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Propagation characteristics of ultrawide-bandwidth pulsed
Gaussian beams
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The propagation characteristics of a beam generated by driving an aperture with an ultrashort, hence
ultrawide-bandwidth, space-time Gaussian pulse are considered. It is shown analytically with an approximate
form of the solution that the beam intensity and the beam energy have different diffraction lengths and rates of
beam spread in the far field. These beam properties are also discussed for a derivative receiver system. The
analytical results are supported with numerical simulations of the exact pulsed-beam solution.

1. INTRODUCTION

As modern science expands its horizons in the develop-
ment of stable, repeatable pulsed sources of signals in the
10-12_ to 10-5 -s regimes, we are quickly approaching the
realization of electromagnetic energy devices and their
applications in those regimes. The need for understand-
ing the characteristics of the beams generated by these
millimeter-wave and optical pulsed sources is important
for the successful engineering of those applications. Most
conventional sources can be classified as being cw (mono-
chromatic) or having narrow bandwidths (being quasi-
monochromatic). The characteristics of the Gaussian
beams resulting from these sources are well known and
can be found in a variety of textbooks." 2 However, as the
bandwidths of the pulses increase, their properties can no
longer be characterized by those cw results. The purpose
of this paper is to derive and characterize the beam gen-
erated by sources of ultrashort (time-limited), hence
ultrawide-frequency-bandwidth, pulses. Comparisons
with the results predicted for general systems of this type'
are made.

The propagation characteristics of the beam generated
by driving an aperture with an ultrashort, time-limited
(hence ultrawide-frequency-bandwidth) signal whose am-
plitude is weighted as a Gaussian across the aperture are
derived in Section 2. Particular attention is given
to the case involving a Gaussian time signal. An approxi-
mate form of the resulting pulsed Gaussian beam field is
derived in Section 3. It is shown that the beam intensity
and the beam energy have different diffraction lengths
and rates of beam spread in the far field. Similar proper-
ties are derived in Section 4 for a pulsed Gaussian beam
measured with a derivative detector. The conclusions of
Sections 3 and 4 are supported with numerical simula-
tions as described in Section 5. In particular, the spatial
and temporal behaviors of a femtosecond pulsed Gaussian
beam are studied. A summary and suggestions for ex-
perimental confirmation of these results are given in Sec-
tion 6.

2. PULSED GAUSSIAN BEAM FIELD

Consider a circular aperture of radius a in the plane
z = 0. We assume that this aperture is driven every-

where with the Gaussian time signal

F(t) = exp(-pt 2 ). (1)

The field is assumed to propagate from the initial aper-
ture into the half-space z > 0, which is taken to be a dis-
persionless, lossless, linear medium. To simplify the
analysis, we assume that the radius of the aperture is suf-
ficiently larger than the waist w0 of this initial pulse to
remove any edge effects from the discussion.

Since the system is linear, this initial field will evolve
into a pulsed electromagnetic Gaussian beam that is
propagating in free space. We can thus use standard
linear-system theory and known representations for a cw
Gaussian beam to derive an expression for the resulting
pulsed beam in the desired half-space. In particular, we
use the well-known frequency-domain representation of
the amplitude of a linearly polarized electric field (polar-
ized in a direction orthogonal to the direction of propaga-
tion) of an azimuthally symmetric, zeroth-order, Gaussian
beam in a homogeneous medium. If the propagation
direction is assumed to be along the z axis, this field has
the form'

E(r, 4, z, c)

f.17~~ - ()1 - [1 ik
Eo () exp -i[kz [w2 (z) + 2R(z) ]l

(2)

where the waist, the radius of curvature, the phase term,
and the diffraction length, respectively, are given by

W2(Z) = W2[l + (j2)2] = WO2(1 +

R(z) =z 1+ ( z)]= Z 1 + Z2) 

*4 = tan-( Az2) = tan-' - I

1TWo2 (W 02\

A \2c)

(3)

(4)

(5)

(6)
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The rate of beam spread (beam-spread angle) in the far
field where z >> z follows from the waist expression
[Eq. (4)]:

Ocw = tan' [ -] tan-' ( :) V ( .
7Z] 7w w 2v7wo

(7)

Instead of taking the usual definition of O, as the radius
at which the amplitude has decreased to l/e of its value on
the axis, we have defined this angle to be the radius at
which the intensity has decreased to l/e of its value on the
axis. Note that the same angle would have been obtained
from the energy profile in this cw case. The usual defini-
tion results in relation (7) without the 1/V factor.

When the driving function has a Gaussian time history,
it also has a Gaussian spectrum. In particular, the tem-
poral Fourier transform of the initial pulse given by
Eq. (1) is

F(w) = (r/p)"2 exp(-w 2 /4p).

