JPEG2000: HIGHLY SCALABLE IMAGE COMPRESSION

Michael W. Marcellin and Ali Bilgin

Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721.

{mwm,bilgin}@ece.arizona.edu http://www-spacl.ece.arizona.edu

ABSTRACT

JPEG2000 is the latest ISO/IEC image compression stan-
dard. It is distinct from previous standards in that it is
more than an input-output filter. JPEG2000 enables de-
compression of many image products from a single com-
pressed file and offers several opportunities for compressed
domain processing. This paper describes the feature set of
the JPEG2000 compression standard, followed by a high
level description of the algorithm.

1. INTRODUCTION

Previous image compression systems and/or standards have
been used primarily as input-output filters within applica-
tions. That is, as an image was written to (or read from) a
disk it was compressed or decompressed, largely as a stor-
age function. Additionally, all decisions as to image quality
and/or compression ratio were made at compression time.
At decompression time, only the (single) image quality, size,
resolution and spatial extent envisioned by the compressor
was available to the decompressor.

For example, with JPEG baseline (sequential mode), an
image is compressed using a particular quantization table.
This essentially determines the quality that will be achieved
at decompression time. Lower (or higher) quality decom-
pressions are not available to the decompressor. Similarly, if
JPEG lossless, or JPEG-LS are employed for compression,
only lossless decompression is available, and high compres-
sion ratios are impossible.

Notable exceptions to these rigid structures exist. In fact,
the original JPEG standard has four “modes” of operation:
sequential, progressive, hierarchical, and lossless. However,
these four modes rely on distinctly different technologies,
and result in distinctly different codestreams. While certain
interactions (say, between progressive and hierarchical) are
allowed according to the standard document, this has never
been exploited (to the best of the authors’ knowledge) in a
commercial system.

JPEG2000 creates a framework where the image com-
pression system acts more like an image processing system
than a simple input-output storage filter. The decision on
several key compression parameters such as quality or res-
olution can be delayed until after the creation of the code-
stream, and several different image products to be extracted
from a single codestream.

This paper is organized as follows. In Section 2, we intro-
duce the JPEG2000 feature set. In Section 3, we describe
the JPEG2000 algorithm. Finally, we present results on the
performance of JPEG 2000 in Section 4.

0-7695-1062-0/01 $10.00 © 2001 IEEE

268

2. JPEG2000 FEATURES

JPEG2000 brings a new paradigm to image compression
standards [1]. The benefits of all four JPEG modes are
tightly integrated in JPEG2000. The compressor decides
maximum image quality (up to and including lossless). Also
chosen at compression time, is maximum resolution (or
size). Any image quality or size can be decompressed from
the resulting codestream, up to and including the maxi-
mums chosen at encode time.

For example, suppose an image is compressed losslessly
at full size. Suppose further that the resulting file is of size
By (bytes). It is then possible to extract B; bytes from
the file, (B1 < Bo) and decompress those B; bytes to ob-
tain a lossy decompressed image. Similarly, it is possible to
extract By bytes from the file and decompress to obtain a
reduced resolution image. In addition to the quality scal-
ability and resolution scalability, JPEG2000 codestreams
support spatial random access. There are several mecha-
nisms to retrieve and decompress data from the codestream
corresponding to arbitrary spatial regions of an image. The
different mechanisms yield different granularity of access,
at varying levels of difficulty.

This random access extends to color components as well.
Specifically, the black and white (grayscale) component can
be extracted from a color image. As above, this can be done
region by region with varying qualities and resolutions.

It is important to note that in every case discussed above,
it is possible to locate, extract, and decode only the bytes
required to decode the desired image product. It is not
necessary to decode the entire codestream and/or image. In
many cases, the bytes extracted and decoded are identical
to those obtained if only the desired image products were
compressed in the first place.

2.1. Compressed Domain Image Processing/Edit-
ing
Any of the image products discussed above can be extracted
to create a new JPEG2000 compliant codestream without
a decompress/recompress cycle. In addition to the elegance
and computational savings, compression noise “build-up”
that occurs in most compression schemes when repetitive
compress/decompress cycles are utilized can be avoided.
In addition to reduced quality and reduced resolutions,
compressed domain image cropping is possible. Cropping
in the compressed domain is accomplished by accessing the
compressed data associated with a given spatial region (us-
ing random codestream access, as discussed above) and

rewriting it as a compliant codestream. Some special pro-
cessing is required around the cropped image borders.
Geometric manipulations are also supported in the (par-
tially) compressed domain. Image rotations of 90, 180 and
270 degrees are possible. Image flipping (top-to-bottom
and/or left-to-right) can also be performed. These pro-
cedures cannot be carried out entirely compressed. Some
transcoding of arithmetically coded data is required, but an
inverse/forward transform cycle is unnecessary.

