A Novel Vector Quantizer-Based Architecture for Block-Matching
Motion Estimation

Ali Bilgin

Department of Electrical & Computer Eng.
University of Arizona
Tucson, AZ 85721

Abstract

Block-matching algorithms (BMA) are commonly
used in image sequence coding for motion estimation.
Even though the estimation of block motion vectors
by an exhaustive search is optimal, the computational
complezity precludes its usage in many real-time codec
applications. In this paper, we present a novel vector
quantizer (VQ) based architecture for BMA offering
sizeable reduction in the number of computations and
also the number of motion vectors transmitted. We
also compare the performance of the proposed algo-
rithm with other commonly used fast search methods.

1. INTRODUCTION

Among the most frequently used motion estimation
techniques for image sequence coding are the block-
matching algorithms (BMAs). Even though a block
matching estimation using exhaustive search can re-
sult in an optimal solution with respect to an adopted
fidelity criterion, the computational complexity asso-
ciated with a full search BMA precludes its usage in
many applications. In the literature, many fast BMA’s
have been proposed to reduce the computational com-
plexity [2, 3, 4, 5].

In this paper, we propose a Finite-State Vector
Quantizer (FSVQ) based architecture for estimating
the block motion vectors. The proposed architecture is
compatible with the current MPEG II [1} video stan-
dard. It is quite comparable to previously proposed
fast techniques in terms of entropy reduction perfor-
mance. In addition, it offers vastly reduced computa-
tional requirements and produces a smaller number of
motion vectors to transmit. Finally, the proposed al-
gorithm also offers the flexibility to adaptively change
the codebook size of the VQ to trade between the com-
putational complexity and the entropy of the motion
compensated residue.

1058-6393/96 $5.00 © 1996 IEEE
Proceedings of ASILOMAR-29

Hiiseyin Abut!

1403

Michael W. Marcellin

fDepartment of Electrical & Computer Eng.
San Diego State University
San Diego, CA 92182

2. BLOCK-MATCHING ALGORITHM

In a block-matching algorithm, an image frame is
divided into blocks of M x M picture elements (pels).
In an optimal exhaustive search BMA with a maxi-
mum motion displacement of W pels, (2W + 1)? mo-
tion vectors are checked for every block and a distor-
tion corresponding to each motion vector is computed
based on a block distortion measure (BDM). The best
match with respect to this BDM yields the motion
vector for the block.

Since block matching estimation using exhaustive
search requires (2W + 1)? computations of the BDM,
it is often unrealizable in real-time due to computa-
tional complexity. To reduce this complexity, several
fast algorithms have been proposed, including Modi-
fied Logarithmic Search (MLS) (2], Conjugate Direc-
tions Search (CDS) [4], and Three-Step Search (TSS)
[3]. All of these algorithms perform some systematic
search over the search region to determine a vector
that approximately minimizes the BDM.

In many real world image sequences, large segments
of an image frame are stationary and the motion in
the rest of the frame is due to the motion of only a
few objects. This implies that the motion field of most
frames in a sequence is rather stationary. Since a BMA
attempts to represent smooth motion fields with a dis-
crete number of block motion vectors, the correlation
among motion vectors is usually high [6]. Moreover,
in many applications, motion vectors are highly cor-
related due to the motion in only one direction. In
Figure 1 we present the motion vector distribution of
a typical image sequence of 150 frames. As seen in
this figure, the distribution is not uniform. On the
contrary, the majority of the motion vectors lie inside
a very small region. Thus, it might be possible to
achieve significant compression in the form of an en-
tropy reduction by considering only a small subset of
motion vector candidates.

Recently, Lee and Woods reinterpretted the BMA
as a type of vector quantization called motion vector
quantization (MVQ) [5]. Their algorithm simultane-
ously estimates and vector quantizes motion vectors
by minimizing the variance of the displaced frame dif-
ference (DFD). Since the fidelity criterion employed is
significantly different from the ones used in the other
papers mentioned above, it would be very difficult to
assess the performance of this last study. Hence, we
will compare our findings in this study to those of the
modified logarithmic search and the conjugate direc-
tions search techniques.

3. VECTOR QUANTIZATION FOR BMA

As Gersho and Gray recently stated in [7], vec-
tor quantization (VQ) has proved to be a valuable
coding technique in a variety of applications due to
its simplicity and its ability to trade memory for ex-
pensive computation among other promises. Here we
attempt to benefit from these advantages of VQ to re-
duce the computational complexity of block matching
algorithms used in motion estimation. If the max-
imum displacement allowed in either direction is W,
then (2W+1)? possible candidates exist for the motion
vector. Using the VQ design techniques based on the
Generalized Lloyd Algorithm (GLA), if a codebook
with only N codewords is designed for these (2W +1)?
possible motion vectors, where N < (2W + 1)2, then
the number of computations can be reduced signifi-
cantly. Furthermore, the amount of side information
required to transmit the motion vectors from the en-
coder to the decoder is reduced proportionally by the
ratio: log,(N)/log,((2W + 1)%).