Therefore the resulting beam field in the reg
the inverse Fourier transform of the product
tral fields given by Eqs. (2) and (8):

E(r, 4, z, t) =- E(r, 4, z, w)F(co)exp(+io

The intensity of the beam at the field point (;
termined by squaring the electric field given
the energy is obtained by integrating the in
all time. This discussion is extended in
forward manner to Gaussian beam modes o
and symmetry.

3. ANALYTICAL CHARACTERIZAI
PULSED GAUSSIAN BEAMS

An approximate form of the field expression
readily obtained, so that a similar form can
from Eq. (9) analytically. When z << z, or
Eq. (3) that the waist w(z) wo. The approi
the electric field at an observation point nea
surface for a particular angular frequency tl

E(r, 4), z, )- E0 exp(- ikz)exp(- r2/wO2)

Thus the cw beam retains essentially a Gaussi
any transverse plane; its amplitude remahi
along the z axis. However, as the distance aw
aperture increases, the waist given by Eq.
more dependent on z. In fact, for z >> z Eq.

w(z) wo(z/zo),

and the resulting approximation for the frequE
field far away from the initial z = 0 plane is

E(r, 4), z, to)

# EoZ° exp -i kz - - r2 °Z) +
Z \ 2/ Lwoz/

- iE 0 2w expi-ri- ± - r I o
2cz L[ c 2cz) -w (2cz

(z >

(8)

ion z > 0 is
of the spec-

t)d . (9)

A ) isq de P-

Although an analytical expression for Eq. (9) is not
directly available, it can be reasonably approximated by
using Eq. (8) and relations (10) and (12) and performing
the inverse transforms analytically. With Eq. (3.323.2) of
Ref. 4, one obtains

E(r, 0, z, t) E exp(-r 2
/wO2)exp[-p(z/c -t)2] (13)

near the aperture and

E(r, , z, t)

#~~ ~ ~~ F±.)w Ii xt-9[1+ (wor2]E0 1T 1/2 W2 2o2c

x exp{~iw[( ) ex- + ) 
2iT p 2 c z x 4p 2cz

X exp{ - i[( - t+ r] }dco

27T p 2cz f . 4p 2cz

X exp -i - - t + 2]dco

p 2 F 1 3/2Z r2
E 1 + !z t +

CZ L + p(worcz)2JC 2cz/

(zc - t + r/2cz) 21
X exp -L 1 + p(wor/cz)2 J (14)

far from the aperture. Thus the initial pulsed beam
by Eq. (9) retains its form near the aperture and acquires a time-

tensity over derivative form that decays as z-' far from it. The speci-
a straight- fication of the diffraction length of this field (distance to
f any order the near- to far-field boundary) is given below.

The time-derivative behavior far from the aperture rep-
resented by relation (14) is expected from the radiation

'ION OF process. Recall that the field away from the aperture can
be treated as arising from a set of equivalent electric and

[Eq. (2)] is magnetic sources in the aperture; i.e., if fap is the normal
be derived to the aperture in the direction of propagation, the equiva-

ie has from lent (dipole) current sources in the aperture may be
imation for formed from the tangential electric and magnetic fields
r the initial there: Jap = X H ap and Map = -ft X Eap. In the near
hen becomes field close to the aperture, rather than being dominated by

the individual dipole sources, the electromagnetic field is
(Z << zo). dominated by the induction fields of these current sources,

(10) and those fields are directly related to the tangential elec-
an shape in tric and magnetic fields in the aperture, so that Enear -
iscn saen Eap and Hnear cx Hap. One then expects, as shown above,
ns constant that the initial field will be recovered near the aperture,
'ay from the modulo a phase term. The radiated (far-field) electric
(3) becomes field can be simply connected to the aperture field; it is
(3) becomes related to a time derivative of the electric vector potential,

(11) which in turn is proportional to the aperture electric-
current density: Efar :C -atAe C atJap. However, the

,nay domain fields in and near the aperture are dominated by the TEM-
like property that they are nearly translationally invariant
along the propagation direction. This means that

*k q actZoHnear az(fap x Enear) and hence ZoHnear ftap x
Enear, so that Jap c Hap c Eap. These near- and far-field

2z J arguments then give Efar c atEap. Thus as the field
2- evolves from the near- to the far-field region, it acquires

the observed time-derivative behavior.
The intensity of the beam field in the near- and far-field

> zo). (12) regions is readily obtained as the absolute square of the
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electric fields given by relations (13) and (14). One ob-
tains for the near field

. (r, , z, t) - IE(r, , z, t)12

= Eo 12 exp(-2r 2 /w 0
2 )exp[-2p(z/c - t)2 ] (15)

and for the far field

J (r,0, z, t)

E
0
2 (P-)[ 1 + p(wor/cz)21(C

[- 2(zic - t + r2/2cz)21
X exp[ -2p 1+pw/c) 2 J

field at which the beam spread is taken. With this quan-
tity one then has

def r = [ cil1/2 - 2)-1
Oint = - = I(Rint "W2 2-z [ w o

(22)

A standard choice of the evaluation point of the beam
spread ratio would be the le point, i.e., taking Rint = 1/e.

