
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020 6621

Deep Learning for SVD and Hybrid Beamforming
Ture Peken , Sudarshan Adiga, Student Member, IEEE, Ravi Tandon , Senior Member, IEEE,

and Tamal Bose

Abstract— Hybrid beamforming (BF), which divides BF
operation into radio frequency (RF) and baseband (BB)
domains, will play a critical role in MIMO communication
at millimeter-wave (mmW) frequencies. In principle, we can
obtain unconstrained (optimum) beamformers of a transceiver,
which approach the maximum achievable data rates, through
its singular value decomposition (SVD). Due to the use of
finite-precision phase shifters, combined with power constraints,
additional challenges are imposed on the problem of designing
hybrid beamformers. Motivated by the recent success of machine
learning (ML) techniques, particularly in areas such as computer
vision and speech recognition, we explore if ML techniques
can be effectively used for SVD and hybrid BF. To this end,
we first present a data-driven approach to compute the SVD.
We propose three deep neural network (DNN) architectures to
approximate the SVD, with varying levels of complexity. The
methodology for training these DNN architectures is inspired
by the fundamental property of SVD, i.e., it can be used to
obtain low-rank approximations. We next explicitly take the
constraints of hybrid BF into account (such as quantized phase
shifters, power constraints), and propose a novel DNN based
approach for the design of hybrid BF systems. To validate the
DNN based approach, we present simulation results for both
approximating the SVD as well as for hybrid BF. Our results
show that DNNs can be an attractive and efficient solution for
estimating SVD in a data-driven manner. For the simulations of
hybrid BF, we first consider the geometric channel model. We
show that the DNN based hybrid BF improves rates by up to
50 − 70% compared to conventional hybrid BF algorithms and
achieves 10 − 30% gain in rates compared with the state-of-art
ML-aided hybrid BF algorithms. We also discuss the impact of
the choice of hyperparameters, such as the number of hidden
layers, mini-batch size, and training iterations on the accuracy
of DNNs. Furthermore, we provide time complexity and memory
requirement analyses for the proposed approach and state-of-the-
art approaches.

Index Terms— Hybrid beamforming, singular value decompo-
sition, machine learning, massive MIMO, millimeter-waves.

I. INTRODUCTION

THE mmW band is crucial for enabling fifth-generation
(5G), autonomous vehicles, and Internet of Things (IoT)

enabled networks [1]–[3]. The combination of abundant band-
width of mmW frequencies ranging from 30 to 300 GHz,

Manuscript received July 22, 2019; revised February 28, 2020; accepted
June 13, 2020. Date of publication June 30, 2020; date of current version
October 9, 2020. This work was supported in part by the Broadband Wireless
Access and Applications Center (BWAC) and in part by NSF Award 1822071.
The work of Ravi Tandon was supported in part by NSF under Grant CAREER
1651492 and Grant CNS 1715947 and in part by the 2018 Keysight Early
Career Professor Award. The associate editor coordinating the review of this
article and approving it for publication was E. De Carvalho. (Corresponding
author: Ravi Tandon.)

The authors are with the Department of Electrical and Computer
Engineering, University of Arizona, Tucson, AZ 85721 USA (e-mail:
turepeken@email.arizona.edu; adiga@email.arizona.edu; tandonr@email.
arizona.edu; tbose@email.arizona.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.3004386

along with a massive number of antennas, has the potential
of providing high data rates, improving spectral efficiency,
and signal coverage [4]. Since the wavelength gets smaller
with the higher frequencies, propagation loss increases in
mmWs. Large-scale antenna systems (massive MIMO) can
focus the radiated energy toward the specific directions by
using directional BF, which compensate for the performance
degradation due to the propagation loss [5]. Traditionally, BF
has been performed either in RF or BB domain. Digital BF
provides higher data rates; however, it requires a large number
of RF chains, leading to increased power consumption and
cost [4]. On the other hand, analog BF requires fewer RF
chains, thus lower power consumption; however, compromises
on the achievable rate [6]. The key idea behind hybrid BF is to
combine analog BF and digital BF, with the ultimate goal of
keeping the power consumption low, and data rates high [7].
Optimal unconstrained beamformers (which maximize channel
capacity) can be found through the SVD of the channel, i.e., k
singular vectors corresponding to the largest singular values of
the channel matrix can be used to determine k optimum beam
directions. On the other hand, analog and digital beamformers
in hybrid BF must be designed jointly to approach the maxi-
mum achievable rates by considering the constraints due to the
use of finite-precision phase shifters in the RF domain along
with the power constraint. In particular, the elements of RF
beamformers are constrained to have constant modulus and
quantized phase values. As the RF and digital beamformers in
hybrid BF are required to be designed jointly and repeatedly
in real-time with changing channel conditions, the selection
of beamformers with maximum achievable rates becomes a
challenging task.

Several methods have been proposed for hybrid BF design
in the literature. In [8], the beams are selected exhaustively
based on maximum signal-to-noise-ratio (SNR). However,
choosing the beams by using exhaustive search methods leads
to high computational complexity. Near-optimum algorithms
using sparse approximation techniques have been proposed for
hybrid BF as well [9]–[11]. Even though sparse approximation
methods can reduce the computational complexity compared
to exhaustive techniques, they still need significant training
overhead that scales with the number of antennas. Hybrid BF
techniques for multi-user MIMO (MU-MIMO) systems have
also been proposed in [12], [13]. A low-complexity two-stage
multi-user hybrid BF algorithm, which assumes the availability
of a limited feedback channel, has been presented in [12].
Authors of [13] propose a hybrid BF algorithm for multi-user
massive MIMO systems, which determines the beamformers
using weighted sum mean square error (WMSE) minimization.
There has been significant recent interest in exploring the use
of ML techniques for the design of wireless systems [14]–[18].

1536-1276 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2322-9639
https://orcid.org/0000-0002-6182-6098

6622 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

In [14], the authors study the use of convolutional neural
networks (CNNs) for the problem of modulation classification.
In [15], the design of single-user MIMO (SU-MIMO) systems
is considered through unsupervised learning using an autoen-
coder. In this scheme, different communication tasks such as
modulation and encoding are combined into a single end-to-
end system. In [16], long short-term memory (LSTM)-aided
nonorthogonal multiple access (NOMA) scheme is proposed
to detect channel characteristics. Authors of [17] propose to
integrate deep learning (DL) methods into massive MIMO
systems for channel estimation and direction-of-arrival (DoA)
estimation by employing DNNs. In [18], the development
of DL-based solutions for 5G communications has been
reviewed, and then novel schemes for DL-based 5G scenarios
have been introduced.

ML approaches have also been recently explored for the
SVD and BF. Since the computation of SVD by conventional
methods such as [19], [20] requires intensive time for large
matrices, authors of [21] propose a linear NN to compute the
SVD in real-time [21]. In [22], an autoencoder is introduced
to find the truncated SVD of a given matrix. A DL-based
fully-digital BF design has been proposed in [23]. The authors
of [23] divide BF design problem into power allocation
and virtual BF design, and then propose the BF prediction
network for power allocation and predicting beamformers.
In [24], a DNN-based BF approach has been presented to
learn the optimum beamformers, which maximize the spectral
efficiency under hardware constraint with imperfect channel
state information (CSI). In [25], an adaptive cross-entropy
(CE) optimization has been proposed for a switch and inverter
(SI)-based hybrid precoding architecture. However, the achiev-
able sum-rate needs to be calculated for all the candidate
beamformers, which still brings a significant computational
overhead. In [26], beam selection in hybrid BF has been
considered as a multi-class classification problem. The authors
of [26] have adopted the support vector machine (SVM)
algorithm to select beamformers that maximize the sum rate
over the mmW channel. A DL model, which predicts the
BF vectors at the base stations (BS) by using received pilot
signals, has been proposed in [27]. The main idea in this
method is to use the received signals with omni beam pat-
terns to learn the RF-BF vectors. After RF-BF vectors are
selected, BB beamformers are designed by using maximum
ratio combining (MRC) technique. A DL-based mmW massive
MIMO for hybrid BF is presented in [28]. In this paper,
an autoencoder is used to estimate the analog and digital
precoders by adopting geometric mean decomposition (GMD)
technique. Authors of [29] propose a hybrid BF scheme relying
on ML assisted link adaptation. This scheme selects either
spatial multiplexing or diversity-aided transmission based on
different channel conditions. In [30], first a novel technique
to generate datasets for mmW MIMO scenarios has been
presented. Then, DL is leveraged for beam-selection using the
generated datasets.

The main idea of this work is to formulate the hybrid
BF as a constrained SVD problem since the SVD based
unconstrained BF constructs an upper bound on the maximum
achievable rates. Motivated by the recent success of ML in

applications such as image and speech processing [31], [32],
we aim to study the potential of ML approaches for the
SVD and hybrid BF. The complexity of the conventional
SVD algorithms increases quadratically with the dimension of
the matrix, and our motivation for calculating the SVD with
ML-based techniques is to reduce this complexity. Moreover,
the common property among the different conventional SVD
algorithms such as [19], [20] is that they first diagonalize the
input matrix by plane rotations and then calculate iteratively
singular values and singular vectors of the resulting matrix.
Therefore, it is intuitive to use a NN, where the elements of
the rotation matrices are the weights to be learned by the NN.
Authors of [21] show the validity of using a linear NN for
computing the SVD [21]. However, linear NNs have a limited
capacity to learn the singular values and singular vectors
of large matrices since the SVD is a non-linear operation.
Therefore, DNNs are more promising for computing the SVD
of large matrices at the expense of higher computational
power requirements. Authors of [22] indicate the potential of
unsupervised approaches such as autoencoders for computing
the SVD and principal component analysis (PCA). It has been
shown in [22] that the optimal weight matrix of the linear
autoencoder with a squared error loss function is the orthog-
onal projection onto space spanned by the eigenvectors of the
covariance matrix of the input. However, the eigenvectors can
be found applying some orthogonalization techniques such as
Gram-Schmidt to the weight matrix of the autoencoder, which
increases the computational complexity.

In this work, we use CNNs to implement our proposed
DNN architectures to compute the SVD even though other
approaches like feedforward NNs and recursive neural net-
works (RNNs) can also be used. The first multilayered CNNs
have been proposed in [33] for handwritten digit recogni-
tion, and since then have been used successfully in var-
ious applications, which involve 2D data processing such
as image classification. It has also been shown that CNNs
were easier to train than the feedforward fully connected
NNs [34]. On the other hand, convolution operations have
high computational complexity, which causes the CNNs to
be slower than the feedforward NNs. The implementation of
CNNs using graphical processing units (GPUs) compensates
for the computational complexity issue of CNNs, which makes
CNNs more advantageous than the feedforward NNs overall.
RNNs have been successfully applied to sequence prediction
problems such as speech recognition, human motion predic-
tion, etc. [32], [35]. However, it has been recently indicated
that simple CNNs outperform canonical RNNs across many
different tasks and datasets while achieving longer effective
memory [36]. Therefore, we use CNNs for the implementation
of our proposed approaches for the SVD and hybrid BF.