2.2. Progression

Many types of progressive transmission are supported by
JPEG2000. As mentioned previously, progressive transmis-
sion is highly desirable when receiving imagery over slow
communication links. As more data are received, the ren-
dition of the displayed imagery improves in some fashion.
JPEG 2000 supports progression in four dimensions: Qual-
ity, Resolution, Spatial Location, and Component.

The first dimension of progressivity in JPEG2000 is qual-
ity. As more data are received, image quality is improved.
It should be noted that the image quality improves remark-
ably quickly with JPEG 2000. An image is typically recog-
nizable after only about 0.05 bits/pixel have been received.
For a 320 x 240 pixel image, this corresponds to only 480
bytés of received data. With only 0.25 bits/pixel (2,400
bytes) received, most major compression artifacts disap-
pear. To achieve quality corresponding to no visual dis-
tortion, between 0.75 and 1.0 bits per pixel are usually re-
quired. Demanding applications may sometimes require up
to 2.0 bits/pixel or even truly lossless decompression (e.g.,
medical applications). We remark here again, that all qual-
ities up to and including lossless (equivalently, all bitrates,
or all compression ratios) are contained within a single com-
pressed codestream. Improving quality is a simple matter
of decoding more bits.

The second dimension of progressivity in JPEG2000 is
resolution. In this type of progression, the first few bytes
are used to form a small “thumbnail” of the image. As
more bytes are received, the resolution (or size) of the image
increases by factors of 2 (on each side). Eventually, the full
size image is obtained.

The third dimension of progressivity in JPEG2000 is spa-
tial location. With this type of progression, imagery is re-
ceived in a “stripe,” or “scan” based fashion, from top-to-
bottom. This type of progression is particularly useful for
certain types of low memory printers and scanners.

The fourth and final dimension of progressivity is by com-
ponent. JPEG2000 supports images with up to 16384 com-
ponents. Most images with more than 4 components are
from scientific instruments (e.g.,, LANDSAT). More typi-
cally, images are 1 component (grayscale), 3 components
(e.g., RGB, YUV, etc.), or 4 components (CMYK). Over-
lay components containing text or graphics are also com-
mon. Component progression controls the order in which
the data corresponding to different components is decoded.
With progressive by component, the grayscale version of an
image might first be decoded, followed by color information,
followed by overlaid annotations, text, etc.

The four dimensions of progressivity are very powerful
and can be changed (nearly at will) throughout the code-

269

stream. Since only the data required by the viewer needs
to be transmitted, the “effective compression ratio” expe-
rienced by the client can be many times greater then the
actual compression ratio as measured from the file size at
the server.

3. THE JPEG2000 ALGORITHM

In this section, we provide a high level description of the
JPEG 2000 algorithm. Although the standard specifies only
the decoder and codestream syntax, this paper focuses on
the description of a representative encoder, since this en-
ables a more readable explanation of the algorithm. We
note that we will discuss the algorithm as it applies to Part
I of the standard. Part I describes the minimal decoder re-
quired for JPEG2000, which should be used to provide max-
imum interchange. “Value-added” technologies that are not
required of all implementations are described in Part II.

3.1. Tiles and Component Transforms

In JPEG2000, an image is defined as a collection of two-
dimensional rectangular arrays of samples. Each of these
arrays is called an image component.Typical examples in-
clude RGB images that have three components, and CMYK
images that have four components. Components need not
have the same number of samples. The image resides on
a high resolution grid. This grid is the reference for all
geometric structures in JPEG2000.

The first step in JPEG2000 is to divide the image into
non-overlapping rectangular tiles. The array of samples
from one component that fall within a tile is called a tile-
component. The primary benefits of tiles are that they pro-
vide a simple vehicle for limiting implementation memory
requirements and for spatial random accéss. They can also
be useful for segmenting compound imagery, as the coding
parameters can be changed from tile to tile. ~As the tile
grid is rectangular and regular, options for segmentation
are rather restricted.

The primary disadvantage of tiles is blocking artifacts.
Since each tile is compressed independently of all other tiles,
visible artifacts can occur at tile boundaries. For high bit
rates and large tile sizes, these artifacts are generally invis-
ible.

‘When multiple component images are being encoded, one
of two optional component transforms can be applied to the
first three components. These transforms decorrelate the
components, and increase the compression efficiency.