On the other hand, the energy at a field point (r, 4, z) is
determined simply by integrating the intensities given by
relations (15) and (16) over all time. With Eqs. (3.463.6)
and (3.463.8) of Ref. 4, one obtains

(16) (r4)z) = 7 IE012 exp(-2r 2/w0
2)exp[-2p(z/c - t)2]dt

Because the intensity depends on time, it has limited use-
fulness as a cogent beam quantity. A more descriptive
quantity is the maximum of the intensity in time:
91max = maxt J. It allows one to associate a pattern
(transverse spatial distribution) with the intensity. Set-
ting the partial with respect to time of the electric fields
given by relations (13) and (14) to zero, one finds that the
maxima of the electric field are located at the time
tmax = zic in the near field and at the time

2 / W 22 1/2

tma x -+ ± -i - + I
2cz 2p 2

2 /
(17)

in the far field, so that the maximum intensity received at
an observation point is

,Omax(r, 4, z) = E0
2 exp(-2r2 /w0

2 ) (18)

in the near field and

9smax (r, 4 Z) Eo1 p 1
2e CZ /

wr\2] -2

= IEoI2 exp(-2r2/wo2)( )/
in the near field and

Eo2[pwo2 /(cz)]2 f (z
V(r4,Z) --1 + p[Wor/(CZ)]2}3 J ~c

X exp[-2p (z - t + r2/2CZ)2 dt
exPL 2 P 1 + p(wor/cZ) 2 d

= o 2 \0 2/ir \1,2 / \ o 21-3/2
\2cz/ 2~ C[ZP ~ j

(23)

(24)

in the far field. Consequently, the ratio of the energy
along the axis of propagation to the energy on axis at the
aperture z = 0 is

d '6(r = 0,4, z)
Fr,,1(r = 0, ), z) =Le W(r = 0,4),z = 0)

(19)

in the far field. Consequently, the ratio of the maximum
intensity along the axis of propagation to the maximum
intensity on axis at the aperture z = 0 is

rint,1 (r = 0 0) def .max(r = 0,4 ) z)F~~,1~r 04),) .max(r = 0, 0, z = 0)

{ 1.0
p(wo 2/2cz) 2

(near field)
(far field)

(25)

Similarly, the ratio of the energy at a point in a plane or-
thogonal to the axis of propagation to its value on that
axis is

Fenr,±(r, 4), Z) =6 '(r, ), z)-

1.0

= p W2 c
2e zc 

(near field)

(far field)
(20)

Similarly, the ratio of the maximum intensity at a point in
a plane orthogonal to the axis of propagation to its value
on that axis will be

int, L(r, ,z) max(r = 0, z)

[exp(-2r2/w 2) (near field)

= ( 1 + w02r2)2 (far field)

{ exp(-2r2/wO2 )
1[1 + p(wo2 r2 /c2 z 2 )] -3/2

(near field)
(far field)

(26)

The energy profile remains the same in the near field but
begins to spread in the far field. One can thus define a
beam spread in the far field for the energy Oenrg in terms of
the far-field ratio [Eq. (26)]. In particular, let Renrg be the
value of ratio (26) in the far field at which the beam
spread is taken. With this quantity one then has

(21)

The maximum-intensity profile remains the same in the
near field but begins to spread in the far field. One can
thus define a beam spread in the far field for the maxi-
mum intensity Oint in terms of the far-field ratio [Eq. (21)].
In particular, let Rint be the value of ratio (21) in the far

Oenrg =- = [(Renrg2/3 - 1) 2

A standard choice of the evaluation point of the beam-
spread ratio would again be the le point, i.e., taking
Renrg = 1/e.

Now we would like to characterize the far-field maxi-
mum intensity and energy in terms of the effective

(27)
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frequency associated with the radiated field that was in-
troduced in Ref. 3. This effective frequency was obtained
from analytical bounds on the rate of energy decay along
the direction of propagation of the beam generated by an
arbitrary array driven with a general spatially distributed
set of time signals S;(r, t), by taking into account the time-
derivative effect that results from the propagation of the
beam from the near to the far field. For the case under
consideration the initial time-signal distribution is
9;(r, t) = E0 exp(-r2 /wo2 )F(t), and the associated effec-
tive frequency is defined as

dS d dtj9;(r,t)2 _ dtlaF(t)2
2 def A, -m-

°d = x o= p. (28)
f dSf dtlg(r,t)l2 f dtIF(t)2

This effective frequency CWrad is a measure of the spectral
energies radiated into the medium in our model. It is a
ratio of the aperture-weighted accumulation of the contri-
butions to the energy spectrum of the field away from the
aperture to the aperture-weighted accumulation of the
energy spectra of the signals driven into the aperture. It
is a useful quantity since it characterizes by a single fre-
quency value all the ultrawide-bandwidth components con-
tained in all the signals radiated by the aperture. We now
rewrite the far-field intensity and energy relations in
terms of this effective frequency CWrad, its corresponding
wavelength Arad, and the associated diffraction length Lrad:

27rc 27rc
Arad = -

C rad \/p

Lrad
A rad

In particular, one finds in the far field

rit,11(r = 0,4), z)
2 (TwO2\2 2 2LLrd'2 int

e \AradZ! e /

Although the diffraction lengths for maximum intensity
are only slightly different from those for maximum energy,
the rates of spreading of the intensity and the energy in
the far field are significantly different, particularly if we
consider the spot-size ramifications at large distances
from the aperture. The differences, as explained in
Ref. 3, result from the facts that the maximum intensity
is a point quantity that depends on the bandwidth and the
energy is an average quantity that hence depends on an
average frequency value. We also note that, if the aperture
were driven with a cw signal corresponding to the effective
frequency (Ocw= COrad, a comparison of relation (7) with
Eqs. (22') and (27') reveals that the ultrawide-bandwidth
beam has energy and intensity profiles in the far field
that are narrower than those of the cw case, e.g., Oint/Ocw =

[(e+112 - 1)/2] 1/2 = 0.570. Situations in which these dif-
ferences could be designed to be much larger than they
are in this simple but important example are discussed
in Ref. 3.

The beam-energy decay and the beam-spread rate re-
sults are in excellent agreement with those predicted in
Ref. 3 for such an ultrawide-bandwidth system. The in-
tensity ratio can be put into the form suggested there with
the introduction of the term

def maxt f dS' atF(r', t)I2 4 / 1/2

Yr A = d =+ -dS'r dtlatF(r', t)I2 \e /
A -c

(28')

2 V
= W- rad,

(32)

which is simply the ratio of the maximum of the aperture-
(29) weighted driving function to its time-averaged value. In

particular, we can write the far-field maximum field in-
tensity normalized by the product of the effective fre-
quency, which characterizes the frequencies radiated from) 2 the aperture, and the energy (fluence) on axis at the aper-
ture z = 0 as

(20')

-1/2 1)1/2 Ared
Oint = (Rint" 2 1)" 2 w0

renrg,ii(r = 0, 4) z) =
7rwo 2 2

A rad Z

(Lrad)2

(22')