3.1. Codebook Design

Fast search block matching algorithms are based on
the assumption that the energy of the prediction error
is monotonically decreasing towards an optimum mo-
tion vector in the search range. A VQ can be designed
to exploit this property.

Since the design and encoding stages of full search
vector quantizers require very large computational ca-
pacity, several alternative approaches have been pro-
posed [7, 8]. One such approach for designing a VQ
codebook, namely greedy tree growing algorithm, was
introduced in [9]. Here Makhoul et al. suggested
that a single terminal node of a full binary tree could
be grown at a time instead of growing a level of the
tree at a time. In the center of this technique lies the
idea that the node contributing most to the overall
distortion is selected and split. The advantage of this
scheme is that more codewords are made available to
code the high distortion events. This algorithm was
further improved by Riskin [10] through modifica-

1404

tions of the splitting criterion. The splitting crite-
rion in Riskin’s algorithm is to split the node which
will yield the largest decrease in distortion-rate ratio
rather than to split the node with the largest distor-
tion. Riskin’s algorithm was used for implementing
variable rate VQ coders. Since in this work we will be
using fixed rate VQ architectures, we will use a slightly
modified version of her algorithm which is presented
below in pseudocode. Here, Ad(t) is the decrease in
distortion by splitting node ¢ into a left child ¢z and
a right child tg. It is computed by

Ad(t) = d(@,t) = Y dz,tr) = Y d(z,tr)

zET TETL TETR

where T is the group of training vectors belonging to
the codeword t. CodebookSize is the current number
of codewords in the codebook. N is the required size
of the codebook. DELTALIST is the list of Ad(t) values
for all the codewords.

The Algorithm:

Compute centroid of the training data;
Split this node into ty and g using GLA;
Insert t; and tr into the codebook;

Set CodebookSize = 2;

while (CodebookSize < N) {

Split t; using GLA and calculate Ad(tr);

Split tgp using GLA and calculate Ad(tr);

Insert Ad(t;) and Ad({g) into DELTALIST;

Search DELTALIST for Adpg, and find
the corresponding tmaz;

Delete Adpar from DELTALIST and tnmaz
from the codebook;

tr, = tmaz’s left child;

tR = tmaz’s right child;

Insert t; and tp into the codebook;

CodebookSize = CodebookSize +1;

}

For BMA, the training set consists of motion vec-
tors which have been previously computed using the
exhaustive search. Using this training set, an unbal-
anced greedy tree is grown until N terminal nodes are
obtained and these N terminal nodes are the motion
vector codewords !. In designing the VQ, one can use
the MSE fidelity criterion or the BDM which will be
used later in the estimation stage. In this work, we
have used the ubiquitous MSE during the design, but
the MAD was used as the BDM during the encoding
stage to expedite the search process.

1This stopping criterion, —Stop after N codewords— is the
major difference between the current study and that of Riskin
{10].

Once the motion vector codebook is designed, mo-
tion estimation is performed by computing a block
distortion value for every codeword in the codebook.
Then the codeword with the minimum distortion is
selected as the motion vector. This technique requires
N searches over the search range. N is expected to
be rather small if a high degree of correlation exists
among the motion vectors, which has been the case
in most studies and our limited experiments have also
verified this.

4. FINITE- STATE VQ FOR BMA

It is frequently observed that the motion fields of
successive frames exhibit a high degree of short-term
interframe correlation in addition to the long-term
interframe and intraframe correlations as discussed
above. In other words, since the motion field does
not usually change rapidly, the motion vectors of cor-
responding blocks in successive frames are highly cor-
related. Thus, it is reasonable to assume that the
corresponding blocks of successive frames have sim-
ilar motion vectors and they will be in neighboring
Voronoi regions in the VQ framework. We will put
this property to use in the next paragraph to further
improve the VQ codebook design.

Using the above unbalanced greedy tree growing al-
gorithm, a VQ of codebook size N is designed with re-
spect to the MSE distortion measure. For every code-
word of this “supercodebook”, K — 1 nearest neighbor
codewords are found to form an N-state finite machine.
In other words, for every codeword, K — 1 additional
state codewords are selected from the supercodebook
of size N as depicted in Figure 2.