A. Contributions of This Paper

• We first propose three novel DNN architectures to learn
the SVD, which is the fundamental operation for finding the
unconstrained optimum beamformers at the transmitter (Tx)
and the receiver (Rx). The first architecture predicts k most
significant singular values and singular vectors of a given

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6623

matrix using a single DNN. By leveraging the structure of
SVD, a low-complexity DNN architecture for rank-k matrix
approximation is introduced. The second architecture consists
of k low-complexity DNNs; each DNN is trained to estimate
the largest singular value and corresponding right and left
singular vectors of the given matrix. To further simplify the
SVD operation, we propose a third architecture for rank-1
matrix approximation, which estimates k singular values and
singular vectors using a single DNN recursively. We introduce
customized loss functions to train the three DNN architectures.
In principle, the DNNs are trained to minimize the Frobenius
distance between the real and the estimated rank-k approxi-
mations of the matrix while forcing the singular vectors to be
orthogonal.
• Then, we propose a novel DNN architecture for hybrid

BF by incorporating constraints that are specific to hybrid BF.
We consider the case where finite-precision phase shifters are
used in the RF domain, which restricts the analog beamformers
to have constant modulus and quantized phase values. There-
fore, quantization layers are included in the proposed DNN
for hybrid BF. However, incorporating quantization brings
additional challenges due to the non-differentiability of the
discretization operation. In particular, when we use gradient-
based optimization methods for training, the quantization
layers in DNNs produce zero gradients, which prevents to
update the weights. To circumvent this issue, we propose
four quantization approaches. In the first approach, we use
a combination of step and piece-wise linear functions to
approximate the phase quantization operation, which provides
non-zero gradients during training. In the second approach,
we consider a soft quantization by using a combination of
several sigmoid functions with different parameters during
both forward as well as backward propagation. In the third
approach, we use step function in the forward propagation
while incorporating sigmoid functions with different parame-
ters during backward propagation. In the fourth approach,
we implement a stochastic quantization approach [37] during
forward propagation while replacing with a straight-through
estimator [38] during backpropagation. Finally, we satisfy the
power constraint through normalization layers in the proposed
DNN architecture.
• We provide the time complexity analysis for the pro-

posed DNN architectures for SVD and compare their time
complexities with the conventional SVD algorithms. We show
that the proposed DNN based approaches have a smaller time
complexity than the traditional SVD approaches while the
number of transmit and receive antennas increases, and the
other parameters remain constant. We present a comprehensive
set of simulation results to show the advantages of DNNs
for learning SVD and for hybrid BF. We implement three
DNN architectures for SVD using CNNs and discuss the
impact of mini-batch size, the number of hidden layers,
and training iterations size on accuracy. With the geometric
channel model, we simulate the proposed DNN based hybrid
BF algorithm and compare its rates with the unconstrained
BF, three conventional hybrid BF algorithms [9], [10], [39],
an ML-aided hybrid BF algorithm based on CE optimiza-
tion [25], two DL-based hybrid BF algorithms [27], [30], and

an autoencoder based hybrid BF algorithm [28]. The results
show that the proposed algorithm achieves up to 50−70% and
10− 30% gains in rates compared to the conventional hybrid
BF approaches and ML-based algorithms, respectively. We
also compare the performance of the proposed DNN based
SVD approaches with the traditional SVD algorithms in terms
of the time complexity and memory requirements. Further-
more, we perform a time complexity analysis and compare
the DNN based approach to other state-of-the-art methods.1

B. Notation

We use the following notation throughout this paper: A
is a matrix, a is a vector, a is a scalar, and A is a set.
|A|, AT , A−1, A∗, ‖A‖F , and rank (A) are the determinant,
transpose, inverse, Hermitian (conjugate transpose), Frobenius
norm, and rank of A, respectively. [A]r,: and [A]:,c are the
rth row and cth column of A. ‖a‖2 is the Euclidean norm
of a. diag(a1, . . . , an) denotes a diagonal matrix with the
entries of a1, . . . , an on its diagonal. logb(x) and E [·] denote
the logarithm of x to base b and expectation respectively.
I is the identity matrix. e stands for Euler’s number and
j denotes

√−1. N (
μ, σ2

)
and N (m, R) are a complex

Gaussian random scalar with mean μ and variance σ2 and a
complex Gaussian random vector with mean m and covariance
R, respectively. R and C denote the set of real and complex
numbers, respectively.

II. PRELIMINARIES: SVD AND HYBRID BF

This section presents the preliminaries for SVD and hybrid
BF considered in the paper. Then, we formulate optimum
and hybrid BF by using unconstrained and constrained SVD,
respectively.

A. SVD

Given the matrix H ∈ CNR×NT with rank r ≤ l =
min{NT , NR}, there exists (i) a unitary matrix U ∈ CNR×NR ;
(ii) a diagonal matrix Σ ∈ CNR×NT with non-negative
numbers on its diagonal; (iii) a unitary matrix V ∈ CNT×NT

that construct the SVD of H as,

H = UΣV∗ (1)

where U∗U = INR , V∗V = INT , and Σ = diag(σ1, . . . , σl),
σi > 0 for 1 ≤ i ≤ r, σj = 0 for l = min(NR, NT) ≥ j ≥
r + 1. The diagonal elements of Σ are singular values, and
the columns of U and V are left and right singular vectors of
H, respectively.

B. Optimum BF Using Unconstrained SVD

Consider a communication system with NT and NR anten-
nas at the Tx and Rx, respectively. We denote the channel
matrix of this system by H ∈ CNR×NT , which can be
decomposed as H = UΣV∗. We define the precoder at the Tx
as T ∈ CNT×L and the combiner at the Rx as R ∈ CNR×L.

1Source codes for the experiments are available at: https://www.dropbox.
com/sh/v0gs7ba0qq5 × 168/AACyqRoCz5m3fhpF-azkbn3Qa?dl=0

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6624 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 1. Hybrid BF architecture with RF and BB blocks. L data streams are processed by the BB precoder TBB . Each BB signal is connected to the one of
NT

RF RF chains of the RF precoder TRF . The reverse of this operation is performed at the Rx.

At the Tx, the vector of transmitted symbols s ∈ C
L×1 is first

processed by T, and then transmitted from NT antennas of
the Tx. The transmitted signal x ∈ CNT×1 is given as,

x = Ts. (2)

Then, NR antennas of the Rx receive the signal r ∈ C
NR×1,

which is defined as,

r = HTs + n, (3)

where n ∼ N (
0, σ2I

)
is the Gaussian noise vector of

dimension NR × 1. After r is processed by R, the vector of
received symbols y ∈ CL×1 is obtained as,

y = R∗HTs + R∗n. (4)

The optimum beamformers for the given communication
system can be found by maximizing some performance utility
metric such as SNR [40], achieved rate [41], etc. For the
scope of this paper, we focus on the achieved rate, which
is maximized by selecting the singular vectors of H as
the beamformers of this system. In particular, the optimum
beamformers are found by maximizing the rate R, which is
given as,

R = log2

(∣∣∣I + P
L C−1

n R∗
optHToptT

∗
optH

∗Ropt

∣∣∣), (5)

where Topt = VL and Ropt = UL denote the optimum
unconstrained precoder and combiner of this system. Here,
VL ∈ C

NT×L and UL ∈ C
NR×L are L most signifi-

cant right and left singular vectors of H [42], respectively.
Cn = R∗

optRopt is the post-processing noise covariance matrix.

C. Hybrid BF Using Constrained SVD

In this section, we consider a mmW system shown in
Figure 1. A Tx with NT antennas and LT RF chains com-
municates with a Rx with NR antennas and LR RF chains.
We assume there are L data streams such that L ≤ LT ≤ NT

and L ≤ LR ≤ NR. At the Tx, L data streams are processed
by a BB precoder TBB ∈ CLT×L followed by an RF precoder
TRF ∈ CNT ×LT . Then, the transmitted signal x ∈ CNT ×1 can
be written as,

x = TRF TBBs, (6)

where s ∈ CL×1 is the vector of transmitted symbols. The
average total transmit power is denoted as P , and s satisfies

E [ss∗] =
(

P
L

)
IL. We denote the mmW channel between the

Tx and Rx with H ∈ CNR×NT . The received signal over NR

antennas of the Rx is given as,

r = HTRF TBBs + n, (7)

where n ∼ N (
0, σ2I

)
is the Gaussian noise vector of

dimension NR × 1. Then, the Rx processes the received signal
r ∈ CNR×1 with an RF combiner RRF ∈ CNR×LR followed
by a BB combiner RBB ∈ CLR×L. The vector of received
symbols y ∈ CL×1 is then obtained as,

y = RBB
∗RRF

∗HTRF TBBs + RBB
∗RRF

∗n. (8)

Analog and digital beamformers of a hybrid BF system need
to be designed based on the constraints of power and finite-
precision phase shifters, which are used in the RF domain. LT

RF-BF vectors with the dimension of NT × 1 at the Tx and
LR RF-BF vectors with the dimension of NR × 1 at the Rx
are designed based on quantized directions. In particular, ith
BF vector of the RF precoder and jth BF vector of the RF
combiner are given as [TRF]:,i, i = 1, . . . , LT and [RRF]:,j ,
j = 1, . . . , LR, respectively. As in the optimum BF, we can
design analog and digital beamformers of a hybrid BF system
by maximizing a metric (e.g., SNR, achieved rate) over all
possible beamformers. By selecting the achieved rate as our
metric, our goal is to design beamformers at the Tx and Rx
(TRF , TBB , RRF , RBB), which maximize the rate defined
in (5) while the following constraints are satisfied:

1) Due to the usage of phase shifters, the entries of TRF

and RRF must have constant modulus. In particular,
|[TRF]i,j |2 = N−1

T and |[RRF]i,j |2 = N−1
R , where

|[TRF]i,j |(|[RRF]i,j |) corresponds to the magnitude of
(i, j)th element of TRF (RRF).

2) Elements of each column in TRF and RRF are rep-
resented as quantized phase shifts, where each phase
shifter is controlled by an Nq-bit input. n(m)th row
of the RF precoding matrix at the Tx(Rx), which cor-
responds to the phase shifts of the n(m)th antenna of

the TRF (RRF), can be written as e
j2πnkq

2Nq
(
e

j2πmkq

2Nq
)

for
some kq = 0, 1, . . . , 2Nq − 1.

3) The power constraint must be satisfied,
i.e., ‖TRF TBB‖2

F = L and ‖RRF RBB‖2
F = L.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6625

D. mmW Channel Model

For the scope of this paper, we consider geometric channel
model. Various studies [43], [44] have shown that mmW
channels have limited scattering due to the high free-space path
loss. The geometric channel model, which has been proposed
in [45], [46], is suitable to characterize the mathematical
structure of mmW channels. In this model, each scatterer
contributes a single propagation path between the Tx and the
Rx. The channel representation is given as,

H =

√
NT NR

ρ

S∑
s=1

gsaR(θs)a∗
T (φs), (9)

where S is the number of scatterers, ρ is the average path-loss
between the Tx and the Rx, and gs is the complex gain of the
sth path with Rayleigh distribution, i.e., gs ∼ N (0, G) for s =
1, 2, . . . , S. Here, G denotes the average power gain. aT (φs)
and aR(θs) are the array response vectors at the Tx and the
Rx, respectively. φs ∈ [0, 2π] and θs ∈ [0, 2π] indicate the sth
path’s azimuth Angle of Arrival (AoA) and Angle of Departure
(AoD), respectively. For more details of the geometric channel
model we refer the reader to [45], [46].

III. DL FOR SVD APPROXIMATIONS

In this section, our objective is to leverage DL to effectively
estimate the best rank-k approximation of a matrix H, which
can be defined as,

Hk = UkΣkVk
∗, (10)

where Uk is the first k columns of left singular vectors matrix
U, Vk is the first k columns of right singular vectors matrix
V, and Σk is the diagonal matrix with top k singular values of
Σ on its diagonal. The SVD provides the justified solution for
a best approximation of the matrix H as a rank-k matrix when
the error is measured in the Frobenius norm [47]. Furthermore,
Hk can be also written as a sum of k rank-1 approximations
of H as,

Hk =
k∑

i=1

σiuivi
∗, (11)

where σ1, σ2, . . . , σk are k top singular values, u1, u2, . . . , uk

are k top left singular vectors, and v1, v2, . . . , vk are k top
right singular vectors of H.

In this section, we propose three DNN architectures with
different levels of complexity to meet the trade-off between
complexity and accuracy. The proposed DNNs learn the best
rank-k matrix approximation in a supervised manner using the
factorization obtained by the SVD.

A. DNN for Rank-k Matrix Approximation

We first propose a DNN for rank-k matrix approximation,
which can be seen in Figure 2. We choose CNNs to imple-
ment the proposed DNN, which can also be implemented
by using different models such as feedforward, multi-layer
perceptron (MLP), RNN, etc. [48]. DNN for rank-k matrix
approximation learns how to predict k most significant singular
values and singular vectors, i.e., σ̃1, σ̃2, . . . , σ̃k, ũ1, ũ2, . . . , ũk,

Fig. 2. DNN for rank-k matrix approximation.

and ṽ1, ṽ2, . . . , ṽk, directly from a given matrix H by train-
ing its parameters θ. Consider Hk =

∑k
i=1 σiuivi

∗ and
H̃k =

∑k
i=1 σ̃iũiṽ

∗
i as real and estimated rank-k approxi-

mations of the matrix H, respectively. The objective of the
proposed DNN is to estimate the best rank-k matrix approx-
imation of a given matrix. Therefore, we propose a custom
loss function, which satisfies the following:

1) ||Hk − H̃k||F must be minimized.
2) Ũk = [ũ1, ũ2, . . . , ũk] and Ṽk = [ṽ1, ṽ2, . . . , ṽk] must

be unitary matrices. In particular, the columns of Ũk

and Ṽk must form a set of orthonormal vectors, which
implies that ||ũ∗

i ũj ||2 = ||ṽ∗i ṽj ||2 = 0 ∀ i, j s.t. i 	= j.

Consequently, we define the loss function for the DNN for
rank-k matrix approximation as,

L (θ) =
||Hk − H̃k||F

||Hk||F +λ1

∑
i�=j

||ũ∗
i ũj ||2+λ2

∑
i�=j

||ṽ∗
i ṽj ||2,

(12)

where θ denotes the parameters of the DNN. Here, σi, ui, and
vi are the ith largest singular value and left and right singular
vectors of H, respectively. λ1 and λ2 are the non-negative
constants of the penalty terms that satisfy U = [u1, u2, . . . , uk]
and V = [v1, v2, . . . , vk] to be unitary matrices.