(Lenrg2
= -J

~~~ ~~def Jxnax (r = ° ( )
rintII ( = , +,Z) ) rad% (r = 0, , z =0)

2 V2 ( 7rW2 2 = Yrad L ad 

e -, r krad Z 0) rad ZJ

(25') which coincides exactly with the behavior anticipated in
(5) Ref. 3.

(33)

Oenrg = (Renrg-2/3 _ 1)1/2 Arad .

Thus one readily observes that the diffraction lengths and
the rate of beam spreading in the far field for the maxi-
mum intensity are different from those of the energy.
Quantitatively, the diffraction lengths for the maximum
intensity and maximum energy satisfy

L n -- = 0.858, (30)
Lenrg e

and the rates of beam spread, by taking the l/e roll-off
point, satisfy

Oint (Rint-1/2 1 1/2
Oenrg 'Renrg_ - 1 0.827. (31)

4. PULSED GAUSSIAN BEAM MEASURED
WITH A DERIVATIVE DETECTOR

Because a component signal of the pulsed Gaussian beam
has a broad bandwidth, a receiver, which has its own
natural-frequency set, can affect the measurement of this
signal. On the other hand, since the signals are time
limited, their frequency spectra are in principle of infinite
extent. Thus one should have access to different portions
of the signal's frequency spectrum through the measure-
ment process. In particular, one can design a receiver
system that differentiates the received signal and hence
has access to a higher portion of the beam's spectrum
even though there is little energy radiated in that portion
of the frequency spectrum. The intensity and energy of

(27')
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the received signal are related to the higher-order correla-
tion properties of the signals used to drive the aperture.
As described in Refs. 3 and 5, since these higher-order
correlation properties of the beam's signals involve the
higher portions of the frequency spectra, diffraction af-
fects them more slowly. Thus the diffraction lengths and
rates of beam spread differ between the radiated and mea-
sured beam fields.

A derivative receiver is readily achieved in principle. A
dipole whose length is shorter than the wavelengths of
interest in the pulse, kmaxL 1 will differentiate the
signals it receives. Such a system has been realized with
optoelectronic techniques, and the expected enhancements
have been observed.`' The photoconductive switches are
excited with a Gaussian space-time laser beam, and the
currents in the photoconductive region obtain a skewed
Gaussian form. The receiving-system antennas can be
designed to receive the radiated signal (one time deriva-
tive as in Section 3) or to differentiate the received signal
(leading to the two-time-derivative behavior discussed
below). Although these effects can be achieved with the
optical-switch technology in the picosecond-terahertz re-
gion, it is not readily apparent what the corresponding sys-
tem should be in the femtosecond-petahertz regime.
Nonetheless, these systems should be available in the fu-
ture and should result in the following beam-parameter
enhancements. Note that these enhanced measured beam
properties are readily accessible in the megahertz fre-
quency region by using ultrasound beams in water, and
they have been observed experimentally.'," In fact,
higher-derivative systems are possible in the ultrasound
regime in which the transmitter and the receiver are time
differentiators and lead to further enhancements.

The approximate signals measured by a derivative de-
tector in the far field of the aperture can be readily
derived from the corresponding expressions given in
Section 3. In particular, let

A1+ (wor 24 p k2cz)

One then can write

def
Emeas(r, 4, z, t) fatE(r, 4), z, t)

Eo wo2 [(z/c - t + r2/2cz)2 - 2A
Vp- 8cz 2A 52

X ex[- (z/c - t + r 2/2cz)21
4A J

(34)

frequency COmeas and the intensity quantity Ymeas:

dS' I dt at2F(r', t) 2
2 def A -

W meas - A

dS'ft dtjlaF(r',0j~ 2
Af-

= 3p = 3a 2rad ,

maxti dS'at 2F(r', t)12 32 p l/2
Ymeas = _ 

IAdS' f dt jat2F(r', t) 2 7r,
A -

32

= e 1r-2 

(38)

(39)

Consequently, introducing the far-field ratios of the mea-
sured maximum intensity and measured energy in a plane
orthogonal to the axis of propagation to their values on
that axis, we find that

mes r 1 ,def max (r, 4, z) _ + w2r2)3
iftl\ I (p,,OZ) = gjfl155( me O, ) C2Z2 (40)

r meas 1 (r, def Z meas(r, '¢ Z)

%meas(r = 0, , z)

/ W.2r2 -5/2
= 1 + P C2Z2

(41)

so that the rates of spread of the measured beam intensity
and the measured energy in the far field are

Oimnt-as (Rint-1/3 - 1)1/2 ad

meas (R -2/5 _ 1)l/2 Arad,
enrg enrg 2wo

(42)

(43)

respectively. In addition, by introducing the effective fre-
quency CWrad of the radiated spectrum as a normalization
term for the additional time derivative (recall that Wrad is

naturally associated with the aperture transmission pro-
cess; hence by reciprocity it should be associated with the
reception process as well), the rates of the measured beam
energy decay and the measured intensity decay in the far
field can be defined and have the values

(35) es,' = me ¢ z) de meas(r = O,4 z)
enrg, ( =0 Pz Lf0 WrdZ(r = 0, ), z = 0)

This leads to the far-field expressions

max (r, 4, z) = (w )4 A (36)mess p 8cz e (36

%meas(r, 4, Z) = (i') 3 A /2 (37)

Therefore, as in the simple detector case, one can intro-
duce3 " for this derivative-detector system the effective

2/L 2 (mieas"(O meas L ) a Lenrg
'\Wrad/\ 

def J rnea(r = 0,4), z)

I Dint, 1 (r = 0, , z) = wrad (r = 0,4),z = 0)

Ymeas (t) meas2(Ld)2 2 (L n, 2

CO rad (°) rad Z

(44)

(45)

where we have introduced the diffraction lengths associ-
