the training set is assumed to be representative of
the class of images of interest. Each block is pre-
processed using the discrete cosine transform (DCT)
in order to manage codebook complexity and avoid
costly iterative codebook design. An encoder for the
blocks drawn from the degraded images is designed
by computing the first and second order statistics of
the transform coeeficients, assuming Laplacian distri-
butions for the non-DC coefficients, and proceeding
from there to design the minimum mean-squared er-
ror encoder for a target bit rate {9]. The one-to-one
correspondence between a block drawn from a blurred
image and its counterpart in the original induces a de-
coder based on the original block data. In operation,
each block from a degraded image is encoded using
the encoder designed above and then decoded using
the decoder associated with the original block data.
The algorithm used here is the improved version [5]
in which image blocks are lapped during decoding,
as shown in Fig. 1. This implementation suppresses
the blocking artifacts that would otherwise afflict the
restored imagery.



III. MODELING OF IMAGE DEFOCUS
AND MOTION BLUR

The discrete linear, shift-invariant, image forma-
tion model [7]

g:f*h

is assumed, where g is the observed image, f is the
original image, h is the point spread function (PSF)
of the optical system, and the notation * refers to
convolution. The PSF of a defocused incoherent opti-
cal system is modeled by computing the aberrated (or
generalized) pupil function corrupted with the Zernike
polynomial representing image defocus [10]. Given
the unaberrated pupil function P[u,v], in pupil co-
ordinates u,v € {—-N/2+1, ..., N/2}, this can be
expressed as

Pg [u,v] = P[u,v] exp{iag[u,v]},

where the parameter a corresponds to the strength of
the aberration, and

Plu, v] = 3.464p* — 1.732,

T
p_' N/2 ’

is the fourth order Zernike polynomial. The PSF is
given by

halz,y] = F{Py x Py},

in image plane coordinates ¢,y € {—N/2+1, ..., N/2},
followed by normalization to unit volume [8]. The no-
tation « refers to correlation. For simplicity, the scal-
ing between the pupil and image plane as a function
of wavelength has been ignored.

The effects of motion blur [7] are modeled by as-
suming a PSF of unit width in the orientation orthog-
onal to the blur, and n pixels long in the direction of
motion. This yields a simple expression for the PSF
which is given by

hml[z,y] = 1/n,

for z € {-n/2, ..., n/2} and y = 0, and zero else-
where.

IV. SIMULATIONS

These simulation results are obtained by applying
the algorithm to mean-removed image blocks. Esti-
mation of the mean of the restored block is dealt with

Figure 2: Sub-image from original test image (256 x
256).

as a separate problem. This allows all of the bits
available to be used in representing the non-DC coef-
ficients of each block, resulting in better performance.
Restoration of the block mean is done with a Wiener
filter process. The parameters for the results below
are: 1) 3 x 3 blocks; 2) 12 bits/mean-removed block,
yielding R = 2.2 bits/pixel; 3) a training set of 53
(512 x 512) image pairs of aerial views of urban areas;
4) two defocus and two motion blur OTFs; and 5)
varying levels noise in the blurred images. Fig. 2 dis-
plays a crop from the “original” test image (outside
the training set). This image is similar in content to
many of the images in the training set. The remain-
ing figures show the blurred images produced from the
original for defocus (¢ = 0.9) and motion blur (hori-
zontal, n = 7), and the restorations. For these forms
of degradation, the peak signal-to-noise-ratio (PSNR)
values of images processed by the algorithm improved
substantially. This is summarized in Table 1. The
quantitative improvement in the images is matched
by significant improvements in visual quality. This is
true for images both in and out of the training set.
The algorithm clearly functions well in the presence
of significant levels of noise.

V. CONCLUSION

Results produced by an algorithm for image restora-
tion based on nonlinear interpolative vector quantiza-



Blurred Image Signal-to-Noise Ratio
None 30 dB 20dB 15 dB 10 dB
Blur Type Blur | NLIVQ | Blur .| NLIVQ | Blur | NLIVQ | Blur | NLIVQ | Blur | NLIVQ
Defocus (a =6) | 24.22 | 28.80 |24.21 | 28.70 |24.09 | 2743 [2384| 2563 | 2311 | 22.42
Defocus (a =9) | 2242 | 2833 | 2242 | 27.80 | 2236 | 2573 [2221] 23.99 | 21.78 | 21.40
Motion (n =5) | 23.81 | 28.20 | 23.79 | 27.85 |23.65| 26.86 | 23.33| 25.65 | 22.45 | 22.82
Motion (n=17) | 22.74 | 2749 | 2273 | 27.02 | 22.63| 2579 | 2242 2457 | 2177 | 22.07

Table 1: Peak signal-to-noise ratio values for images before and after processing.

tion were presented. These demonstrate the utility of
the algorithm for images degraded by defocus or mo-
tion blur. Both quantitative and qualitative improve-
ments were demonstrated in both cases. The algo-
rithm demonstrated robust performance in the pres-
ence of noise.
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Figure 3: Sub-image from defocused image (a = 0.9),
with SNR = 15 dB (256 x 256).

Figure 4: Sub-image from defocused image (a = 0.9},
with SNR = 30 dB (256 x 256).

Figure 5: Sub-image from NLIVQ-restoration of defo-
cused image (a = 0.9), with SNR = 15 dB (256 x 256).

Figure 6: Sub-image from NLIVQ-restoration of defo-
cused image (a = 0.9), with SNR = 30 dB (256 x 256).



Figure 7: Sub-image from motion-blurred image (n =
7), with SNR = 15 dB (256 x 256).

Figure 8: Sub-image from motion-blurred image (n =
7), with SNR = 30 dB (256 x 256).

Figure 9: Sub-image from NLIVQ-restoration of
motion-blurred image (n = 7), with SNR = 15 dB
(256 x 256).

Figure 10: Sub-image from NLIVQ-restoration of
motion-blurred image (n = 7), with SNR = 30 dB
(256 X 256).



