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Introduction: T2 weighted MRI is used clinically for characterization of various pathologies. Currently, radiologists use visual methods to evaluate 
the T2 characteristics of a lesion based on signal intensity changes. It has been demonstrated that quantitative methods for measuring T2 values are 
superior to visual evaluation [1, 2]. For body imaging, however, many of the proposed methods to measure T2 values suffer from long acquisition 
times, motion-induced errors, misregistration of images acquired in different breath holds, low spatial resolution and/or low number of measured 
points on the T2 relaxation curve. A radial fast spin-echo (FSE) method was developed for fast T2 mapping of the body[3]. The method uses data 
from undersampled TE data sets which are mixed appropriately to produce images with different TE contrast from a single k-space data set.   As 
pointed out in [3], the mixing of TE’s, however, introduces artifacts in the image and the accuracy of T2 is compromised when lesions or structures 
are very small.  
       To overcome this problem we proposed a model-based approach with sparsifying penalty functions for estimating T2’s from radial FSE data. 
Sparse reconstructions have received considerable attention recently since Compressed Sensing theory illustrated that signals with sparse 
representations can be reconstructed from a small number of measurements.  
Theory: An iterative reconstruction for T2 mapping from radial FSE data can be formulated 
as [4]:  
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In this formulation the goal is to minimize the inconsistency between the acquired data and 
the T2 decay model (data consistency term) subject to penalty functions Pi. In Eq. 1, ρ and 
T2 are the proton-density and T2 maps, respectively. Kj is the measured k-space data at echo 
time TEj. F denotes the single exponential T2 decay model which depends on ρ, T2, and TEj. 
F can be computed as 
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where FT is the forward Fourier transform operator. 
Methods: In order to have the “truth” for T2 evaluations we used a computer generated 
phantom of an axial cut through the abdomen [5]. In the phantom the different organs have 
been generated using T2 and T1 and ρ distributions compatible with in vivo values as well as 
imaging conditions that are typical for breath hold T2-weighted imaging with a radial FSE 
pulse sequence 
(ETL=16, echo spacing 
= 10 ms, TR=1.5 s, 
acquisition matrix =256 
(readouts) x 256 (views) 
yielding a total of 16 
views for each of the 16 
TE data sets). Six 
lesions (sizes listed in 
Table 1) with T2 values 
representing typical 
liver lesions were added to the phantom as shown by the bright circular regions in Fig. 1. K-space measurements were generated from the phantom 
using a Fast Fourier Transform (FFT) operation and  keeping the samples along approximately radial lines as was done in [6]. Gaussian noise was 
added independently to the real and imaginary components of k-space to give an SNR comparable to in vivo images. In our experiment five noise 
realizations were used.  

 T2 maps were generated using Eq. 1. The values of the weights λi were determined empirically. Alternatively an L-curve analysis can be used 
for selection of the weights. A steepest descent algorithm was used for minimizing the cost function. The initial value of T2 for all the pixels was set 
to 20 ms. For comparison, T2 maps were also generated from TE images (total of 16 images) reconstructed using non-uniform fast Fourier transform 
(NUFFT). 
Results: Results for the T2 estimation using the NUFFT reconstruction and model-based reconstruction with and without sparse penalty functions 
(MB+P and MB-P, respectively) are shown in Fig. 1 and Table 1. Note that in Fig. 1 the NUFFT T2 map has significant undersampling artifacts 
whereas the maps obtained with MB+P and MB-P are comparable to the “Truth”. Also, note that the T2 biases reported in Table 1 are much larger 
for the NUFFT than for the MB+P and MB-P for most lesions. Differences between the MB+P and MB-P methods can be assessed by comparing the 
σ in Table 1 which is the standard deviation of the %T2 bias among the 5 noise realizations. In general the σ’s are larger for MB-P.  Note that the 
ratio σMB-P/σMB+P yields values: 2.31, 1.04, 2.26, 4.10, 4.98, 3.48, which indicates that in general the MB+P method is more stable than the MB-P 
method.   
Conclusions:  In this work we showed that a model-based reconstruction yields accurate T2 estimates of small lesions from highly undersampled 
data. We also showed that adding sparsifying transforms as prior constraints improves the specificity of the reconstruction process. This novel 
method has great potential for characterization of small neoplasms in the body, where the acquisition time is restricted to a breath hold. 
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                                       Table 1. Comparison among the T2 estimation methods 

 

Small Lesions (diameter about 5 pixels) 
 

Large Lesions (diameter about 10 pixels) 
 

Lesion 1      
True T2=232 ms 

Lesion 2     
True T2=200 ms 

Lesion 3     
True T2=100ms 

Lesion 4     
True T2=250 ms 

Lesion 5     
True T2=200 ms 

Lesion 6       
True T2=100 ms 

Mean  
T2 bias  

σ 
Mean  

T2 bias  
σ 

Mean  
T2 bias  

σ 
Mean  

T2 bias  
σ 

Mean  
T2 bias  

σ 
Mean  

T2 bias  
σ 

NUFFT 33.8% 44.0% 66.6% 10.3% 33.7% 2.74% 33.7% 30.9% 20.0% 16.6% 15.3% 2.56% 
MB-P 3.70% 4.87% 6.12% 1.36% 4.25% 2.29% 5.80% 4.13% 2.85% 3.69% 5.10% 2.96% 

MB+P 3.46% 2.11% 4.3% 1.32% 2.2% 1.01% 1.3% 1.00% 2.8% 0.74% 4.66% 0.85% 

Figure 1. T2 map generated by different methods 
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