The motion estimation is performed by using the
codewords in the state codebook specified by the mo-
tion vector of the corresponding block in the previous
frame. In other words, if the motion vector of the cor-
responding block in the previous frame was Codeword
M , then only the blocks corresponding to motion vec-
tors yis,4 = 1,..., K — 1 and Codeword M are used
in the estimation process. The codeword yielding the
minimum distortion according to our BDM is selected
as the motion vector. Due to the inherent suboptimal-
ity of this architecture, as in all other partial search
techniques, it is possible to obtain inferior results dur-
ing rapidly changing scenes. To overcome this prob-
lem, the distortion of the selected motion vector is
compared to an experimentally determined distortion
threshold. This modification can be interpreted as a
form of distortion constrained VQ. If the codeword
distortion is greater than a threshold, a full search
is conducted over the entire supercodebook and the
codeword yielding the minimum distortion is chosen

1405

to be the motion vector.

Another advantage of this architecture is its ability
to adapt to changing system resources. For example,
an architecture can be created by designing the state
codebooks to include every codeword in the super-
codebook in descending nearest-neighbor order. De-
pending on the available computational power and/or
channel capacity of the system, only a certain number
of these codewords are used in the estimation process.
If the system status changes, the number of codewords
used in estimation can be increased or decreased to
adapt to the new requirements. The block diagram
of such a FSVQ-based BMA is illustrated in Figure 3.
Here, the next-state function simply retrieves the mo-
tion vector of the corresponding block in the previous
frame from the motion vector store and sets the next
state to this vector.

In addition to reducing the computational complex-
ity, our FSVQ-based BMA also reduces the amount of
information required to represent the motion vectors.
Since in BMA the motion vectors are transmitted as
side information, the number of motion vector candi-
dates affects the amount of information to be trans-
mitted. For large search regions, this information can
get quite large. Since VQ-based motion estimation
limits the number of motion vector candidates, the
amount of side information to be transmitted is low-
ered considerably as presented in the next section.

5. EXPERIMENTAL RESULTS

We have performed motion estimation using for-
ward prediction with a block size of 16 x 16 on the
8-bit luminance component (Y) of the Miss America
sequence. In this sequence there are 150 frames each
with 680 x 480 pels. First, 90 frames of this sequence
were chosen for training and the remaining 60 were
used during the testing phase. The maximum hori-
zontal and vertical displacements were chosen to be
six pels as in prior studies. The MAD was adopted as
the BDM, which resulted in estimates similar to those
of more complex measures.

5.1. Entropy of the Residual Signal

Since the goal of a motion compensator is to re-
duce the information content of the residual signal,
the entropy of the residual signal has been commonly
chosen as the fidelity criterion for motion estimation
algorithms. We have adopted that approach for the
work presented here.

Before motion estimation is performed, we apply
the motion detection algorithm presented by Puri et
al. [11] to the Miss America sequence. This algorithm
first classifies every pixel of a particular block as ‘mov-
ing’ or ‘non-moving’ by comparing the intensity differ-

ence between the current pixel and the corresponding
pixel in a reference frame, to a predetermined thresh-
old. Next, the number of ‘moving pixels’ in this block
are determined. If the number of ‘moving pixels’ ex-
ceeds a threshold, the block is considered to be ‘mov-
ing’. In our experiments, we have found the algorithm
to work adequately for T, = 5 and N, = 50 for blocks
of size 16 x 16 and 8-bit gray level pixels, where T,
represents the intensity difference threshold and N,
is the threshold for the number of varying pixels in a
block. With this algorithm we have classified around
60%-70% of the blocks as ‘non-moving’ with only 0.1
bits/pixels increase in entropy. 2

We present the comparison of our VQ based algo-
rithms with conventional algorithms in Figure 4. It
can be seen that the full search VQ based algorithm
with a codebook size of 10 codewords almost always
outperforms the conventional fast algorithms men-
tioned earlier. The codebooks needed in our FSVQ-
based algorithm were designed with a supercodebook
size of 20 codewords, a state codebook size of 5 code-
words, and a distortion threshold of 1600. This algo-
rithm also performs at least as well or better than the
conventional algorithms.
5.2. Computational Requirements

Figure 5 shows the computational requirements of
the fast motion estimation algorithms. As seen in
that figure, FSVQ-based BMA requires about half the
number of BDM evaluations of conventional fast al-
gorithms. It should also be noted that the exhaus-
tive search BMA requires around 60,000 block distor-
tion computations per frame, which are not included.
Those results have not been included to allow closer
inspection of the performance of the fast algorithms.

5.3. Reduction in the Motion Vector Data
Rate

To numerically illustrate the savings in the data
transmission rate for motion vectors, we consider the
case with a maximum horizontal and vertical displace-
ment of 6 pels yielding a total of 169 candidates for
motion vectors. This would require 8 bits per motion
vector to be transmitted as side information. For a
block size of 16 x 16 and a frame size of 680 x 480
pels at 30 frames per second, this would amount to
288 kbits/s. However as illustrated in the previous
section for the same image size, block size, and frame
rate, a FSVQ-based motion estimation algorithm per-
forms comparably to the exhaustive search using only
20 candidates thus, requiring only 5 bits per motion

20nly the motion vectors from blocks classified as moving in
the first 90 frames of the Miss America sequence were used as
training data for VQ codebook design.