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ated with the measured field:

mesdef (w meaLenrgS - ies ( Lrad, (46)

L deas def (Ymeass ( meas
\rad C0rad

Comparisons of the measured beam parameters with
those associated with the radiated beam or the corre-
sponding cw beam reveal significant differences. In par-
ticular, taking the le roll-off point for the beam spread,
one has

Lenrg= 1.73Lrad = 1.73Lcw,

Llnea = 0.797Lrad = 0.797LCW,

(48)

(49)

One = 07800rad = 0.4440cw (50)

enrg= 0.718enrg = 0.4960en' (51)

Thus we find that the diffraction length for the measured
beam energy is 1.73 times that of the corresponding cw
beam energy or intensity diffraction lengths and is 2.17
times the diffraction length for the measured beam inten-
sity. Since C(meas/Crad = 3 Eq. (44) indicates that the
measured beam energy is three times the corresponding cw
beam energy in the far field of the aperture. Similarly,
since Ymeas/cOrad = 0.212, Eq. (45) indicates that the maxi-
mum intensity is 0.636 times the cw value. On the other
hand, the beam spread for the measured beam energy is
0.496 times the corresponding cw beam energy spread, but
it is 1.12 times the beam spread for the measured beam
intensity. These results for the measured beam intensity
and energy seem contradictory, but they are not for this
case. One must recall that the intensity quantities are
taken as the maxima over time, so an energylike conser-
vation argument will not hold for them. Most of the cases
treated to date have dealt with signals and their deriva-
tives that have significant differences between them and
that, as a consequence, have shown significant enhance-

Ap
pla

Pulsed beam field envelope:
zero time derivative
measurement system

Pulsed beam field envelope:
one time derivative
measurement system

s of 

Axis of propagation

erture
ane

, " - mea
0 enrg

_ _ _ _ _ _ _ _- -

L enrg

meas
L enrg

Fig. 1. Energy-distribution envelopes. Diffraction affects the
higher-order coherence properties of a beam generated by an
ultrawide-bandwidth pulse-driven aperture more slowly than it
affects the lower-order coherence properties. The evelopes of
the energy distribution in a pulsed beam are defined by their dif-
fraction lengths and the rate of spread of the beam in the region
beyond their diffraction lengths.

ments simultaneously in both the measured beam inten-
sity and energy. Note that, as shown in Ref. 5, the mea-
sured beam energy does satisfy a generalized an-
tenna theorem (see, for instance, Ref. 2, p. 672); i.e., if
Al/, = rrwo2/2 is the effective source aperture area and

enrg)2 is the effective far-field solid angle, where enrg
must now be measured at the l/e2 point of the energy pro-
file, then their product yields

2 2 /
meX s 2 7rWO - A13 r 2
enrg = 2 (R27r - 1) dw )

Al/e x~~(O We 2/3 _ 1/

= 9( 18 Ama 2 1.O7Ames2 = meas2 

(52)

Thus the smaller measured beam spread is intimately con-
nected with the smaller effective wavelength.

Therefore the measured pulsed Gaussian beam has
properties quite distinct from but analogous to the radi-
ated pulsed Gaussian beam. As explained in Refs. 3 and
5, these differences can be associated with the differences
in the rates of diffraction of the higher-order correlation
properties of the beams. Since they are associated with
higher portions of the frequency spectra that are present
in the time-limited signals, those higher-order moments
have different diffraction lengths and rates of beam
spread, as evidenced above, which are accessible through
derivative-detection processes. The enhancement of the
measured beam properties over those of the radiated field
is summarized in Fig. 1. Note that this pulsed Gauss-
ian beam example is one of the simplest cases that reveals
these enhanced beam properties, but, as emphasized in
Refs. 3 and 5, the signals used to drive an aperture or
array can be designed to increase the magnitudes of these
enhancements substantially.

5. NUMERICAL SIMULATIONS

The situation that we have modeled in Section 3 could oc-
cur, at least to a first-order approximation, when an opti-
cal fiber is terminated and a linearly polarized, Gaussian
space-time pulse that is traveling in this waveguide is
launched into free space. We choose for discussion pur-
poses the parameter values w0 = 2.5 ,m, a = 5.0 ,m, and
p = 1.90 X 1030. These values correspond to launching a
Gaussian pulse from a fiber-optic waveguide whose core
radius is 5.0 Am. This pulse has a 1.45-fs full width be-
tween its 1/e amplitude points; its Fourier spectrum has a
le roll-off point at the frequency fi/e = 4.39 X 104 Hz, or
radian frequency w l/e = 2.76 X 105 rad/s, which corre-
sponds to the wavelength A1/e = 0.683 Am. The pulse has
a maximum amplitude of 0.018 at r = 5.0 ,m, the edge of
the aperture, which is small enough for our purposes here.
No other aspects of the fiber need be considered. The
initial pulse's time history is plotted versus time in Fig. 2,
and its Fourier spectrum is plotted versus radian fre-
quency in Fig. 3. The effective frequency of this pulse is
rad = 2.19 X 1014 Hz, or C)rad = 1.38 X 1015 rad/s, which

corresponds to the wavelength Arad = 1.367 m. An
analogous situation, but scaled down to terahertz frequen-
cies, arises in the large-aperture photoconductive-switch
picosecond-terahertz sources. 2 -4
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Fig. 2. Time history of the initial Gaussian pulse.
