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Abstract 

The widespread adoption of the JPEG2000 standard calls for the development of 
computationally efficient algorithms to analyze the content of imagery compressed using 
this standard. For this purpose, we propose the use of the information content (IC) of 
wavelet subbands, defined as the number of bytes that JPEG2000 spends to encode the 
subbands. The IC of subbands can be obtained from the packet headers of the JPEG2000 
codestream, thereby avoiding decompressing the arithmetically encoded bitplane data. 
We present experimental results for two content analysis tasks; namely, image 
classification and scene change detection. Our results indicate that performance 
comparable to that of methods operating on decompressed data can be achieved, while 
saving computational and bandwidth resources. 

1. Introduction 

In many applications, we need to make inferences about an image or a video sequence. 
Information retrieval, security applications, medical diagnosis, and remote sensing are 
examples of such applications wherein inferential tasks such as detection, estimation, and 
classification are performed. In most cases, images and video sequences are compressed 
prior to transmission or storage. Thus, it is highly desirable to make these inferences 
using the compressed domain information. In video surveillance applications, the video is 
usually acquired, compressed, and transmitted continuously. If the received codestream 
can be processed to detect suspicious activity, decompression of the unnecessary portions 
can be avoided. Furthermore, significant bandwidth savings can be achieved if the 
portions of a codestream that are of interest to a client can be identified and delivered 
instead of the entire codestream.  

The JPEG committee has recently issued a call for contributions for standardization of 
technologies associated with searching image libraries [1]. This new effort is referred to 
as JPSearch. Compressed-domain analysis techniques are one of the technologies that are 
sought by JPSearch. These techniques offer advantages over other approaches such as 
wavelet-domain techniques in terms of computational and bandwidth requirements. 

Myriad algorithms have been developed in the past for content analysis of images and 



video compressed using the JPEG and MPEG standards [2]. Although codestreams 
produced by those standards are structurally different than JPEG2000 codestreams, the 
essence of some ideas can still be used. Our work was motivated by [3] wherein the 
number of bits spent to encode image blocks in JPEG-coded images is used for 
segmentation of compressed compound documents into text, graphics, half-tones, 
continuous tone images, and background. However, in that work the required information 
is not readily available in the JPEG codestream. 

Little work has been done on the analysis of JPEG2000 codestreams. In [4, 5] wavelet-
domain features have been proposed for image retrieval. The proposed features can be 
computed at compression time. However, they do not take advantage of the particular 
information available in JPEG2000 codestreams. 

In [6], two techniques have been proposed for indexing JPEG2000-compressed images. 
One technique is based on the information about the significance status of wavelet 
coefficients. For the lowest resolution lowpass subband, the significance map of the 
wavelet coefficients at all bitplanes is used as an index. The histogram ),( rbh  of the 
number of significant bits at a bitplane b  for subbands constituting a resolution level r  is 
used as another index. This technique requires decompressing the significance passes of 
the codestream, if the RESTART marker, which allows identification of individual 
coding passes in the compressed domain, is used at compression time. Otherwise, the 
entire codestream must be decompressed. The second technique proposed in [6] uses as 
index the means and variances of the number of nonzero bitplanes in the codeblocks of 
each subband. This technique takes advantage of some, but not all, of the information in 
the JPEG2000 codestream headers for image description. 

In [7], similar ideas to those presented in this paper have been proposed for image scaling 
and cropping for image display applications. The scaling and cropping parameters are 
determined such that the most important portions of the image to be displayed are 
retained. The importance of each image codeblock is measured by the number of bits 
allocated to the codeblock, which can be determined from the packet headers of the 
compressed codestream. In [8], other applications of the bit allocation information are 
outlined. The work in [8] is different than this paper in that the main application 
described in that work is image segmentation and that a different statistical framework is 
proposed. 

This paper proposes the use of the information content (IC) of subbands for content 
analysis of JPEG2000-compressed images and video. In the next section, we present a 
brief overview of JPEG2000 and MJPEG2000. We then define IC and intuitively relate it 
to image texture characteristics. We also describe two statistical frameworks for making 
inferences using the IC of subbands. The first framework is suitable for use in detection 
tasks, while the second framework can be used for classification. Next, we present 
experimental results using these frameworks for event detection in video and image 
classification. Finally, we present a summary and conclusions. 



2. Overview of JPEG2000 

In this section, we present an overview of JPEG2000 with emphasis on concepts related 
to the ideas presented in this paper. A comprehensive treatment of JPEG2000 is provided 
in [9]. The block diagram of a representative JPEG2000 encoder is given in Figure 1. The 
first stage of encoding consists of (optionally) dividing the input image into non-
overlapping rectangular tiles. For multi-component images, e.g., color images, an 
optional component transform can be applied to decorrelate the components. The 
transformed components of each tile are referred to as tile-components. A wavelet 
transform is then applied to each tile-component and the resulting wavelet subband 
coefficients are partitioned into small blocks called codeblocks. After being quantized, 
the wavelet coefficients in each codeblock are entropy coded independently of other 
codeblocks. Entropy coding is carried out via context-dependent, binary arithmetic 
coding of bitplanes. The bitplane coder makes three passes over each bitplane of a 
codeblock. These passes are referred to as coding passes. Finally, the encoder forms a 
codestream by including coding passes selected based on a desired rate-distortion 
criterion. 
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Figure 1. Block diagram of a representative JPEG2000 encoder. 