The first component transform is called the reversible
color transform (RCT) and is only used in conjunction with
the reversible wavelet transform discussed in the following
section. The second transform is the irreversible color trans-
form (ICT) and is only used in conjunction with the irre-
versible wavelet transform. Although both transforms are
invertible, in the mathematical sense, the RCT maps inte-
ger color components to integer transformed color compo-
nents, and is perfectly invertible using only finite (low) pre-
cision arithmetic. Conversely, ICT employs floating point
arithmetic, and, in general, would require infinite precision
arithmetic to guarantee perfect inversion.

3.2. The Wavelet Transform

JPEG2000 (Part 1) supports two choices for the wavelet
filters. The so called (9,7) wavelet transform has floating
point impulse responses of lengths 9 and 7. This trans-
form is known as the irreversible transform, and is useful
for high performance lossy compression. The so called (5,3)
wavelet transform is implemented using integer arithmetic.
Careful rounding of (both intermediate results and the fi-
nal wavelet coeflicients) is performed during filtering. The
resulting transform is reversible, enabling lossless (in addi-
tion to lossy) compression. For a given (lossy) compression
ratio, the image quality obtained with the (9,7) transform
is generally superior to that obtained with the (5,3) trans-
form. However, the performance of the (5,3) transform is
still quite good.

Each resolution of a tile-component is partitioned into
precincts. Precincts behave much like tiles, but in the
wavelet domain. The precinct size can be chosen indepen-
dently by resolution, however each side of a precinct must
be a power of 2 in size. Figure 1 shows a precinct partition
for a single resolution.

01
2,3
/Aprecinct
3
/./
1
4i5 8,9
617 10411
A codeblock

Figure 1: Partitioning of wavelet subbands.

Precincts are another ingredient to low memory imple-
mentations in the absence of tiles. Compressed data from
a precinct are grouped together to form a packet. Before
a packet header can be created, all compressed data from
the corresponding precinct must be available. Thus, only
the compressed data for a precinct must be buffered, rather
than that of an entire tile (or image in the absence of tiles).

In addition to the memory benefits of precincts, they also
provide a method of spatial random access. The granular-
ity of this method is finer than that for tiles, but courser
than that for codeblocks (see next paragraph). Also, since
precincts are formed in the wavelet transform domain, there
is no “break” in the transform at precinct boundaries (as
there is at tile boundaries). Thus, precincts do not cause
block (tile) artifacts.

Codeblocks form the smallest geometric structure of
JPEG2000. Initial quantization and bitplane coding are
performed on codeblocks. Codeblocks are formed by parti-
tioning subbands. Since the precinct size (resolution depen-
dent) and codeblock size (resolution independent) are both
powers of 2, the two partitions are forced to “line up.” Thus,
it is reasonable to view the codeblocks as partitions of the

270

precincts (rather than of the subbands). If the codeblock
size exceeds the precinct size in any subband, the code-
blocks are forced to obey precinct boundaries. Effectively
then the codeblock width or height (or both) is reduced to
that of the precinct. The partitioning of wavelet subbands
into codeblocks is illustrated in Figure 1 as well.

As discussed earlier, codeblocks help enable low memory
implementation by limiting the amount of (uncompressed)
wavelet data that must be buffered before it can be quan-
tized and compressed. This is in contrast to precincts,
which limit the amount of compressed data that must be
buffered before packets can be formed. Another benefit of
codeblocks is that they provide fine grain random access to
spatial regions.

3.3. Quantization and Bitplane Coding

Quantization is a process by which wavelet coefficients are
reduced in precision to increase compression. For a given
wavelet coefficient z and quantizer step size A, a signed
integer ¢ given by

is used to indicate in which interval z lies. This index
is coded using techniques described later in this section.
Given g, the decoder must estimate the value of z as

0 g=0
sign(q) (Ig| +8)A g #0

where ¢ is a user selectable parameter (typically § = 1/2).

This particular type of quantization is known as dead-
zone uniform scalar quantization, and is key to the quality
progression feature of JPEG2000. The reason for this is
that such quantizers are “embedded.” That is, the quan-
tization index of every quantization (with step size A) has
embedded within it, the index of every quantization with
step size 2P A, p = 0,1,2,... Thus, if z is quantized with
step size A to get g, and the p Least Significant Bits (LSBs)
of ¢ are missing (not decoded yet), then the appropriate de-
quantizer is

Q (¢ = {

2=§j(q)={

(» =@
sign(a®) (g #0

In this case, Z is identical to what it would have been if the
step size had been 2P A in the first place.