The number of output nodes increases linearly with k, NR,
and NT in the DNN for rank-k matrix approximation. For a
full-rank matrix H, k can be as large as min(NR, NT), and
then, the number of output nodes grows quadratically with the
smaller dimension of H.

B. Low-Complexity DNN for Rank-k Matrix Approximation

In this section, we propose a second DNN architecture,
which is shown in Figure 3-a. This architecture consists of
k low-complexity DNNs with the parameters denoted by θi,
i = 1, .., k, in which the DNN-i is trained to estimate singular
value σi and corresponding singular vectors ui and vi of
a given matrix H. In other words, the DNN-i determines
a function between the input matrix and its largest singular
value and singular vectors by training its parameters θi. Given
the channel matrix H as an input, DNN-1 generates σ̃1, ũ1,
and ṽ1, which are the estimated values of σ1, u1, and v1.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6626 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 3. The second and third DNN architectures for the SVD, which have
less complexity compared to the first DNN architecture.

We denote the input matrix for DNN-i, i = 2, . . . , k as
Ĥi = H − ∑i−1

n=1 σ̃nũnṽn = H − H̃i−1. In particular,
we represent the input of DNN-2 as Ĥ2 = H − H̃1, where
H̃1 = σ̃1ũ1ṽ∗

1. DNN-2 generates σ̃2, ũ2, and ṽ2. Then,
H̃2 =

∑2
i=1 σ̃iũiṽ

∗
i is calculated, and subtracted from H to

generate the input for DNN-3 as Ĥ3 = H−H̃2. This procedure
continues until DNN-k gets the Ĥk as an input and generates
σ̃k, ũk, and ṽk.

For the training procedure of this architecture, we propose
two approaches. In the first approach, k DNNs are trained
jointly to minimize the total loss, which is formulated as,

L (θ1, θ2, . . . , θk) =
||Hk − H̃k||F

||Hk||F + λ1

∑
i�=j

||ũ∗
i ũj ||2

+ λ2

∑
i�=j

||ṽ∗
i ṽj ||2, (13)

where Θ = (θ1, θ2, . . . , θk) denotes the parameters of k DNNs
to be learned. We also assume that a gradient-based technique
is used to learn Θ. In this case, Θ(t+1), which corresponds to
the parameters at the (t + 1)th iteration, can be updated using
the loss function given in (13) as,

Θ(t+1) = Θ(t) − γ∇ΘL(Θ)|Θ=Θt , (14)

where γ is the learning rate. The second approach is to train
the k DNNs successively, in a sequential manner, where ith
DNN is trained to learn θi by minimizing its own loss function.
In particular, DNN-1 is trained by minimizing,

L (θ1) =
||σ1u1v∗

1 − σ̃1ũ1ṽ∗1||F
||σ1u1v∗

1||F
, (15)

where θ1 denotes the parameters of the first DNN in the low-
complexity architecture. To satisfy ||ũ∗

1ũ2||2 = ||ṽ∗1ṽ2||2 = 0,
we define the loss function of DNN-2 as,

L (θ2) =
||σ2u2v∗

2 − σ̃2ũ2ṽ∗2||F
||σ2u2v∗

2||F
+ λ1||ũ∗

1ũ2||2
+ λ2||ṽ∗

1ṽ2||2, (16)

where θ2 are the parameters of the second DNN in the low-
complexity architecture. In general, the loss function of DNN-i
of this architecture for successive training is defined as,

L (θi) =
||σiuiv∗

i − σ̃iũiṽ
∗
i ||F

||σiuiv∗
i ||F

+ λ1

∑
i,j<i

||ũ∗
i ũj ||2

+ λ2

∑
i,j<i

||ṽ∗
i ṽj ||2, (17)

where θi denotes the parameters of the ith DNN, λ1 and λ2

are non-negative constants of the penalty terms, respectively.

C. DNN for SVD via Rank-1 Matrix Approximation

For further simplicity, we propose a third DNN architecture,
which predicts k singular values and singular vectors of a
given matrix H with a single DNN recursively, as depicted
in Figure 3-b. Let the matrix Ĥi = H − H̃i−1 denote the
input matrix given to the DNN in the ith iteration, where
H̃i−1 =

∑i−1
n=1 σ̃nũnṽn. Then, top singular value and singular

vectors of Ĥi are actually the ith singular value and singular
vectors of H under the assumption that previous i − 1 sin-
gular values and singular vectors are estimated perfectly, i.e.,
σ̃n = σn, ũn = un, and ṽn = vn for n = 1, 2, . . . , i − 1. In
the first iteration, the DNN predicts σ̃1, ũ1, and ṽ1. Then,
H̃1 = σ̃1ũ1ṽ∗

1 is subtracted from the input matrix H to
obtain Ĥ2 = H − H̃1. The second-highest singular value
and singular vectors of H are estimated by providing Ĥ2

to the DNN in the second iteration since top singular value
and singular vectors of Ĥ2 are the second-highest singular
value and singular vectors of H. This recursive procedure ends
when σ̃k , ũk, and ṽk are estimated by the DNN, given that
Ĥk = H − H̃k−1 as the input in the kth iteration.

This DNN architecture is trained using the following loss
function,

L (θ) =
||Hk − H̃k||F

||Hk||F +λ1

∑
i�=j

||ũ∗
i ũj ||2+λ2

∑
i�=j

||ṽ∗
i ṽj ||2,

(18)

where the second and third terms are included to satisfy
the orthogonality of the left and right singular vectors,
i.e., ||ũ∗

i ũj ||2 = ||ṽ∗
i ṽj ||2 = 0, ∀ i, j s.t. i 	= j. Here, θ denotes

the parameters of the DNN for rank-1 approximation. At the
(t + 1)th iteration, θ(t+1) are calculated as,

θ(t+1) = θ(t) − γ∇θL(θ)|θ=θt , (19)

where γ denotes the learning rate.

D. Experimental Study of DNNs for SVD

In this section, we evaluate the performance of the proposed
DNN architectures for the SVD.

1) Data Generation: We consider a dataset, which consists
of 8000 training and 2000 testing channel matrices. Each of
the channel matrices is generated according to the geometric
channel model, as defined in (9). In this model, we assume
that the spacing between two successive antennas is equal to
λ/2, and we use uniform linear arrays (ULAs). We assume
the AoDs/AoAs are uniformly distributed in [0, 2π]. The gain
of each path in the channel has Rayleigh distribution.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6627

Fig. 4. Training and test losses with the DNN for rank-k matrix approximation for different sized channel matrices.

2) DL Model: Each DNN in the proposed architectures has
2NRNT inputs, which represent the real and the imaginary
components of the given matrix H ∈ CNR×NT . The number of
output nodes in DNN for rank-k matrix approximation equals
to k(2NR + 2NT + 1), which is the sum of k singular values
(σ̃i, i = 1, 2, . . . , k), and real and imaginary values of k right
singular vectors (ṽi, i = 1, 2, . . . , k) and left singular vectors
(ũi, i = 1, 2, . . . , k). Here, ṽi and ũi are column vectors with
a size of NT × 1 and NR × 1, respectively. The number of
output nodes in DNN-i of the low-complexity architecture for
rank-k matrix approximation is 2NR+2NT +1, which denotes
the sum of σ̃i, and real and imaginary values of ṽi and ũi.
The DNN for SVD via rank-1 approximation also has 2NR +
2NT + 1 outputs. Each DNN consists of a variable number
of convolutional layers and followed by a dropout layer with
a rate of 0.4 and a fully connected dense layer. Both the
convolutional and the fully connected layers use exponential
linear units (ELU) as activation functions [49]. The positive
part of the ELU activation function has a constant gradient
of one to prevent to saturate a neuron on the positive side
of the function. On the other hand, it saturates exponentially
on the negative side of the function, which leads to faster
learning than other activation functions. We set the learning
rate as 0.0001, and non-negative constants λ1 and λ2 for the
penalty in the loss function as 0.01 unless otherwise specified.
Adam [50], which is an adaptive learning rate optimization
algorithm, is used for training DNNs. For the implementation,
we used Tensorflow [51].

3) Comparison of Training and Test Losses: First, we obtain
the training and test losses for the different-sized channel
matrices using the loss function given in (12). In these
simulations, we use 6 convolutional layers and a mini-batch
size of 128. Figures 4-a, 4-b, and 4-c illustrate the training
and test losses versus the number of iterations used during
the training when NR = NT = 8, NR = NT = 16, and
NR = NT = 32, respectively. The results show that the
training and test losses are very close to each other for the
8-by-8 and 16-by-16 matrices while the number of iterations
for the training increases up to 4000. However, test losses
start to saturate, and overfitting occurs when DNNs are trained
for more than 4000 iterations. Moreover, the training and test
losses are nearly the same for the 32-by-32 matrices when
the number of training iterations is less than 6000. These
results show that reasonable test performance can be achieved

by training the DNN for rank-k approximation with a higher
number of training iterations while the dimension and rank
of matrices increase. Therefore, overfitting starts to occur
after a greater number of training iterations for the larger
sized matrices. Moreover, we observe that SVD prediction
error increases with the greater number of antennas at the Tx
and the Rx. For instance, the SVD prediction errors obtained
after the DNN is trained for 10000 iterations are 0.428,
0.494, and 0.592 for 8-by-8, 16-by-16, and 32-by-32 matrices,
respectively.

4) Comparison of Dropout and Max Pooling: In this
section, we study the performance of the DNN for rank-k
approximation and the low-complexity DNN for rank-k
approximation when the max pooling and dropout are used.
Figure 5-a shows the test losses of the DNN for rank-k approx-
imation while the number of training iterations increases up
to 10000 for 16-by-16 matrices. It is seen in Figure 5-a
that the test losses decrease slower with dropout compared
to the case when max pooling or none of them are used.
However, the smallest test losses are obtained with dropout
when the DNN for rank-k approximation is trained more than
5000 iterations. In Figure 5-b, we observe the test losses versus
a different number of training iterations of the low-complexity
DNN for rank-k approximation using 16-by-16 matrices. For
the low-complexity architecture, the smallest test losses are
obtained when the dropout rate is 0.2. While the dropout rate
increases up to 0.5, the performance in terms of error slightly
degrades. Furthermore, smaller test losses are achieved with
different rates of dropout compared to the case when max
pooling or none of them are used for the higher number
of training iterations. Since the dropout reduces redundan-
cies in the DNN, it also decreases overfitting. Therefore,
it outperforms max pooling in both architectures. However,
the low-complexity DNN requires less generalization due to
its simplicity compared to the DNN for rank-k approximation.
Therefore, a lower dropout rate is required to achieve the best
performance for the low-complexity DNN.

5) Impact of Selected k Value During the Training and
Testing: We then investigate how the performance of the
proposed DNN based SVD approach changes if the DNN
is used to estimate a smaller or a larger number of singular
values and singular vectors than the selected k value during
the training. We first observe the performance of the proposed
approach when the DNN estimates a larger number of singular

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6628 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 5. Comparison of max pooling and dropout for 16-by-16 matrices.

values and singular vectors than k, which is used for the
training. Figure 6-a shows the test losses of 16-by-16 matrices
using the DNN for rank-k matrix approximation when k is
selected as 16, 14, 12, and 8 during the training. In these
simulations, we use 4 convolutional layers and a mini-batch
size of 32. In each case, the DNN is tested to predict
16 singular values and singular vectors of 16-by-16 matrices.
It is shown in Figure 6-a that the test losses increase with the
smaller k values used during the training. Therefore, the value
of k in training must be at least equal to the value of k used for
the testing. We then study the case when the DNN estimates
a smaller number of singular values and singular vectors than
the number of singular values and vectors predicted during the
training. Figure 6-b illustrates the test losses of the proposed
approach when the DNN estimates 16, 14, and 12 singular
values and singular vectors of 16-by-16 matrices when k is
set to 16 in the training phase. In this case, we observe that
the testing performance of the DNN based SVD approach is
not affected significantly when the DNN estimates a smaller
number of singular values and vectors compared to the training
phase, which implies that the DNN does not need to be
retrained to estimate a smaller number of singular values and
vectors than k used during the training. This result also shows
that the test losses of the DNN based SVD approach do not
change with the rank of the matrix when the size of the matrix
remains the same.

Fig. 6. Test losses for 16-by-16 matrices using the DNN for rank-k matrix
approximation with the different values of k during the training and testing.