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Fig. 3. Fourier spectrum of the initial Gaussian pulse.

We have developed a numerical simulator to calculate
Eq. (9) directly to check our predictions. The waves that
are generated by the simulator are visualized with PV-WAVE,
a commercial software system for plotting and displaying
images. Equation (9) is also implemented by using the
prepackaged fast-Fourier-transform (FFT) routine pro-
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vided with PV-WAVE. The FFT routine is used in two places
within the program. It is used first to produce a spec-
trum of the initial driving pulse F and is used again to
calculate the inverse Fourier transform in Eq. (9). This
approach makes the program more versatile since it allows
for an arbitrary driving pulse.

A systematic numerical investigation was undertaken
with the simulator to study the evolution of the pulsed
Gaussian beam as it propagates away from the initial aper-
ture, i.e., as time (or distance) increases. Several stan-
dard sampling criteria on the window size T and the num-
ber of time samples N associated with FFT routines were
readily met with the values T = 25 fs and N = 512 sam-
ples.

Contour plots of the Gaussian pulse beam field that were
created with our simulator are shown in Fig. 4. Each plot
was generated by constructing the time signals received
at a set of radial positions in a plane perpendicular to the
propagation axis at a specified distance from the initial
aperture. There are 32 radial positions in each plot; this
was the minimum number of radial time signals needed to
produce a smooth surface plot. The total radial distance
in each plot is 7.5 gm, and the total time record is 25.0 fs.
The distances from the aperture represented by Figs. 4(a),
4(b), 4(c), and 4(d) are, respectively, 15.0, 30.0, 45.0, and
60.0 gm. Because the axial coordinate is fixed and the
wave is calculated in time, the image is reversed from
what one might expect. The form of these pictures is
analogous to what a detector array would see if it were
placed in a plane perpendicular to the axis of propagation
and sampled the pulsed beam as it went by.

The time-derivative behavior expected from rela-
tion (14) is apparent in the figures; the pulse is completely
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Fig. 4. Contour map of the pulsed Gaussian beam field as observed in the planes (a) z = 15.0 Am, (b) z = 30.0 Am, (c) z = 45.0 Am, and
(d) z = 60.0 Am. The transverse distance from the propagation axis is given along the vertical axis.

(C C

. . . . . . . . I . � . . . .

r l S l S | | Z S r a



2028 J. Opt. Soc. Am. A/Vol. 9, No. 11/November 1992

1.01.0

co 0.8
. _

c) 0.6
E
a) 0.4

Z
tI:

0.0 : 0 , � 0 , , i. . . . 1 1
-15 - -5 0 5 lo0 1 5

Time (fs)

(a)

1.0 -

c) 0.8 .

Ca 0.6 -
cm
Co
E 0.4
a)

' 0.2

a: 0.0 _

-0.2
-15 -10 -5 0 5

a)

C

a
0)

a)

a)

._

>
EC)

co

a)

0.5

0.0

-0.5 r , . .. I
-15 -10 -5 0 5 10 15

Time (fs)
(c)

1.0

0.5

0.0

-0.5

10 15 -15.0 .
-15 -10 -5 0 5 10 15

Time (fs) Time (fs)

(b) (d)

Fig. 5. Pulsed Gaussian beam's time signals along the propagation axis at distances (a) z = 0.0 Am, (b) z = 2.0 Am, (c) z = 4.0 Aum, and
(d) z = 16.0 Am. As the field propagates from the initial aperture, it evolves into a time derivative of the initial field.

in the far field in Fig. 4 (Lrad = 14.36 Am). For clearer
illustration of this behavior, the on-axis signal E(r =
0,4., z, t) is graphed versus time in Figs. 5(a), 5(b), 5(c), and
5(d) for the z locations z = 0.0, 2.0, 4.0, and 16.0 Am, re-
spectively. This sequence clearly demonstrates the evolu-
tion of the initial Gaussian pulse into its first-derivative
form as the beam propagates farther from the aperture.

The results of relation (7) for the cw beam energy and
intensity spreads at the cw frequency cw = C0rad are plot-
ted in Fig. 6. Recall that the initial waist (distance from
the core centerline to the l/e field magnitude) is 2.5 Am.
The le beam-spread curves for the intensity and energy
of the pulsed Gaussian beam obtained directly from Eq. (9)
are given (solid curves) in Figs. 7 and 8, respectively.

C

a.0)

30

20

10

0

-10
-20
-30

0 50 100 150 200
Distance (m)

Fig. 6. Intensity and energy profiles of the cw Gaussian beam
(solid curve) versus distance along the direction of propagation.
The rate of spread of the intensity and energy are identical. The
cw frequency is f = frad = 2.19 X 014 Hz, and the initial waist of
the Gaussian amplitude taper is w0 = 2.5 Am. The oblique
dashed line represents the asymptote given by relation (7).

Similarly, the l/e beam-spread curves for the intensity
and energy of the pulsed Gaussian beam predicted from
Eqs. (22') and (27') are shown in Figs. 9 and 10 (dotted-
dashed curves), respectively. They begin at z = 50.0 Am,
well into the far field. The solid curves in Figs. 9 and 10
are the beam-spread curves of the corresponding cw
Gaussian beam. Asymptotes to the numerically obtained
curves in Figs. 7 and 8 allow us to calculate accurately the
pulsed Gaussian beam-spread rates. We find from Figs. 7
and 8 the values int = 4.04° and enrg = 4.840. The pre-
dicted values are, respectively, 4.020 and 4.87°. The
agreement improves for larger distances away from the
aperture. Comparing Fig. 6 with Figs. 7-10, one sees
that the pulsed Gaussian beam diffracts more slowly than
the corresponding cw beam.

Figure 11 shows the values of the pulsed beam's maxi-