For irreversible wavelets, a different step size can be cho-
sen for each subband. These step sizes are substantially
equivalent to Q-table values from JPEG and can be chosen
to meet differing needs. For reversible wavelets, a step size
of A =1 is used. This results in no quantization at all un-
less one or more LSBs of the (integer) wavelet coefficients
are omitted. In this case, the equivalent induced step size
is 2PA = 2P,

Entropy coding is performed independently on each code-
block. This coding is carried out as context-dependent, bi-
nary, arithmetic coding of bitplanes. The arithmetic coder
employed is the MQ-coder as specified in the JBIG-2 stan-
dard. For brevity, the computation to determine each con-
text is not included here.

0 .
P+ 6) 2PA

2z =

Consider a quantized code-block to be an array of inte-
gers in sign-magnitude representation, then consider a se-
quence of binary arrays with one bit from each coefficient.
The first such array contains the most significant bit (MSB)
of all the magnitudes. The second array contains the next
MSB of all the magnitudes, continuing in this fashion until
the final array which consists of the LSBs of all the magni-
tudes. These binary arrays are referred to as bitplanes.

The number of bitplanes in a given code-block (starting
from the MSB) which are identically zero is signaled as side
information, as described later. So, starting from the first
bitplane having at least a single 1, each bitplane is encoded
in three passes (referred to as coding passes).

The scan pattern followed for the coding of bitplanes,
within each code-block (in all subbands), is shown in Figure
2. This scan pattern is followed in each of the three coding
passes. The decision as to which pass a given bit is coded
in is made based on the “significance” of that bit’s location
and the significance of neighboring locations. A location is
considered significant if a 1 has been coded for that location
(quantized coefficient) in the current or previous bitplanes.

Figure 2: Scan pattern for bitplane coding.

The first pass in a new bitplane is called the signifi-
cance propagation pass. A bit is coded in this pass if
its location is not significant, but at least one of its eight-
connected neighbors is significant. If a bit is coded in this
pass, and the value of that'bit is 1, its location is marked
as significant for the purpose of coding subsequent bits in
the current and subsequent bitplanes. Also, the sign bit is
coded immediately after the 1 bit just coded.

The second pass is the magnitude refinement pass. In
this pass, all bits from locations that became significant in
a previous bitplane are coded. The third and final pass is
the clean-up pass, which takes care of any bits not coded in
the first two passes.

-All bitplane coding is done using context dependent bi-
nary arithmetic coding with the exception that run coding
is sometimes employed in the third pass. Run coding occurs
when all four locations in a column of the scan are insignifi-
cant and each has only insignificant neighbors. A single bit
is then coded to indicate whether the column is identically
zero or not. If not, the length of the zero run (0 to 3) is
coded, reverting to the “normal” bit-by-bit coding for the
location immediately following the 1 that terminated the
Zero run.

3.4. Packets and Layers

Packets are the fundamental unit used for construction of
the codestream. A packet contains the compressed bytes
from some number of coding passes from each codeblock in

271

one precinct of one tile-component. The number of coding
passes can vary from block to block. Any number of passes
(including zero) is legal. In fact, zero passes from every
codeblock is legal. In this case the packet must still be con-
structed as an “empty packet.” An empty packet consists
of a packet header, but no packet body.

A packet consists of a packet header followed by a packet
body. The packet body contains m; coding passes from
codeblock 7 in order ¢ = 0,1,2,..., and m; can be any
integer including 0.

The packet header contains the information necessary to
decode the packet. It includes a flag denoting whether the
packet is empty or not. If not, it also includes: codeblock
inclusion information (whether m; = 0, or m; > 0 for each
codeblock ¢); the number of completely zero bitplanes (zero
MSBs) for each codeblock; the number of coding passes m;
for each included codeblock; and the number of compressed
bytes included for each block. It should be noted that the
header information is coded in an efficient and embedded
manner itself. The data contained in a packet header sup-
plements data obtained from previous packet headers (for
the same precinct) in a way to just enable decoding of the
current packet. For example, the number of leading zero
MSBs for a particular codeblock is included only in the first
packet that contains a contribution from that codeblock.

It is worth reiterating that the bitplane coding of a code-
block is completely independent of any other codeblock.
Similarly, the header coding for a packet in a particular
precinct is independent of any other precinct.

A layer is a collection of packets from one tile. Specif-
ically, a layer consists of one packet from each precinct of
each resolution of each tile-component of one tile.