6) Performance of the Proposed Approach in Noisy
Case: In order to observe the performance of the DNN
based SVD approach in noisy scenarios, we conduct the
simulations using the additive white gaussian noise (AWGN)
with different SNR values during the training and testing.
In these simulations, we use 4 convolutional layers and a mini-
batch size of 32. In Figure 7-a, we observe training and test
losses of 16-by-16 channel matrices using the DNN for rank-
k matrix approximation when the AWGN with 0 dB SNR
and 30 dB SNR are added to the training and test matrices,
respectively. As it is shown in Figure 7-a, training and test
losses of the proposed approach do not degrade significantly
when the noise gap between training and test matrices is
30 dB. We then increase the noise gap to 40 dB, as it is seen
in Figure 7-b, where the SNR of AWGN added to the training
matrices is decreased to −10 dB. As it is expected, the effect
of overfitting becomes more severe due to the increased gap
between the SNR used in the added noise to the training and
test matrices. We then compare the case when the SNR of
AWGN is higher for the training matrices compared to the
SNR of AWGN added to the test matrices. In Figure 7-c,
the training and test losses of 16-by-16 channel matrices are
observed when the SNR of AWGN added to the training and
test matrices are 30 dB and 0 dB, respectively. When the
results in Figure 7-a and Figure 7-c are compared, we see
that the performance degradation during the test phase due

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6629

Fig. 7. Training and test losses for 16-by-16 channel matrices in the noisy case.

Fig. 8. Comparison of the test losses for three DNNs with the different sizes of channel matrices.

to the overfitting becomes more significant in the latter case.
This result occurs since the overfitting increases more if the
training data is less noisy compared to the test data.

7) Comparison of the Proposed Architectures for SVD: Fig-
ures 8-a, 8-b, and 8-c illustrate the test losses with the proposed
architectures for 8-by-8, 16-by-16, and 32-by-32 matrices,
respectively. We use the loss functions defined in (12), (13),
and (18) to train the DNN for rank-k matrix approximation,
the low-complexity DNN for rank-k matrix approximation,
and the DNN for SVD via rank-1 matrix approximation,
respectively. We set the number of convolutional layers and
the mini-batch size to 4 and 32, respectively. As shown
in Figure 8-a, for 8-by-8 matrices, the low-complexity DNN
for rank-k approximation outperforms the other two DNNs in
terms of accuracy at the beginning of the training. However,
the DNN for rank-k approximation gives smaller test losses
than the other DNNs while the number of training iterations
increases. We observe in Figures 8-b and Figures 8-c that the
smallest test losses are obtained with the DNN for rank-k
approximation when 16-by-16 and 32-by-32 matrices are used.
When the matrix size is not large, the low-complexity DNN for
rank-k approximation can learn faster than the DNN for rank-k
approximation since the number of parameters to be learned by
each DNN of the former architecture is less than the number of
parameters in the latter. However, the performance of the low-
complexity DNN for rank-k approximation starts to degrade
with the larger sized matrices since the low-complexity of
this architecture cannot deal well with more complexed
data.

8) Comparison of the Proposed Training Approaches for the
Low-Complexity DNN for Rank-k Approximation: We then

Fig. 9. Comparison of the test losses when the sub-DNNs in this architecture
are trained jointly and sequentially using 8-by-8 matrices.

study the performance of the two approaches proposed in
Section III-B to train k DNNs of the low-complexity archi-
tecture. Figure 9 shows the test losses when the sub-DNNs
in this architecture are trained jointly and sequentially for
8-by-8 matrices. In particular, we use the loss function given
in (13) to train sub-DNNs of the low-complexity architecture
jointly. On the other hand, DNN-i of this architecture is trained
one-by-one using the loss function given in (17) in the other
approach. We observe that smaller test losses are achieved
when sub-DNNs are trained one-by-one. When sub-DNNs are
trained sequentially, we guarantee that the first DNN is trained
successfully, and the residual error occurs in the input to the
next DNN decreases compared to the case when sub-DNNs
are trained jointly.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6630 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 10. Test losses of the DNNs for SVD with the different number of convolutional layers using 32-by-32 channel matrices.

Fig. 11. Test losses of the DNNs for SVD with the different sizes of mini-batches using 32-by-32 channel matrices.

9) Impact of Different Number of Convolutional Layers on
the Accuracy of DNNs: In Figures 10-a, 10-b, and 10-c,
we compare the test losses of 32-by-32 matrices obtained by
the DNN for rank-k matrix approximation, the low-complexity
DNN for rank-k approximation, and the DNN for rank-1
approximation with the different number of convolutional
layers, respectively. In these results, the size of the mini-batch
is set to 32. In Figure 10-a, the loss function given in (12)
is used. We observe in Figure 10-a that the test losses reduce
more rapidly when the number of convolutional layers is 2 and
4 in DNN for rank-k matrix approximation. While the number
of iterations increases, the test losses with 6 convolutional
layers become similar to the losses with 2 and 4 convolutional
layers. Since the number of parameters is higher when 6 layers
are used compared to 2 and 4 layers, a higher number of
iterations is required for the losses to converge with 6 layers.
We use the loss function given in (13) in Figure 10-b. It is
shown in Figure 10-b that the smaller test losses are achieved
while the number of convolutional layers decreases. Since
the number of features to be learned by each DNN in the
low-complexity architecture is less than the number of para-
meters to be learned by the DNN for rank-k approximation,
the low-complexity architecture requires a smaller number of
convolutional layers to achieve the maximum performance.
Otherwise, the performance degrades with the higher number
of convolutional layers due to overfitting. Finally, we train the

DNN for rank-1 approximation using the loss function given
in (18). We observe in Figure 10-c that the test losses decrease
with the smaller number of convolutional layers since the DNN
for rank-1 approximation also has less number of parameters
to be learned compared to other proposed DNN architectures.

10) Impact of Different Sizes of Mini-Batches on the Accu-
racy of DNNs: In this section, we evaluate the performance
of proposed DNNs in terms of accuracy with the different
sizes of mini-batches. Figures 11-a, 11-b, 11-c illustrate the
test losses for the DNN for rank-k matrix approximation,
the low-complexity architecture, and the DNN for rank-1
approximation for 32-by-32 matrices, respectively. We use the
loss function given in (12), (13), and (18) to train the DNNs.
We set the number of convolutional layers to 2. The results
in Figure 11-a show that the test losses decrease more rapidly
while the mini-batch size grows from 32 to 128. Since the
larger sizes of mini-batches provide a better estimate of the
gradient [34], the test losses with a mini-batch size 64 and
128 converge to smaller values than the case with a mini-
batch size 32. We observe in Figure 11-b that the test losses
decrease faster with the larger sizes of mini-batches when
the low-complexity DNN for rank-k approximation is used.
These results reveal that the test losses converge to the global
minimum more quickly with a mini-batch size of 128. In the
low-complexity DNN for rank-k approximation, the global
optimum is achieved eventually with the smaller sizes of

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6631

TABLE I

TIME COMPLEXITY OF CONVENTIONAL AND DNN BASED SVD METHODS

mini-batches. As shown in Figure 11-c, the test losses of the
DNN for rank-1 approximation are obtained the same with the
different sizes of mini-batches. Since the number of parameters
of the DNN for rank-1 approximation is smaller than the other
proposed DNN architectures, the test error converges rapidly
with different sizes of mini-batches.

E. Comparison of Conventional Methods and DNN Based
Approaches for SVD

1) Time Complexity Comparison: The conventional algo-
rithm proposed in [19] for computing the SVD of a matrix
H ∈ CNR×NT first computes H∗H and then calculates its
eigenvalues, which gives O(N2

RNT) as complexity for the
SVD. Another conventional method given in [20] transforms
H into an NT ×NT bidiagonal matrix, and then computes the
singular values and singular vectors of the resulting bidiagonal
matrix. The algorithm proposed in [20] has O(NRN2

T) time
complexity.

The time complexity of the training and test
phases of a CNN with n convolutional layers are
given as O

(
N × b × ∑n

i=1 mi−1 × f2
i × mi × l2i

)
and

O
(∑n

i=1 mi−1 × f2
i × mi × l2i

)
, respectively [52]. Here,

i, mi, f2
i , and li are the index of the convolutional layer,

the number of filters, the spatial size of the filter, and the
output features in the ith layer, respectively. We denote the
batch size of the training with b and the number of training
epochs with N . Let us assume f2

i = f2 and mi = m are
fixed for i = 1, . . . , n. In the proposed DNN architectures for
the SVD, zero-padding with size p is applied to the input
matrix with a size of NR × 2NT . Therefore, the spatial size
of output features is l2i = (NR + 2p) × (2NT + 2p) for
i = 1, . . . , n. Finally, a fully-connected layer is included in
each DNN architecture to generate estimated output values.
The time complexity of a fully-connected layer during the
testing phase can be approximated as O

(∑nhid

i=1

∑nout

j dij

)
,

where nhid, nout, and di denote the number of hidden nodes,
the number of output nodes, and the distance between hidden
neuron i and output neuron j, respectively. The number of
output nodes are 2kNR + 2kNT + k and 2NR + 2NT + 1 in
DNN for rank-k and rank-1 approximation, respectively. The
number of output nodes of the ith DNN in the low-complexity
architecture is 2NR + 2NT + 1. Moreover, the number of
hidden nodes in the fully-connected layer of each DNN
architecture equals to number of output nodes.

Then, the time complexity of conventional SVD
methods and the time complexity of the proposed DNN
based approaches are obtained as in Table I. The time
complexity of conventional methods can be approximated

as O(min(N2
RNT , NRN2

T)). For the constant values of k,
m, n, f , and p, the DNN for rank-k approximation,
the low-complexity DNN, and the DNN for rank-1
approximation have a time complexity of O(max(k2NRNT ,
k2N2

R, k2N2
T)), O(max(kNRNT , kN2

R, kN2
T)), and

O(max(NRNT , N2
R, N2

T)), respectively. While the number
of transmit and the number of receive antennas increase
and k, m, n, f , and p are kept as constant, DNN based
approaches become computationally more efficient than the
conventional SVD methods. When k gets closer to NT

and NR, the conventional methods become computationally
more efficient than the DNN for rank-k approximation.
The computation time of the low-complexity architecture
becomes comparable to the conventional methods with the
larger values of k. On the other hand, the time complexity
of the DNN for rank-1 approximation is still less than the
conventional methods when k approaches to NT and NR.
We also propose to reduce the number of convolutional
layers, the number of filters, and the spatial size of each
filter in the low-complexity DNN for rank-k approximation.
Therefore, the computational complexity can be further
reduced compared to the DNN for rank-k approximation.
Similarly, we propose to use a fewer number of convolutional
layers and filters with a smaller spatial size compared
to the DNN for rank-k approximation in the DNN for
rank-1 approximation to reduce the complexity. Furthermore,
the low-complexity DNN for rank-k approximation and DNN
for rank-1 approximation are required to train for a fewer
number of iterations, which implies that N is smaller than
in the DNN for rank-k approximation. Therefore, the time
complexity of the training phase is further reduced in the
low-complexity DNN for rank-k approximation and DNN for
rank-1 approximation.

2) Memory Requirements Comparison: The computations
in each convolutional layer of a CNN require performing a
convolution of each filter across the entire input. Each of the
three proposed DNNs for computing the SVD gets the matrix
with a size of NR × 2NT as the input. In each convolutional
layer of the proposed DNN architecture, one filter is convolved
across the input to generate an output matrix of size (NR +
2p) × (2NT + 2p), where p is the number of padded zeroes
to each side of the input matrix. This convolution operation
is repeated for each of the m filters with f2 spatial size,
producing a 1 × 1 strip of output values of length m. The
memory requirements of the input matrix and the filter is
2NRNT and mf2, respectively. After the entire input matrix
is convolved with m filters, 2mNRNT +2mpNR +4mpNT +
4mp2 output activations are generated. The memory require-
ment for the output of a CNN with n convolutional layers is

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6632 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

TABLE II

MEMORY REQUIREMENTS FOR DNN BASED SVD METHODS

2nmNRNT + 2nmpNR + 4nmpNT + 4nmp2. The DNN for
rank-k approximation is composed of multiple convolutional
layers and one fully-connected layer. The fully connected
layer multiplies an input vector of size 1 × 2mNRNT +
2mpNR + 4mpNT + 4mp2 with a weight matrix of size
2mNRNT +2mpNR +4mpNT +4mp2×2kNR +2kNT +k
to produce an output vector of size 1 × 2kNR + 2kNT + k,
where 2kNR +2kNT +k is the number of output nodes in the
DNN for rank-k approximation. Therefore, the total memory
requirement of the DNN for rank-k approximation equals to
k+mnf2+(2k+n)mp2+(NR+NT)(16kmp2+2k)+(NR+
2NT)(4kmp+2mnp+2mp)+NRNT (2+2n+4m+2km+
24kmp) + kmp(N2

R + 2N2
T) + 4k m(N2

RNT + NRN2
T).