The structure of a simple JPEG2000 codestream is given in Figure 2. This structure is 
explained via the notions of precinct and packet. A precinct is formed by grouping 
together the codeblocks that correspond to a particular spatial location at a given 
resolution. Compressed data from each precinct are arranged to form a packet. Each 
packet contains a header and a body. The packet header contains information about the 
contribution of each codeblock in the precinct to the packet, while the body contains 
compressed coding passes from the codeblocks. Packets that belong to a particular tile are 



grouped together to form a tile-stream, and tile-streams are grouped together to form the 
JPEG2000 codestream. Similar to packets, tile-streams are composed of a header and a 
body. The EOC marker indicates the end of the codestream. 

MJPEG2000 is the extension of JPEG2000 for video compression [10]. Once each video 
frame is compressed independently using JPEG2000, the JPEG2000 codestreams may be 
wrapped to form a single MJPEG2000 file. 
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Figure 2. A simple JPEG2000 codestream. 

3. Information Content of Subbands 

We define the IC of a wavelet subband as the number of bytes that the JPEG2000 entropy 
coder spends on encoding that subband. As described in the previous section, the 
JPEG2000 codestream consists of a series of packets together with additional header 
information. Each packet header contains information about the coding passes included in 
the packet such as the lengths of the compressed data contributed by each codeblock 
within the precinct. Thus, the IC of a subband can be obtained by simply reading the 
headers of the packets for the corresponding resolution, and accumulating the size 
information for all the codeblocks within the subband. It is worth reiterating that 
obtaining such information from the packet headers does not require arithmetic decoding 
of any data. In fact, the arithmetically coded segments are contained within packet bodies 
and those can be completely skipped. Thus, retrieval of the IC for each subband can be 
performed very quickly and in a computationally efficient manner.  

Intuitively, the IC of subbands conveys information about the texture characteristics of 
the image. Two characteristics captured by the IC are texture orientation and texture 
coarseness. This is demonstrated using the IC data for texture images from the Vision 
Texture (VisTex) database [11] with different orientation and coarseness characteristics. 
The IC data were obtained from the Verification Model (VM) version 9.0 [12] 
implementation of JPEG2000. All images were compressed at 1 bit/pixel, using 6464 ×  
codeblocks, and three decomposition levels. Figure 3 shows the vertically oriented 
texture image Wood.0002 and the proportion of IC in each of its subbands relative to the 
total IC of the image. It can be seen that a higher proportion of image IC is in the 



horizontal detail subbands (0.271+0.120+0.047=0.438) than the vertical detail subbands 
(0.172+0.091+0.027=0.290). Figure 4 shows the coarse texture image Tile.0003 and the 
fine texture image Fabric.0018 and the proportion of IC for each of the four resolution 
levels. The finer nature of Fabric.0018 is reflected by the larger proportion of its IC in the 
highest resolution level, whereas the coarseness of Tile.0003 is indicated by a larger 
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Figure 3. (a) Texture image Wood.0002; and (b) the proportion of IC in each of the 
subbands of its wavelet transform. 
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Figure 4. (a) Texture image Tile.0003; and (b) the proportion of IC in each of the 
resolution levels of its wavelet transform. (c) Texture image Fabric.0018; and (d) the 
proportion of IC in each of the resolution levels of its wavelet transform.  



proportion of its IC in the lowest resolution level. 

In the following subsections, we use the IC of video frames and images to make 
inferences about their texture characteristics for two applications. 

3.1. Application to Event Detection in Video 

When an abrupt change in a video sequence occurs, the texture characteristics of the 
frame are likely affected. This change can be captured by comparing the IC distribution 
of consecutive video frames. We use the 2χ goodness-of-fit test for this purpose. Let ijn  
denote the IC of subband i  of frame j . The two-sample 2χ  statistic is given by [13] 
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If tj >2χ , where t  is a user-specified threshold, a scene change is declared at frame j . 
No scene change is declared otherwise. Varying t  controls the trade-off between false 
positives and false negatives. 

3.2. Application to Texture Classification 

The IC distribution of an image can be used for classification as well. This is achieved 
via a classification method such as the nearest neighbor (NN) algorithm [14]. Assume 
that every image class of interest is represented by a set of images, and the IC ijn  for all 
subbands i  of image j  is known in the representative set. To classify an unlabeled image 
I , we find the “distance” between the IC I

in of the image and that of the images in the 
representative set. Then, we find the representative image with the closest IC and assign 
its label to the unlabeled image. The distance measure between two images I  and J  
used in this paper is the weighted Euclidean distance between the IC distributions given 
by 
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where 2
iσ  denotes the variance of in  in the representative image set. 