The first packet of a particular precinct contains some
number of coding passes from each codeblock in the
precinct. These coding passes represent some (varying)
number of MSBs for each quantized wavelet coefficient in-
dex in each codeblock of the precinct. Similarly, the fol-
lowing packets contain compressed data for more and more
coding passes of bitplanes of quantized wavelet coefficient
indices, thereby reducing the number of missing LSBs (p)
in the quantizer indices ¢/»”. We note here that at the
end of a given layer I, the number of missing LSBs (p) can
be vastly different from codeblock to codeblock. However,
within a single codeblock, (p) cannot differ from coefficient
to coefficient by more than 1.

From this discussion, it is now understood that a
packet provides one quality increment for one spatial region
(precinct), at one resolution of one tile-component. Since a
layer comprises one packet from each precinct of each res-
olution of each tile-component, a layer is then understood
as one quality increment for an entire tile.

It should also be clear that the quality increment need
not be consistent throughout the tile. Since the number of
coding passes in a layer (via packets) can vary codeblock
by codeblock, there is complete flexibility in “where and
by how much” the quality is improved by a given layer.
For example, a layer might improve one spatial region of a
reduced resolution version of only the grayscale (luminance)
component.

4. PERFORMANCE

Figure 3 provides rate-distortion performance for two dif-
ferent JPEG modes, and three different JPEG2000 modes
for the bike image (grayscale, 2048 by 2560} from the SCID
test set. The JPEG modes are progressive {P-DCT) and
sequential (S-DCT) both with optimized Huffman tables.
The JPEG2000 modes are single layer with the (9,7) wavelet
(8-9,7), six layer progressive with the (9,7) wavelet (P6-
9,7), and 7 layer progressive with the (3,5) wavelet (P7-3,5).
The JPEG2000 progressive modes have been optimized for
0.0625, 0.125, 0.25, 0.5, 1.0, 2.0 bpp and lossless for the 5x3
wavelet. The JPEG progressive mode uses a combination
of spectral refinement and successive approximation.

PSNR (dB)

Rate (bpp)

Figure 3: Rate-distortion . performances of JPEG and
JPEG2000 on the bike image.

The JPEG2000 results are significantly better than the
JPEG results for all modes and all bitrates on this image.
Typically JPEG2000 provides only a few dB improvement
from 0.5 to 1.0 bpp but substantial improvement below 0.25
bpp and above 1.5 bpp. It should be noted that the pro-
gression in JPEG was not optimized for this image, while
the JPEG2000 progressive modes are optimized for the im-
age. However, the ability to perform such optimization in
a simple manner is a key advantage of JPEG2000 over pro-
gressive JPEG.

With JPEG2000 the progressive performance is almost
identical to the single layer performance at the rates for
which the progression was optimized.

Once again, this is because the coded data bits do not
change. The slight difference is due solely to the increased
signaling cost for the additional layers (which changes the
packet headers). It is possible to provide “generic rate scal-
ability” by using upwards of fifty layers. In this case the
“scallops” in the progressive curve disappear, but the over-
head increases, so the curve is always lower than the single
layer points.

Although JPEG2000 provides significantly lower distor-
tion for the same bitrate, the computational complexity is
significantly higher. Current JPEG2000 software imple-
mentations run roughly a factor of three slower than op-

272

timized JPEG codecs. Speed of JPEG2000 code should
increase over time with implementation optimization.

JPEG2000 also requires more memory than sequential
JPEG, but not as much as might be expected. For con-
ceptually simple implementations, encoders and decoders
buffer entire code-blocks, typically 64 by 64 for entropy cod-
ing. However, block based, or sliding window implementa-
tions of the wavelet transform allow operation on just a few
code-blocks at a time.

Table 1: Lossless performance of JPEG, JPEG-LS, and
JPEG2000.

Method Images
Aerial2 | Bike | Barbara | Cmpndl
JPEG 5.589 4.980 5.663 2.478
JPEG-LS 5.286 4.356 4.863 1.242
JPEG2000
(50 Layers) 5.467 4.562 4.823 2.166

Table 1 shows the lossless performance of JPEG, JPEG-
LS, and JPEG2000. JPEG uses a predictor and Huffman
coding (no DCT). In each case the best of all predictors has
been used, and Huffman tables have been optimized. For
primarily continuous-tone imagery as in the Aerial2, Bike,
and Barbara images, JPEG2000 is close to JPEG-LS, and
substantially better than JPEG lossless. For images with
text and graphics (2/3 of the Cmpnd1 image contains only
rendered text), JPEG-LS provides almost a factor of two
gain over JPEG lossless and JPEG2000. Of course, the
entire feature set is available for even losslessly compressed
JPEG2000 imagery, while the other two algorithms can pro-
vide only lossless raster-based decompression (for each tile).

5. REFERENCES

[1] ISO/IEC 15444-1, “JPEG2000 image coding system”,
Dec. 2000.