Each of the DNN in the low-complexity architecture is
composed of multiple convolutional layers and one fully-
connected layer. Let us denote the number of convolutional
layers and the number of filters in each DNN with l ≤ n
and t ≤ m, respectively. The number of output nodes of
the ith DNN in this architecture is 2NR + 2NT + 1 as it is
explained in Section III-D. When the remaining parameters
of each DNN in this architecture are the same with the
DNN for rank-k approximation, the memory requirement of
the fully-connected layer of each DNN is (2NR + 2NT +
2)(2tNRNT +2tpNR+4tpNT +4tp2+1). Therefore, the total
memory requirement of the low-complexity DNN for rank-
k approximation is k + ltf2 + (2k + l)tp2 + (NR + NT)
(16ktp2+2k)+(NR+2NT)(4ktp+2ltp+2tp)+NR NT (2+2l+
4t + 2kt + 24ktp)+ ktp(N2

R +2N2
T) + 4kt(N2

RNT +NRN2
T).

When l = n and t = m, the total memory requirement of
the DNN for rank-k approximation and the low-complexity
DNN architecture becomes equal to each other. The DNN for
rank-1 approximation also consists of multiple convolutional
layers and one fully-connected layer with 2NR + 2NT + 1
output nodes. We assume that the values of the parameters of
this architecture equal to the values of the parameters in the
low-complexity DNN for rank-k approximation. The memory
requirement of the fully connected layer of the DNN for rank-
1 approximation is (2NR + 2NT + 2)(2tNRNT + 2tpNR +
4tpNT + 4tp2 + 1) as in the low-complexity architecture.
Therefore, the total memory requirement of the DNN for
rank-1 approximation becomes 2 + 2ltf2 + 4tp2(2 + l) +
2tp(l +2)(NR +2NT)+ (8tp2 +2)(NR +NT) +NRNT (2+
4t + 2lt + 12tp) + 4t(pN2

R + 2pN2
T + N2

RNT). This result
shows that a 1/k reduction in the memory requirement is
obtained with the DNN for rank-1 approximation compared
to the DNN for rank-k approximation and the low-complexity
DNN architecture. We assume that each element of the real-
valued arrays in the proposed architectures is represented with
a floating-point number, which is stored using four bytes
(32-bits). When f2 = 9 and p = 2, the total memory

requirements of the proposed DNN architectures are obtained
in terms of bytes (B) and kilobytes (kB) for different values
of the parameters as in Table II.

IV. DL FOR HYBRID BF

In this section, we present a novel DL-based approach for
the hybrid BF system, as depicted in Figure 1. The problem
of the hybrid BF system design is formulated as,(

Topt
RF , Topt

BB, Ropt
RF , Ropt

BB

)
= maximize

TRF ,TBB ,RRF ,RBB

R,

s.t. ‖TRF TBB‖2
F = L, ‖RRF RBB‖2

F = L, (20)

where R can be obtained by substituting Topt = TRF TBB

and Ropt = RRF RBB in (5).
To solve this problem, we introduce a novel DNN based

hybrid BF approach, which can be realized by using either of
the three architectures proposed for the SVD in Section III.
In the proposed approach, we minimize the Frobenius dis-
tance between the rank-k approximations obtained with the
unconstrained and hybrid beamformers instead of maximizing
the rate directly. Figure 12 depicts the proposed architecture
for the hybrid BF in which the DNN for rank-k matrix
approximation is used. The DNN gets the channel matrix
H ∈ CNR×NT as the input and transforms that into a real-
valued matrix with NR × 2NT size. As shown in Figure 12,
the DNN for rank-k matrix approximation, which consists
of multiple convolutional layers and one fully-connected
layer, is trained to estimate the L largest singular values
(σ̃1, σ̃2, . . . , σ̃L), the unnormalized values of the BB precoder(
[t̂BB

1 , . . . , t̂BB
LT L]T

)
, the unnormalized values of the BB com-

biner
(
[r̂BB

1 , . . . , r̂BB
LRL]T

)
, the unquantized values of the RF

precoder
(
[t̂RF

1 , . . . , t̂RF
NT LT

]T
)
, and the unquantized values of

the RF combiner
(
[r̂RF

1 , . . . , t̂RF
NRLR

]T
)
. Here, L denotes the

number of data streams sent through the hybrid BF system.
Then, the L largest singular values are transformed into a diag-
onal matrix Σ̃L with σ̃1, σ̃2, . . . , σ̃L on its diagonal. Through
the quantization layers, the phase value of each unquantized
element of the RF precoder and combiner is quantized, and
the quantized elements of the RF precoder and combiner
are estimated as [t̃RF

1 , . . . , t̃RF
NT LT

]T and [r̃RF
1 , . . . , t̃RF

NRLR
]T ,

respectively. The quantized elements of the RF precoder and
combiner are transformed into the RF precoder and combiner
matrices as T̃RF and R̃RF , respectively. The unnormalized
values of the BB precoder

(
[t̂BB

1 , . . . , t̂BB
LT L]T

)
and the unnor-

malized values of the BB combiner
(
[r̂BB

1 , . . . , r̂BB
LRL]T

)
) are

also turned into the unnormalized BB precoder and combiner
as T̂BB and R̂BB , respectively. Finally, the normalized BB
precoder

(
T̃BB

)
and the normalized BB combiner

(
R̃BB

)
are

estimated by using the normalization layers.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6633

Fig. 12. DL-based hybrid BF architecture, which uses the DNN for rank-k matrix approximation.

In this section, we explain the RF constraints that we
incorporate into our DNN based hybrid BF approach. Then,
we describe how we satisfy the power constraint and explain
the loss function used during the optimization step. Finally,
we summarize our experimental results.

A. Incorporation of RF Constraints

As the finite-precision phase shifters are used in the RF
domain, the elements of TRF ∈ CNT×LT and RRF ∈
CNR×LR are restricted to satisfy |[TRF]n,i|2 = N−1

T and
|[RRF]m,j|2 = N−1

R , respectively. If each phase shifter in
the analog beamformers is controlled by an Nq-bit input,
n(m)th row of the [TRF](n,i)

(
[RRF](m,j)

)
is denoted by

e
j2πnkq

2Nq

(
e

j2πmkq

2Nq

)
for some kq = 0, 1, . . . , 2Nq − 1. To

incorporate these constraints, we add quantization layers to
quantize the phase of each element of the RF beamformers in
this architecture. A naive approach would be discretizing the
weights associated with the RF beamformers using a uniform
quantizer, in which each weight is rounded to the nearest value
from a finite set of quantization levels. However, gradient-
based optimization techniques would generate zero gradients
during the training of the uniform quantizer, which would
prevent to update the weights associated with the quantization
layers. We propose four approaches to formulate the quantiza-
tion as a differentiable function. Let us denote the ith element
of the unquantized and vectorized RF precoder estimated by
the DNN as t̂RF

i = cte
jαi , where ct = 1√

NT
is the modulus

and αi is the phase of the ith element. Similarly, we can
define the kth element of the unquantized and vectorized RF
combiner as r̂RF

k = cre
jβk where cr = 1√

NR
is the modulus

and βk is the phase of kth element. This section explains how
the proposed approaches can be used to estimate the quantized
RF precoder T̃RF . The same procedures can be applied to
estimate the quantized RF combiner R̃RF , which is omitted
due to the page limit.

1) Quantization Approach 1: In this approach, we use a
combination of step and piece-wise linear functions to approx-
imate uniform quantization. Such a quantization function has

non-zero gradients on the regions that are determined by piece-
wise linear functions so that it can be learned during backprop-
agation. In this case, the weights related to the quantized RF
precoder and combiner are updated in each training iteration,
which would not be possible with the uniform quantization. In
the training, the phase of ith element t̂RF

i of the unquantized
and vectorized RF precoder [t̂RF

1 , . . . , t̂RF
NT LT

]T is approxi-
mated as,

α̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ αi ≤ 2π(n−γ)

2Nq

αi, if
2π(n − γ)

2Nq
< αi ≤ 2π(n + γ)

2Nq
,

n = 1, . . . , 2Nq − 1
2πn

2Nq
, if

2π(n + γ)
2Nq

< αi ≤ 2π((n + 1) − γ)
2Nq

,

n = 1, . . . , 2Nq − 1

αi, if
2π(2Nq − γ)

2Nq
< αi ≤ 2π

(21)

where 0 ≤ γ ≤ 1. α̃i is the quantized phase value based
on the piece-wise linear approximations. Then, the quantized
value of the ith element in the RF precoder can be written
as t̃RF

i = cte
jα̃i for 1 ≤ i ≤ NT LT . The quantized and

vectorized RF precoder [t̃RF
1 , . . . , t̃RF

NT LT
]T is then reshaped

into the quantized RF precoder matrix given as T̃RF . In
Figures 13-a and 13-b, toy examples for this quantization
technique are presented. In Figure 13-a, γ and Nq are set
to 0.25 and 1, respectively. Figure 13-b shows the case when
γ = 0 and Nq = 1. In the testing phase, αi is quantized as,

α̃i =
2πn

2Nq
, (22)

where 2πn
2Nq ≤ αi ≤ 2π(n+1)

2Nq and n = 0, 1, . . . , 2Nq − 1.
As depicted in Figures 13-a and 13-b, quantization approach
1 starts to behave as the uniform quantization while γ goes
to 0. When γ = 0, quantization is realized in an exactly
same way in training and test phases. On the other hand,
the differentiable regions get larger while γ gets closer to 1,

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6634 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 13. Toy examples for quantization approach 1 based on piece-wise
linear functions.

which would allow to update the weights related to the RF
precoder and combiner in every iteration during the training.

2) Quantization Approach 2: The first proposed quantiza-
tion function is not smooth and has zero gradients on the
regions defined by step functions. Therefore, we replace each
step function in the uniform quantization with a sigmoid
function in the second quantization approach. The sigmoid
function has non-zero gradients everywhere, which prevents
gradient mismatch during backpropagation. For a set of phase
values of the unquantized and vectorized RF precoder of
a hybrid BF system with NT transmit antennas and LT

RF chains at the Tx ({αi, i = 1, . . . , NT LT }), the second
quantization approach is applied to each αi as,

α̃i =
1

1 + exp (β(αi − bn))
+ on, (23)

where β is the scale factor of the input. bn and on are the
bias and offset for the nth quantization level, respectively.
Here, n = 1, . . . , 2Nq and Nq is the number of bits used in
phase shifters. A toy example for quantization approach 2 is
shown in Figure 14. In the toy example, Nq = 1, b1 = 1,
b2 = 2, o1 = 0, o2 = 1, and β = −20. This approach con-
verges to the uniform quantization as the absolute value of β
increases.

3) Quantization Approach 3: The main idea of all proposed
quantization approaches is to approximate the quantization

Fig. 14. Toy example for quantization approach 2 based on sigmoid functions.

operation as a differentiable function to update any weights
and activations during backpropagation in DNNs. Since the
weights are not updated during forward propagation, we use
step functions to apply uniform quantization in the third
approach for forward propagation. For Nq-bit phase shifters,
uniform quantization considers 2Nq − 1 equally spaced points
between 0 and 2π excluding endpoints and assigns the phase
value of the ith element of the unquantized and vectorized
RF precoder (αi) to the closest quantization value. During
backpropagation, we use a linear combination of sigmoid
functions. In particular, the quantized value of the ith element
in the RF precoder, which is written as t̃RF

i = cte
jα̃i for

1 ≤ i ≤ NT LT , is computed as in (23). Here, NT and
LT denote the number of transmit antennas and the number
of RF chains at the Tx, respectively. The gap between the
step and sigmoid functions can be reduced by increasing
the absolute value of the scale factor β in (23). In order
to visualize the difference between forward propagation and
backward propagation, we present toy examples as given
in Figures 15-a and 15-b. In both of the figures, Nq = 1.
During backpropagation as shown in Figure 15-b, we set the
values of b1, b2, o1, and o2 to 1, 2, 0, and 1, respectively.