1406

vector. ® This corresponds to only 180 kbits/s of side
information, which is equivalent to a 37.5 percent sav-
ings in this side information data rate.

6. CONCLUSIONS

In this paper, a new approach for fast BMA has
been introduced. Unlike the previously proposed fast
BMAs, we have approached the task of reducing the
search locations in BMA as a VQ problem and limited
the search using a VQ. The result is a new FSVQ-
based BMA. The proposed algorithm has yielded ex-
tremely encouraging results in our experiments. It has
usually outperformed the conventional fast algorithms
in terms of entropy reduction. More impressively, it
requires only half as many computations as the con-
ventional fast algorithms. Additionally, this algorithm
requires 37.5 % less side information to be transmitted
for motion vectors. The proposed algorithm also offers
adaptivity to trade between the computational com-
plexity and the entropy of the motion compensated
residue.

References

[1] MPEG, “Generic Coding of Moving Pictures and
Associated Video ”, Tech. Rep., CD 13818-2,
ISO/IEC JTC1/SC29, Nov. 1993.

[2] S. Kappagantula and K. R. Rao, “Motion pre-

dictive interframe coding”, IEEE Transactions

on Communications, vol. 33, pp. 1011~1015, Sept.

1985.

K. Koga, K. linuma, A. Hirano, Y. Ilijima, and
T. Ishiguro, “Motion-compensated interframe cod-
ing for video conferencing”, in National Telecom-
munications Conference, Nov. 1981, pp. G5.3.1-
G5.3.5.

R. Srinivasan and K. R. Rao, “Predictive cod-
ing based on efficient motion estimation”, IEEE
Transactions on Communications, vol. 33, pp.
888-896, Aug. 1985.

Y. Y. Lee and J. W. Woods, “Motion vector quan-
tization for video coding”, IEEE Transactions on
Image Processing, vol. 4, pp. 378-382, Mar. 1995.

Michael T. Orchard, “A comparison of techniques
for estimating block motion in image sequence cod-
ing”, in SPIE, Visual Communications and Image
Processing IV, 1989, vol. 1199, pp. 248-258.

3These 5 bits could further be reduced to 3 by exploiting the
state structure, but not within the scope of the MPEG II [1]
standard.

[7) A. Gersho and R. M. Gray, Vector Quantization
and Signal Compression, Kluwer Academic Pub-
lishers, Massachusetts, 1992.

[8] H. Abut, Vector Quantization, IEEE Press, New
York, 1990.

[9] J. Makhoul, S. Roucos, and H. Gish, “Vector
quantization in speech coding”, Proceedings of the
IEEE, vol. 73, pp. 1551-1588, 1985.

[10] E. A. Riskin, Variable Rate Vector Quantization
of Images, PhD thesis, Stanford University, June
1990.

[11] A. Puri, H. M. Hang, and D. L. Schilling, “An
efficient block matching algorithm for motion com-
pensated coding”, in IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing,
Apr. 1987, vol. 2, pp. 25.4.1-25.4.4.

Motion Vector Histogram of the Miss America Sequence {After Motion Detaction)

Motion Vector Probability
e o © o ©
v oW oo

3o

¥ 1 ¥ 2 y k-1
Codeword 1 A PR B R I 1
¥ 1 ¥ 2 ¥ R-1
Codeword 2 2 P I 2
cotowza 3| ¥ LA AR
3 3 3
1 2 ’Kd
codeword N 5 L A

Figure 2: Finite State Vector Quantizer Codebook

1407

System Rescurces

Super Codebook

| State Codebook

Available Cemputational

Distoxtion

Taput
— Thrashald Chesk

Block

Notion Vector
store

Punction

rmic mz.yJ.—__‘

Figure 3: FSVQ-based BMA Encoder

Fext-state '

of Motion g (With Mation D
3.95} ~. Conjugate Directions Search
- Modified Logarithmic Search
39
H
2
£ |
gs.ss 3 1
=
w
.. Exhaustive Search
38 xvaofsize 10 1
+ FSVQ of size 20/5
n . L . " s . .
90 92 94 96 o8 100 102 104 106 108 110

Frames

Figure 4: Comparison of the VQ-based Motion Esti-
mation Algorithms with the Conventional Fast Motion
Estimation Algorithms on the Miss America Sequence
with Motion Detection (Frames 120-140)

i of the G
100 T T T T T

x VQ of size 10

9000,

8000}
~. Modified Logarithmic Search

7000 i’ AL

6000

5000 (-
- Conjugate Directions Search

Number of BD Computations per Frame

4000
* FSVQ of size 20/5

3000

2000

90

n
140

120 150

Frame

130

Figure 5: Computational Requirements of the Fast
Motion Estimation Algorithms