4. Results 

We assessed the efficacy of IC distributions in two applications, namely, scene change 
detection and texture classification. The VM version 9.0 [12] implementation of 
JPEG2000 was used in the experiments. 



4.1. Scene Change Detection in Video 

We performed scene change detection on 20000 frames of a color video sequence from 
the movie Batman Returns. The frames are 640 × 480 pixels each. The ground truth for 
scene changes was established by visual examination of the frames. A total of 334 scene 
changes were found in the sequence. The video sequence was losslessly compressed 
using four wavelet transform levels, 32 × 32 codeblocks, and the reversible color 
transform. In evaluating all algorithms, only the Y (intensity) component of the frames 
was used for scene change detection. For comparison, three scene change detection 
methods that operate on the original frames were also implemented. The statistics used in 
these methods are the pixel-wise MSE between the frames, block-wise MSE between the 
frames using 8× 8-pixel blocks, and the 2χ  statistic between the gray-level histograms of 
the frames [2]. 

Table 1 presents the performance results for the above algorithms. Two measures have 
been used to characterize the detection performance: the minimum probability of error eP  
and the area under the receiver operating characteristic (ROC) curve (AUC). The number 
of false positives (NFP) and the number of false negatives (NFN) at the point on the ROC 
curve where eP  is achieved have also been listed in the Table. 

As the results indicate, the proposed algorithm achieves the second best eP  and the 
highest AUC among the methods implemented, which is quite remarkable given the fact 
that it does not require the video sequence to be decompressed.  

Table 1. Experimental results for scene change detection. 

Method eP  NFP @ eP  NFN @ eP  AUC 
MSE  0.00680 100 36 0.9952 

Block MSE 0.00735 106 41 0.9954 
2χ  0.01185 120 117 0.9935 

Proposed 0.00730 83 63 0.9958 

4.2. Texture Classification 

We performed texture classification on a set of 480 128× 128 8-bit gray-scale texture 
images belonging to 30 classes, with 16 images per class. The images were obtained by 
splitting 30 512 × 512 images from the VisTex database [11]. The list of texture images is 
given in Table 2. The images were compressed losslessly using three wavelet transform 
levels and 64 × 64 codeblocks. For comparison, subband energies [15] were also 
computed as features for classification. In our experiments, it was found that the 
logarithm of energy features performed better than the energy features. 

The classification method for both feature sets was the NN algorithm as described in 
Section 3.2. The optimal feature subset for each feature set was selected by exhaustive 
search, i.e., by evaluating all possible feature combinations [14]. It should be noted that 
in practical problems with large numbers of features and training samples, a suboptimal 
method such as the sequential search algorithm [14] may be computationally more 



suitable. The quality of the features was evaluated using the probability of error eP . The 
probability of error for both feature selection and classifier evaluation was estimated via 
the leave-one-out method [14]. In this method, one sample is excluded from the training 
set, the classifier is trained on the remaining samples, and the trained classifier is tested 
on the excluded sample. This operation is repeated for all samples in the training set and 
the number of misclassified samples is counted to estimate eP . Feature selection and 
classification were performed using Tooldiag [16]. Table 3 summarizes the classification 
results using the two feature sets. As the results suggest, the IC distribution performs 
almost as well as the method based on the uncompressed images. 

Table 2. Texture images used in the classification experiments. 

Bark.0000 Bark.0004 Bark.0006 Bark.0008 Bark.0009 Brick.0001 
Brick.0004 Brick.0005 Fabric.0000 Fabric.0004 Fabric.0007 Fabric.0009 
Fabric.0011 Fabric.0013 Fabric.0016 Fabric.0017 Fabric.0018 Food.0000 
Food.0002 Food.0005 Food.0008 Grass.0001 Sand.0000 Stone.0004 
Tile.0001 Tile.0003 Tile.0007 Water.0006 Wood.0001 Wood.0002 

Table 3. Experimental results for texture classification. 

Feature set eP  
log2(energy) 0.0354 

Proposed 0.0375 

5. Conclusions 

In this paper, we have presented a new approach to texture characterization of 
JPEG2000-compressed images and video for content analysis. The primary advantage of 
the proposed approach is that it allows for rapid, compressed-domain content analysis 
using information obtainable from codestream headers, leading to substantial 
computational and bandwidth savings. Our results indicate that this approach produces 
accuracy comparable to that of methods operating directly on wavelet domain 
coefficients. 

The IC of subbands can be combined with other information obtainable from packet 
headers, e.g., features used in [6], to further improve the analysis of JPEG2000-
compressed images and video. 
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