4) Quantization Approach 4: Finally, we propose a fourth
quantization approach, which assigns αi to one of 2Nq quan-
tization points probabilistically during forward propagation.
Here, αi denotes the phase value of the ith element in the
unquantized and vectorized RF precoder, i.e., t̂RF

i = cte
jαi

for 1 ≤ i ≤ NT LT . We apply the stochastic quantization
approach given in [37] to each {αi, i = 1, . . . , NT LT} as,

α̃i =

⌊
2Nqαi

⌋
2Nq

+
ri

2Nq
, (24)

where ri is the rounding function and defined as
ri ∼ Bernoulli

(
2Nqαi −

⌊
2Nqαi

⌋)
. Nq , NT , and LT denote

the number of bits used in phase shifters, the number of
transmit antennas, and the number of RF chains at the Tx,
respectively. To backpropagate the gradients through this quan-
tization function, we use the straight-through estimator as
defined in [38]. Let us denote the quantization function given

in (24) as Q(α)i = �2Nq αi�
2Nq

+ ri

2Nq
. Then, the gradient of

Q(α)i with respect to αj is defined almost everywhere, and

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6635

Fig. 15. Toy examples for quantization approach 3 during forward and
backward propagation.

it is given as,

∂Q(α)i

α̃j
=

{
1, if αi has been quantized to α̃j

0, otherwise
(25)

Therefore, all the weights, whose gradients are generated
using the straight-through estimator, can be updated during
backpropagation.

B. Satisfying Power Constraints

We also require to design the analog and digital beamform-
ers by considering the power constraints. As we defined in
Section II-C, the hybrid BF system must satisfy the power con-
straint, i.e., ‖TRF TBB‖2

F = L and ‖RRF RBB‖2
F = L, where

L is the number of transmitted data streams. To meet with the
power constraints of the hybrid beamformers, we append nor-
malization layers to the DNN, which normalize the vectorized
and unnormalized values of the BB precoder and combiner
generated by the DNN. Let denote the vectorized and unnor-
malized BB precoder with [t̂BB

1 , . . . , t̂BB
LT L]T and the vector-

ized and unnormalized BB combiner with [r̂BB
1 , . . . , r̂BB

LRL]T .
Then, [t̂BB

1 , . . . , t̂BB
LT L]T and [r̂BB

1 , . . . , r̂BB
LRL]T are trans-

formed into the unnormalized BB precoder matrix T̂BB and
the unnormalized BB combiner matrix R̂BB . By using the
unnormalized BB precoder T̂BB , the quantized RF precoder
T̃RF , the unnormalized BB combiner R̂BB , and the quantized

RF combiner R̃RF , the normalized BB precoder and combiner
are computed as,

T̃BB =
√

L
T̂BB

||T̃RF T̂BB ||F
, (26)

R̃BB =
√

L
R̂BB

||R̃RF R̂BB||F
. (27)

C. Overall Loss Function

In this subsection, we define a customized overall loss
function to train the DNN for the hybrid BF. Let ΣL =
diag(σ1, . . . , σL), UL = [u1, . . . , uL], and VL = [v1, . . . , vL]
denote the L largest singular values and singular vectors,
where L ≤ rank(H) is the number of data streams in the
hybrid BF system. We can define the rank-L matrix approxi-
mation of H as,

HL = ULΣLVL
∗. (28)

By using the outputs of DNN, we approximate the left
and right singular vectors of H as R̃opt = R̃RF R̃BB and
T̃opt = T̃RF T̃BB , respectively. Then, rank-L approximation
of H is estimated as,

H̃L = R̃optΣ̃LT̃
∗
opt. (29)

The DNN for the hybrid BF is trained to minimize
the Frobenius distance between HL and H̃L. Additionally,
T̃opt = [̃t1, . . . , t̃L] and R̃opt = [r̃1, . . . , r̃L] must be orthog-
onal matrices, i.e., ||̃t∗i t̃j ||2 = ||r̃∗i r̃j ||2 = 0 ∀ i, j s.t. i 	= j.
Here, t̃i ∈ CNT ×1, r̃i ∈ CNR×1, and i = 1, . . . , L. Formally,
we define the loss function as,

L (θ) =
||HL − H̃L||F

||HL||F + λ1

∑
i�=j

||r̃∗i r̃j ||2 + λ2

∑
i�=j

||̃t∗i t̃j ||2,

(30)

where λ1 and λ2 are the non-negative constants. The second
and third terms in (30) satisfy the orthogonality of the T̃opt

and R̃opt, i.e., ||r̃∗i r̃j ||2 = 0 and ||̃t∗i t̃j ||2 = 0, ∀ i, j s.t. i 	= j.

D. Experimental Study of DNNs for Hybrid BF

In this subsection, we compare the achieved rates with the
proposed hybrid BF approach based on three DNNs for the
SVD. We highlight the impact of different system parameters,
such as the number of antennas, the number of iterations,
and the types of quantization techniques, on the performance
of our approach. Moreover, we compare the achieved rates
of the proposed hybrid BF based on three DNNs with the
unconstrained BF, the conventional hybrid BF algorithms
given in [9], [10], [39], an ML-aided hybrid BF algorithm
based on adaptive CE optimization [25], two DL-based hybrid
BF algorithms [27], [30], an autoencoder based hybrid BF
algorithm [28]. For the simulations of [9], the parameters are
chosen as follows. The number of BF vectors at the Tx in each
stage of the algorithm is set to 2. The required resolutions for
the AoD and AoA are chosen as 2NT and 2NR, respectively.
In the simulations of [10], we set the number of paths of

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6636 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 16. Achievable rates of the proposed approach for hybrid BF based on three DNNs for SVD, and the unconstrained BF versus SNR for different number
of Tx and Rx antennas.

the channel to the max{NT , NR} unless otherwise specified.
The simulation parameters of the algorithm proposed in [39]
are chosen as follows. Qt and Qr, which denote the Tx and
Rx beams with the largest effective powers selected for the
reduced set of the possible beams, are assumed to equal to
each other, i.e., Qt = Qr = Q = 2Nq . Here, Nq is the number
of bits used in the phase shifters. For the simulations of [25],
the number of candidates and elites for the beamformers are
set to 2 × 2Nq and 2Nq , respectively. We use a step size
of 0.0001, and train the algorithm for 1000 iterations. In the
simulations of [27], we choose the parameters as follows.
For the training of the algorithm, an MLP with 4 hidden
layers is used. The ReLU activation functions are used in the
hidden layers. The dropout rate and the learning rare are set to
0.05 and 0.0001, respectively. We use a mini-batch size of 100.
The MLP is trained using the mean squared error function
with Adam optimization. The best weights are found using
early stopping to avoid overtraining. 10000 channel matrices
are divided into a training set with 8000 matrices and a test
set with 2000 matrices. The number of BS and the mobile
user is set to 1, and the number of antennas at the BS and
the user are selected as equal to each other, i.e., NT = NR.
For [30], a CNN with four convolutional layers is used in
the simulations. The number of filters in the first, second, and
third convolutional layers in the CNN are 32, 64, and 128,
respectively. The last convolutional layer has 128 filters. The
spatial size of each filter in the CNN is set to 9, and the
size of zero-padding is 7. The CNN is trained using the mean
squared error function with Adam optimization. The learning
rate used during the training is 0.0001. Finally, the dropout
rate, the mini-batch size, the number of epochs are set to
0.05, 32 and 1000, respectively. In [28], the number of
training iterations, the learning rate, and the mini-batch size
are selected as 1000, 0.0001, and 32, respectively. For the
simulations of all the algorithms, the number of bits used in the
phase shifters is set to 2 for 8-by-8 mmW systems, and 3-bit
phase shifters are used in the 16-by-16 and 32-by-32 mmW
systems. Moreover, the number of paths in the channel equals
the max{NT , NR} unless otherwise specified.

1) DL Model: We design the DNNs in our hybrid BF
approach using CNNs, as in Section III-D. We use mini-
batches with a size of 32, and we obtain the simulation results

for DNN with 4 convolutional layers. The first convolutional
layer uses a filter with a size of 32×3×3. The second and third
convolutional layers apply filters with a size of 64 × 3 × 3.
In the remaining layers, filters with a size of 128 × 3 × 3
are used. Convolutional layers are followed by a dropout
layer with a rate of 0.4, a max pooling layer, and a fully
connected dense layer. DNNs for the hybrid BF have ELU
activation units in each hidden layer except the quantization
layers, which use sigmoid functions instead. Finally, the linear
activation function is used in the last layer. The quantization
approach 1 based on piece-wise linear functions is used to
generate the phases of RF beamformers during the training of
each DNN unless otherwise specified. The loss function given
in (30) with Adam optimization is used for training DNNs.
The test and training losses of the algorithm with different
sized matrices are observed while changing the values of non-
negative constants from 0.0001 to 0.1 with the step of 0.001.
Since the best performance is achieved when both of the non-
negative constants equal to 0.01, λ1 and λ2 are set to 0.01. The
rates are obtained after training DNNs for 1000 iterations with
a 0.0001 learning rate unless otherwise specified. We use the
Keras [53] with a Tensorflow [51] backend for the simulations.

2) Channel Model and Data Generation: For generating
datasets to represent the mmW channel in different time
instances, we use the geometric channel model introduced
in Section II. In the simulations of the geometric channel
model, we assume the antenna arrays to be ULAs. The
spacing between two successive antennas is equal to λ/2.
The AoDs/AoAs are uniformly distributed in [0, 2π]. The
distance between the Tx and Rx is 50 meters (m), the carrier
frequency is 28 GHz, the path loss exponent (PLE) is 3, and
the system bandwidth is 100 MHz. The average transmit power
is set to 7 dB. 10000 channel matrices, which are divided
into a training set with 8000 matrices and a test set with
2000 matrices, are generated for 8-by-8, 16-by-16, 32-by-32,
and 64-by-64 mmW systems.

3) Comparison of Hybrid BF Approaches Based on Pro-
posed DNNs for SVD: To study the performance of the pro-
posed hybrid BF based on DNNs, we first conduct simulations
using the geometric channel model given in Section II-D.
We implement each DNN using a mini-batch size of 32.
The number of convolutional layers is set to 4. We generate

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6637

Fig. 17. Achieved rates of DNN based hybrid BF, conventional hybrid BF algorithms given in [9], [10], [39], and the data-driven hybrid BF algorithms
given in [25], [27], [28], [30] for mmW systems with different number of Tx and Rx antennas.

full-rank channel matrices for all three cases. Therefore,
the number of channel paths (S) equals the number of transmit
and receive antennas of the mmW system. Figures 16-a,
16-b, and 16-c illustrate the achieved rates with the proposed
hybrid BF approach based on three DNNs for the SVD, and the
unconstrained BF for 8-by-8 mmW system with 2-bit phase
shifters, 16-by-16 and 32-by-32 mmW systems with 3-bit
phase shifters. For different sized mmW systems, the hybrid
BF approach based on DNN for rank-k matrix approximation
outperforms the hybrid BF based on the low-complexity DNN
for rank-k approximation and the hybrid BF based on the
DNN for rank-1 approximation. In these results, we observe
that the performance gap between the DNN for rank-k matrix
approximation and the other DNN architectures increases as
the number of antennas increases at the Tx and the Rx. The
reason of this behavior is that an additional distortion is added
to the input matrix when ith singular value and singular vectors
are estimated from rank-k−i+1 matrix obtained by subtracting
rank-i − 1 matrix, which is computed using the estimated
i − 1 singular values and vectors, from the original rank-
k channel matrix. Therefore, the distortion increases as the
rank of the channel increases for the low-complexity DNN
for rank-k matrix approximation and the DNN for rank-1
matrix approximation. Since we consider full-rank channel
matrices in these simulations, the number of transmit and
receive antennas is equal to the rank of the channel, which
leads to an increase in the performance gap with a higher
number of antennas. Moreover, the achieved rates of the low-
complexity DNN for rank-k approximation and the DNN for
rank-1 approximation get closer while the number of antennas
increases due to the accumulated noise in each DNN of the
low-complexity architecture.

4) Comparison of Proposed DL-Based Hybrid BF Approach
With the State-of-the-Art: We compare the achieved rates of
the hybrid BF based on DNN for rank-k matrix approximation
presented in Section III-A with conventional hybrid BF algo-
rithms given in [9], [10], [39], an ML-aided hybrid BF algo-
rithm based on CE optimization [25], two DL-based hybrid
BF algorithms given in [27], [30], and an autoencoder based
hybrid BF algorithm [28] in Figures 17-a, 17-b, and 17-c.
In these results, the DNN has 4 convolutional layers and a
mini-batch size of 32. We use 2-bit phase shifters in the RF

beamformers of 8-by-8 mmW systems, and 3-bit phase shifters
in the RF beamformers of 16-by-16 and 32-by-32 mmW
systems. The hybrid BF algorithm proposed in [9] designs
the beamformers by approximating the channel’s dominant
singular vectors based on a multi-resolution BF codebook.
The proposed multi-resolution codebook has multiple levels,
each with BF vectors, which are defined in terms of the set
of quantized angles. In [10], a hybrid BF algorithm based
on orthogonal matching pursuit (OMP) has been proposed.
Authors of [10] formulate the problem as a sparse signal
approximation in which near-optimal beamformers are found.
The hybrid BF algorithm given in [39] first reduces the set
of possible RF-BF vectors based on the dominant beams,
which are determined by a metric such as effective power
or AoA direction. Then, an exhaustive search is performed
over all beamformers in the reduced set. The authors of [25]
have proposed an ML-aided hybrid BF algorithm based on
adaptive CE optimization. In this algorithm, the weight of each
candidate hybrid beamformer is adaptively updated according
to their achievable sum-rates and calculates the probability dis-
tributions of elements in hybrid beamformers by minimizing
the CE. In [27], a DNN is used to predict the BF vectors from
received signals using omni beam patterns. In [30], a CNN-
based BF technique is proposed to solve the optimum beam-
selection problem in Vehicle to Infrastructure (V2I) scenario.
In this work, the authors focus on finding the best pair of
beams for analog BF of a transceiver with one RF chain and
fixed codebooks. Finally, a DNN framework is employed to
construct an autoencoder to learn the mapping between the
optimum precoder and the multiplication of the analog and
digital precoders in [28].