mum intensity and energy in the plane z = 200.0 m. As
indicated by a comparison of Eqs. (21) and (26), the profile
of the maximum intensity of the pulsed beam is narrower
than the corresponding beam-energy profile.

The pulsed Gaussian field measured with a one-time-
derivative receiver at z = 45.0 gm is depicted in Fig. 12.
This figure corresponds to the radiated field shown in
Fig. 4(c). The appearance of the additional amplitude
peak results from the two-time-derivative behavior ex-
hibited by relation (35). The associated measured beam-
intensity and energy spread (dotted-dashed) curves are
included, respectively, in Figs. 7 and 8. Similarly, the le
beam-spread curves for the intensity and energy profiles
of the pulsed Gaussian beam predicted from relations (42)
and (43) are shown (triple-dotted-dashed curves), respec-
tively, in Figs. 9 and 10. Comparing Figs. 6-10, one sees

-- - -- -- -- -- -- -- - -- -- -- -- -- .
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that the higher-order-derivative properties of the pulsed
Gaussian beam diffract more slowly than those associated
with the corresponding cw beam or lower-order-derivative
pulsed Gaussian beam fields. The enhancements that
would be obtained with a time-derivative measurement
system (receiver) are apparent.

6. CONCLUSIONS

The near- and far-field behaviors of a pulsed Gaussian
beam were derived analytically and were supported with
numerical simulations. In particular, expressions were
given for the rates of decay and spread of this pulsed
beam's intensity and energy. The expected translational
behavior of the beam near the initial aperture and the ex-
pected time-derivative behavior of the beam field far from
it were recovered. It was shown that the rates of decay or
spread of the intensity and energy profiles are different,
in contrast to the corresponding cw Gaussian beam case.
It was also shown that the pulsed Gaussian beam's inten-
sity profile is narrower than its energy profile. These
effects are further enhanced if the beam field is measured
with a time-derivative system. The corresponding two-
derivative beam-field expressions were derived. All the
relations agreed with the general pulsed-beam results
given in Ref. 3.

These single- and higher-order-derivative pulsed-beam
results have been confirmed with ultrasound experiments
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Fig. 7. Rates of spread of the pulsed Gaussian (PG) beam's
maximum-intensity profile for the one-time-derivative (1TD) and
two-time-derivative (2TD) systems versus distance along the di-
rection of propagation. These curves are obtained directly from
numerical simulations of the beam fields defined by Eq. (9) and
its time derivative.
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Fig. 8. Rates of spread of the pulsed Gaussian (PG) beam's
energy profile for the one-time-derivative (1TD) and two-time-
derivative (2TD) systems versus distance along the direction of
propagation. These curves are obtained directly from numerical
simulations of the beam fields defined by Eq. (9) and its time
derivative.
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Fig. 9. Maximum-intensity profile of various beams versus dis-
tance along the direction of propagation. The rate of spread in
the far field of the maximum intensity is generated with Eq. (22')
for the one-time-derivative (1TD) pulsed Gaussian (PG) beam
field and with relation (42) for the two-time-derivative (2TD)
pulsed Gaussian beam field. The solid curves represent the
beam-spread values for the corresponding cw Gaussian field with
CO)cw = Ctrad. The dashed line represents the asymptote to the
cw curve.

C/)
.0

0-

30

20

1 0

0

-10

-20
-30

0 50 100 150 200
Distance (m)

Fig. 10. Energy profile of various beams versus distance along
the direction of propagation. The rate of spread in the far field
of the energy is generated with Eq. (27') for the one-time-
derivative (1TD) pulsed Gaussian (PG) beam field and with
relation (43) for the two-time-derivative (2TD) pulsed Gaussian
beam field. The solid curves represent the beam-spread values
for the corresponding cw Gaussian field with CCW C=rad. The
dashed line represents the asymptote to the cw curve.
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Fig. 11. Intensity and energy profiles of the pulsed Gaussian
beam in the plane z = 200.0 ,m. Both profiles have been nor-
malized to unity.

in water.',"' The given results are testable experimen-
tally in the terahertz regime by using photoconductive
switch technology. Similar experimental tests may
soon be available in the petahertz regime as ultrawide-
bandwidth supercontinuum light sources are further de-
veloped. The present results indicate that care must be
exercised when pulsed beams are considered, particularly
when questions concerning the roles of intensity (point)
and energy (average) effects are raised. The differences
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Fig. 12. Contour map of the pulsed Gaussian beam field mea-
sured in the plane z = 45.0 Am with a one-time-derivative receiv-
ing (measurement) system. The transverse distance from the
propagation axis is given along the vertical axis.

between the intensity of the pulsed beam and the energy
delivered by it to a target must be taken into account
during the design and analysis of any experimental
investigation.
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