We consider the geometric channel model defined in
Section II-D. Figures 17-a, 17-b, and 17-c show the
achieved rates of the hybrid BF based on DNN for rank-
k matrix approximation, conventional hybrid BF algorithms,
a ML-aided hybrid BF algorithm based on CE optimization,
two DL-based hybrid BF algorithms, and an autoencoder
based hybrid BF algorithm versus SNR for 8-by-8, 16-by-16,
and 32-by-32 mmW systems, respectively. It is shown in
Figure 17-a that we obtain 23% improvement in rates with
the proposed DNN based hybrid BF compared to the ML-
based hybrid BF algorithm given in [25] for 8-by-8 mmW

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6638 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Fig. 18. Achieved rates of the constrained BF and the hybrid BF based on three proposed DNNs with four quantization approaches for the 8-by-8 mmW
system.

system when SNR is 20 dB. Since our proposed approach is
based on CNNs, which generally perform better than the other
ML-based approaches when the input is multi-dimensional,
the higher data rate is achieved with our algorithm compared
to other data-driven approaches. Moreover, our approach out-
performs the other CNN based hybrid BF given in [30], and
26.33% gain in rates is achieved. In the algorithm given
in [30], MSE is used as the loss function during the training
of CNNs. On the other hand, our proposed loss function
minimizes the error between the estimated and real rank-
k approximation of the given matrix, which achieves better
results compared to MSE. We also achieve 55.3% gain in rates
with our approach compared with the conventional hybrid BF
algorithm given in [9]. Conventional hybrid BF approaches
find the sub-optimal beamformers, while the ML-based hybrid
BF algorithms can find the global optimum. Therefore, the per-
formance gain of the proposed approach compared to conven-
tional algorithms further increases.

We see in Figure 17-b that the DNN based hybrid BF
achieves 8% gain in rates compared to the CNN based hybrid
BF algorithm [30]. Since the performance of the proposed
DNN architecture for rank-k approximation degrades with the
higher number of antennas, the improvement compared to
the CNN based algorithm also decreases. Moreover, the per-
formance of autoencoder based hybrid BF gets better than
the DL-based hybrid BF algorithm [27] with a higher num-
ber of antennas. However, our approach achieves 21% gain
compared to the autoencoder based hybrid BF algorithm.
Furthermore, we obtain 34.35% gain in rates compared to
the DL-based hybrid BF algorithm [27] for 16-by-16 mmW
system. Finally, we achieve 69.5% improvement with our
approach compared to the conventional algorithm proposed
in [9]. Moreover, the performance of the ML-based hybrid BF
algorithm degrades significantly for 16-by-16 mmW system.
We observe in Figure 17-c that for 32-by-32 mmW system, our
approach achieves 7.9% and 32.68% gains in rates compared
to the autoencoder based [28] and the DL-based hybrid BF
algorithm [27], respectively. We can see in the results that
the gain obtained with the DNN based hybrid BF compared
to the DL-based hybrid BF, which uses feedforward neural
networks, increases when the number of transmit and receive
antennas increases from 8 to 16. The increase in gain occurs

since the performance of feedforward neural networks used in
the algorithm given in [27] degrades with the larger number of
antennas. On the other hand, the performance gap between the
autoencoder based hybrid BF and our approach degrades with
the higher number of antennas due to the performance loss of
the proposed DNN for rank-k approximation with larger sized
matrices. Since the proposed loss function is more effective in
learning the features of beamformers, the proposed approach
achieves 40% gain in rates compared to the CNN based
hybrid BF algorithm given in [30] for 32-by-32 mmW system.
In these results, we also observe that the gain in achieved
rates with the proposed approach increases with SNR for
different sized mmW systems. For instance, the improvement
in achieved rates with the proposed approach compared to the
DL-based algorithm given in [27] is 25% for 16-by-16 mmW
system when SNR is −10 dB. On the other hand, the gain
in achieved rates compared to the same approach increases to
34.35% when SNR is 20 dB for the same 16-by-16 mmW
system. Furthermore, the proposed approach achieves 4.6%
gain in rates compared to the autoencoder based BF algorithm
given in [28] for 32-by-32 mmW system when SNR is 0 dB.
When SNR is 20 dB, the improvement in rates becomes 7.9%
for 32-by-32 mmW system.

5) Impact of Different Approaches of Quantization: In this
section, we compare the achieved rates of the proposed hybrid
BF approaches based on the DNN for rank-k matrix approxi-
mation, low-complexity DNN for rank-k matrix approxima-
tion, and DNN for rank-1 matrix approximation with four
quantization methods proposed in Section IV-A. By using
the geometric channel model, we conduct simulations for the
8-by-8 mmW system in which the RF beamformers have 2-bit
phase shifters. Figure 18-a shows the achieved rates with the
hybrid BF based on DNN for rank-k matrix approximation.
We observe that the first and second quantization approaches
achieve similar rates and outperform other quantization meth-
ods when DNN for rank-k matrix approximation is used. It is
shown in 18-b that the third quantization approach achieves
the highest data rates with the low-complexity DNN for rank-k
matrix approximation. We observe in 18-c that the fourth quan-
tization approach outperforms other methods when the DNN
for rank-1 matrix approximation is used. The first approach
uses a combination of step and piece-wise linear functions

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6639

TABLE III

TIME COMPLEXITY OF DNN BASED HYBRID BF AND STATE-OF-THE-ART

during backward propagation. Therefore, it is differentiable on
the regions that are determined by piece-wise linear functions.
The second and third approaches use sigmoid function, while
the fourth approach sets the derivative of the gradients to the
identity matrix during backward propagation. Since these three
approaches are differentiable in all regions, they can be learned
without suffering the gradient mismatch. We observe that
the low-complexity DNN and DNN for rank-1 approximation
get the benefit of quantization approaches 2, 3, and 4 more
than the DNN for rank-k approximation. The performances
of low-complexity DNN and DNN for rank-1 approximation
are worse than the DNN for rank-k approximation since
they are trained to learn from noisy input data. The results
in this section show that quantization approaches 2, 3, and
4 can compensate for this performance degradation more than
the quantization approach 1 since the first approach is not
differentiable in all regions.

E. Time Complexity Analysis of DNN Based Hybrid BF and
State-of-the-Art

It has been shown in Section III-E that the DNN
for rank-k approximation has a time complexity of
O(max(k2NRNT , k2N2

R, k2N2
T)) for the constant values

of m, n, f , and p, which denote the number of fil-
ters, the number of convolutional layers, the spatial size
of the filter, and the size of zero-padding, respectively.
Moreover, we show in Section III-E that the time com-
plexity of the low-complexity DNN and the DNN for
rank-1 approximation is O(max(kNRNT , kN2

R, kN2
T)) and

O(max(NRNT , N2
R, N2

T)), respectively. Since the DNN con-
sumes the major computation time, the time complexity of
the proposed hybrid BF can be approximated with the time
complexity of the used DNN architecture. To estimate the
mmW channel, the authors of [9] have proposed an algo-
rithm which has a time complexity of O

(
K2S3

LR

(
S − logS

K

))
,

where K , LR, and S denote the number of BF vectors at
the Tx in each stage, the number of RF chains at the Rx,
and the number of paths in the channel, respectively. In the
hybrid BF algorithm of [9], the SVD of estimated NR-by-
NT channel matrix is calculated, which has a time complex-
ity of O(NRN2

T). With some mathematical manipulations,

the time complexity of this algorithm is approximated as
O

(
K2S3

LR

(
S − logS

K

) (
NRN2

T

))
. Authors of [10] propose an

OMP based hybrid BF algorithm with an approximate time
complexity of O

(
NRN2

T

)
. In [39], Q Tx and Q Rx beams

with the largest effective powers are selected, and an exhaus-
tive search is performed on the reduced set. The time com-
plexity of this algorithm is approximated as O

(
QLRQLT

)
.

In the ML-aided hybrid BF algorithm proposed in [25],
effective channel matrices and corresponding BB beamform-
ers are computed for CN candidate beamformers. This part
of the algorithm, which has the highest time complexity,
is O

(
CNNT N2

R

)
. The number of candidate beamformers CN

should be selected at least 2Nq , where Nq is the number
of bits used in the phase shifters, to cover the all possible
beam directions. After I iterations, the total time complexity
of the algorithm given in [25] becomes O

(
I

(
2NqNT N2

R

))
.

In the training phase of the DL-based hybrid BF algorithm
introduced in [27], the Rx receives training symbols using Ntr

different RF-BF vectors, which leads to time complexity of
O (NRNT Ntr). Finally, a fully-connected feed-forward DNN
is trained with N pilot sequences each of with a length of Kp.
Since the complexity of the DNN is approximately linear in the
size of the input, which is NKp for the DNN in this algorithm,
the time complexity of training and prediction phases are
found to be O (NKp + NRNT Ntr) and O (NKp + NRNT),
respectively. In [28], the matrix multiplication of the analog
and digital beamformers dominates the computation time.
We assume that TA ∈ CLT ×NT and TD ∈ CL×LT are
the analog and digital precoders, respectively. Moreover,
RA ∈ C

NR×LR and RD ∈ C
LR×L are considered to be

the analog and digital combiners, respectively. Then, the time
complexity of this algorithm becomes O

(
max(LN2

T , LN2
R

)
.

In [30], a CNN with four convolutional layers and one fully-
connected layer is used. Moreover, the number of filters in
each convolutional layer, the spatial size of each filter, and
the size of zero-padding are kept the same with the DNN
for rank-k approximation. The number of output nodes in
the fully connected layer is k(2NR + 2NT + 1) as in the
DNN for rank-k approximation. Therefore, the time complex-
ity of the algorithm given in [30] can be approximated as
O(max(L2NRNT , L2N2

R, L2N2
T)). In the given time com-

plexities, L, NT , and NR denote the number of data streams,

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6640 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

TABLE IV

RUN TIME RESULTS FOR DNN BASED HYBRID BF AND STATE-OF-THE-ART

the number of transmit antennas, and the number of receive
antennas, respectively. The complexities of testing phases for
the proposed approach and other state-of-the-art approaches
are given in Table III.

Based on the given approximations for the time complexities
of our approach and the state-of-art algorithms, the DL-
based hybrid BF algorithm given in [27] achieves the least
time complexity for small values of N and Kp. For large
values of N and Kp, the time complexity of the DNN for
rank-1 approximation becomes smaller than [27]. Furthermore,
the DNN for rank-k approximation and the low-complexity
DNN have comparable time complexities to the DNN for
rank-1 approximation for the small values of k. On the other
hand, the time complexity of the hybrid BF algorithms given
in [10] and [28] are less than the hybrid BF algorithms given
in [9] and [39]. Moreover, [28] has a smaller time complexity
than the sparse hybrid BF algorithm when the number of data
streams (L) is less than min(NR, NT). The time complexity
of the ML-aided hybrid BF algorithm proposed in [25] grows
exponentially with the number of bits used in the phase
shifters. Therefore, the time complexity of this algorithm
is comparable to the complexity of the sparse hybrid BF
algorithm when the number of bits is small. However, it starts
to increase rapidly while the number of bits grows. Finally,
we measure the average run time of our approach, and the
state-of-art hybrid BF algorithms over a batch size equal to
256, as shown in Table IV. In our simulations, the values
of Q, Nq, K , and S are set to 4, 3, 2, and 1, respectively.
For the scope of these results, the values of k, L, NR, NT ,
LR, LT , and NKp are picked as either 4, 8, or 16 such that
k = L = NR = NT = LR = LT = NKp.

V. CONCLUSION

In this paper, we first presented three DNN architectures
with different levels of complexity to learn the SVD operation.
The first architecture estimates the k most significant singular
values and singular vectors of the given matrix. The second
architecture uses k low-complexity DNNs in which each
DNN predicts one singular value and one singular vector.
The third architecture estimates the k largest singular values
and singular vectors of the given matrix by using a single
DNN recursively. Finally, we introduced a DNN based hybrid
BF approach to design the analog and digital beamformers
under the constraints of the finite-precision phase shifters and
the power constraint. Extensive simulations were presented
to evaluate the performance of the proposed DNN architec-
tures for the SVD. By using the geometric channel model,
we compared the achieved rates of the DNN based hybrid
BF approach with the unconstrained BF, three conventional
hybrid BF algorithms, an ML-aided hybrid BF algorithm, two

DL-based hybrid BF algorithms, and an autoencoder based
hybrid BF algorithm. With our simulation results, we show that
the DNN based hybrid BF approach obtains up to 50 − 70%
gain in rates compared to conventional hybrid BF algorithms,
and it achieves 10 − 30% improvement compared to ML-
based hybrid BF algorithms. In the future, we aim to explore
the unsupervised techniques such as generative adversarial
networks (GANs) for the SVD and hybrid BF to eliminate the
need for supplying valid singular values and singular vectors,
which leads to reduced overhead.

REFERENCES

[1] F. Boccardi, R. W. Heath, Jr., A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 74–80, Feb. 2014.

[2] L. Kong, M. K. Khan, F. Wu, G. Chen, and P. Zeng, “Millimeter-wave
wireless communications for IoT-cloud supported autonomous vehicles:
Overview, design, and challenges,” IEEE Commun. Mag., vol. 55, no. 1,
pp. 62–68, Jan. 2017.

[3] M. R. Palattella et al., “Internet of Things in the 5G era: Enablers,
architecture, and business models,” IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 510–527, Mar. 2016.

[4] S. Han, C.-L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems
with hybrid analog and digital beamforming for millimeter wave 5G,”
IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, Jan. 2015.

[5] T. S. Rappaport et al., “Millimeter wave mobile communications for 5G
cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

[6] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul and
access in small cell networks,” IEEE Trans. Commun., vol. 61, no. 10,
pp. 4391–4403, Oct. 2013.

[7] A. F. Molisch et al., “Hybrid beamforming for massive MIMO: A sur-
vey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.

[8] Y. Ren, Y. Wang, C. Qi, and Y. Liu, “Multiple-beam selection with
limited feedback for hybrid beamforming in massive MIMO systems,”
IEEE Access, vol. 5, pp. 13327–13335, 2017.

[9] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846,
Oct. 2014.

[10] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[11] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., “Hybrid
precoding for millimeter wave cellular systems with partial channel
knowledge,” in Proc. Inf. Theory Appl. Workshop (ITA), Feb. 2013,
pp. 1–5.

[12] A. Alkhateeb, G. Leus, and R. W. Heath,Jr., “Limited feedback hybrid
precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.

[13] T. E. Bogale and L. B. Le, “Beamforming for multiuser massive MIMO
systems: Digital versus hybrid analog-digital,” in Proc. IEEE Global
Commun. Conf., Dec. 2014, pp. 4066–4071.

[14] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cognit. Commun. Netw., vol. 3, no. 4,
pp. 563–575, Dec. 2017.

[15] T. J. O‘Shea, T. Erpek, and T. C. Clancy, “Deep learning based MIMO
communications,” CoRR, vol. abs/1707.07980, pp. 1–9, Jul. 2017.

[16] G. Gui, H. Huang, Y. Song, and H. Sari, “Deep learning for an effective
nonorthogonal multiple access scheme,” IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 8440–8450, Sep. 2018.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

PEKEN et al.: DEEP LEARNING FOR SVD AND HYBRID BF 6641

[17] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, “Deep learning
for super-resolution channel estimation and DOA estimation based
massive MIMO system,” IEEE Trans. Veh. Technol., vol. 67, no. 9,
pp. 8549–8560, Sep. 2018.

[18] H. Huang et al., “Deep learning for physical-layer 5G wireless tech-
niques: Opportunities, challenges and solutions,” IEEE Wireless Com-
mun., vol. 27, no. 1, pp. 214–222, Feb. 2020.

[19] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische Math., vol. 14, no. 5, pp. 403–420,
Apr. 1970.

[20] E. Angerson et al., “LAPACK: A portable linear algebra library for
high-performance computers,” in Proc. SUPERCOMPUTING, 1990,
pp. 2–11.

[21] A. Cichocki, “Neural network for singular value decomposition,” Elec-
tron. Lett., vol. 28, no. 8, pp. 784–786, Apr. 1992.

[22] P. Baldi and K. Hornik, “Neural networks and principal component
analysis: Learning from examples without local minima,” Neural Netw.,
vol. 2, no. 1, pp. 53–58, Jan. 1989.

[23] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1,
pp. 1065–1069, Jan. 2020.

[24] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays
using deep learning,” IEEE Wireless Commun. Lett., vol. 9, no. 1,
pp. 103–107, Jan. 2020.

[25] X. Gao, L. Dai, Y. Sun, S. Han, and I. Chih-Lin, “Machine learn-
ing inspired energy-efficient hybrid precoding for mmWave massive
MIMO systems,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017,
pp. 1–6.

[26] Y. Long, Z. Chen, J. Fang, and C. Tellambura, “Data-Driven-Based
analog beam selection for hybrid beamforming under mm-wave chan-
nels,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 340–352,
May 2018.

[27] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep
learning coordinated beamforming for highly-mobile millimeter wave
systems,” IEEE Access, vol. 6, pp. 37328–37348, 2018.

[28] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, “Deep-learning-
based millimeter-wave massive MIMO for hybrid precoding,” IEEE
Trans. Veh. Technol., vol. 68, no. 3, pp. 3027–3032, Mar. 2019.

[29] K. Satyanarayana, M. El-Hajjar, A. A. M. Mourad, and L.
Hanzo, “Multi-user hybrid beamforming relying on learning-
aided link-adaptation for mmWave systems,” IEEE Access, vol. 7,
pp. 23197–23209, 2019.

[30] A. Klautau, P. Batista, N. Gonzalez-Prelcic, Y. Wang, and
R. W. Heath, Jr., “5G MIMO data for machine learning: Application
to beam-selection using deep learning,” in Proc. Inf. Theory Appl.
Workshop (ITA), Feb. 2018, pp. 1–9.

[31] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[32] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., May 2013, pp. 6645–6649.

[33] Y. L. Cun et al., “Handwritten digit recognition with a back-
propagation network,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
1989, pp. 396–404.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[35] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4674–4683.

[36] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR,
vol. abs/1803.01271, pp. 1–14, Mar. 2018.

[37] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” in Proc. Int. Conf. Learn. Representations
(ICLR), 2018, pp. 1–21.

[38] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
CoRR, vol. abs/1308.3432, pp. 1–12, Aug. 2013.

[39] J. Singh and S. Ramakrishna, “On the feasibility of codebook-
based beamforming in millimeter wave systems with multiple antenna
arrays,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2670–2683,
May 2015.

[40] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming
and space-time block coding based on channel mean feedback,” IEEE
Trans. Signal Process., vol. 50, no. 10, pp. 2599–2613, Oct. 2002.

[41] M. Stojnic, H. Vikalo, and B. Hassibi, “Rate maximization in multi-
antenna broadcast channels with linear preprocessing,” IEEE Trans.
Wireless Commun., vol. 5, no. 9, pp. 2338–2342, Sep. 2006.

[42] S. A. Jafar, S. Vishwanath, and A. Goldsmith, “Channel capacity and
beamforming for multiple transmit and receive antennas with covariance
feedback,” in Proc. IEEE Int. Conf. Communications. Conf. Rec. (ICC),
vol. 7, Jun. 2001, pp. 2266–2270.

[43] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1164–1179, Jun. 2014.

[44] T. S. Rappaport, Y. Qiao, J. I. Tamir, J. N. Murdock, and E. Ben-Dor,
“Cellular broadband millimeter wave propagation and angle of arrival
for adaptive beam steering systems (invited paper),” in Proc. IEEE Radio
Wireless Symp., Jan. 2012, pp. 151–154.

[45] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor
multipath propagation,” IEEE J. Sel. Areas Commun., vol. SAC-5, no. 2,
pp. 128–137, Feb. 1987.

[46] A. F. Molisch, “A generic model for MIMO wireless propagation
channels in Macro-and microcells,” IEEE Trans. Signal Process., vol. 52,
no. 1, pp. 61–71, Jan. 2004.

[47] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 2012.

[48] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey
of deep neural network architectures and their applications,” Neurocom-
puting, vol. 234, pp. 11–26, Apr. 2017.

[49] D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (ELUs),” in Proc. Int. Conf.
Learn. Representations (ICLR), May 2016, pp. 1–14.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations (ICLR), May 2015, pp. 1–15.

[51] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Conf. (OSDI), Nov. 2016, pp. 265–283.

[52] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5353–5360.

[53] F. Branchaud-Charron, F. Rahman, and T. Lee. Keras. [Online]. Avail-
able: https://github.com/keras-team

Ture Peken received the B.S. degree in telecom-
munications and computer engineering from Istanbul
Technical University, Turkey, in 2011, and the M.S.
degree in electrical engineering: systems from the
University of Michigan, Ann Arbor, in 2012. She
is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
The University of Arizona, Tucson, AZ, USA. She
joined The University of Arizona as a Graduate
Assistant in 2014. Since 2019, she has been with
Keysight Technologies, Santa Rosa, CA, USA. Her

current research interests include wireless communications, millimeter-wave
systems, machine learning and its applications to beamforming, and massive
MIMO systems.

Sudarshan Adiga (Student Member, IEEE) received
the B.E. degree in telecommunication engineering
from the Ramaiah Institute of Technology, Ben-
galuru, in 2015, and the M.S. degree in electrical
and computer engineering from The University of
Arizona, Tucson, AZ, USA, in 2019, where he is
currently pursuing the Ph.D. degree with the Depart-
ment of Electrical and Computer Engineering. His
current research interests include machine learning,
information theory, and wireless communications.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

6642 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2020

Ravi Tandon (Senior Member, IEEE) received
the B.Tech. degree in electrical engineering from
the Indian Institute of Technology at Kanpur (IIT
Kanpur) in 2004 and the Ph.D. degree in electrical
and computer engineering from the University of
Maryland, College Park (UMCP), in 2010. Prior
to joining The University of Arizona in Fall 2015,
he was a Research Assistant Professor at Virginia
Tech with positions in the Bradley Department of
Electrical and Computer Engineering (ECE), Hume
Center for National Security and Technology, and

the Discovery Analytics Center, Department of Computer Science. From
2010 to 2012, he was a Post-Doctoral Research Associate with Princeton
University. He is currently an Assistant Professor with the Department of
ECE, The University of Arizona. He serves as an Editor for the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS. His current research
interests include information theory and its applications to wireless networks,
communications, security and privacy, machine learning, and data mining. He
was a recipient of the 2018 Keysight Early Career Professor Award, NSF
CAREER Award in 2017, and the Best Paper Award at IEEE GLOBECOM
2011.

Tamal Bose received the Ph.D. degree from
Southern Illinois University.

He was the Founder and the National Director of
the NSF sponsored multi-university multi-industry
wireless research center called the Broadband Wire-
less and Applications Center from 2012 to 2017.
From 2007 to 2013, he was a Tenured Professor
with the Bradley Department of Electrical and Com-
puter Engineering, Virginia Tech. He served as an
Associate Director of Wireless@VT. In 2008, he
established the NSF sponsored WICAT@VT site and

served as the Site Director. He also served as the Department Head of electrical
and computer engineering with Utah State University, Logan, Utah. There, he
founded and directed the Center for High-Speed Information Processing. He is
also the Department Head and a Professor with the Electrical and Computer
Engineering Department, The University of Arizona, Tucson. His current
research projects are funded by the National Science Foundation (NSF),
the Department of Energy (DOE), the Defense Intelligence Agency (DIA), and
some private companies. Throughout his career, he has directed research and
worked as the Principal Investigator (PI) and Co-PI of research funded by NSF,
DOE, DIA, Defense Advanced Research Program Administration (DARPA),
Office of Naval Research (ONR), Missile Defense Agency (MDA), Air Force
Research Laboratory (AFRL), NASA, and over 15 different private companies.
The total volume of research, he has conducted as PI/Co-PI exceed 20M.
He is the author/coauthor of over 70 journal articles and over 100 conference
papers. He is the author of the text Digital Signal and Image Processing,
(John Wiley, 2004) and a coauthor of Basic Simulation Models of Phase
Tracking Devices Using MATLAB, (Morgan and Claypool Publishers, 2010).
His research interests include signal detection and classification for cognitive
radios, channel equalization, adaptive filtering algorithms, and nonlinear
effects in digital filters.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 28,2021 at 19:29:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

