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[1] A new characterization of nonradiating (NR) sources is derived that is based on
electromagnetic potentials. In the new description a hierarchy of NR sources is
systematically created that includes certain nonlocalized NR sources having the property
that their curl is localized. The important class of spatially localized NR sources, whose
fields vanish everywhere in the exterior of the source, corresponds to a special case of the
general theory. The new NR source developments are discussed in connection with the
question of measurability of electromagnetic potentials as enabled by the Aharonov-Bohm
(A-B) effect, whereby quantum mechanical effects of the potentials can be observed in
regions of vanishing electromagnetic fields but nonvanishing electromagnetic potentials.
A necessary condition is derived for an electrodynamic A-B effect in the exterior of a
spatially localized NR source. By exploring this condition, it is concluded that for time-
varying, information-carrying fields (as required, e.g., in communications and remote
sensing applications) the required A-B conditions of vanishing fields and nonvanishing
potentials are not possible in the exterior of a NR source; i.e., electrodynamically, if the
fields vanish everywhere outside the source, then the potentials also vanish there. This
does not necessarily hold under static conditions in which nontrivial potentials with
physically observable quantum effects can exist in the exterior of a source having zero
external fields. INDEX TERMS: 0619 Electromagnetics: Electromagnetic theory; 0634

Electromagnetics: Measurement and standards; KEYWORDS: Aharonov-Bohm effect, nonradiating sources,

electromagnetic potentials
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1. Introduction

[2] In classical electromagnetic theory the electromag-
netic potentials (A, F) are introduced mainly as useful
mathematical constructs to compute the true force fields
(E, B). Only the fields are thought to be physically real.
In contrast, in quantum physics the potentials can play,
under certain circumstances, even a more fundamental
role than the corresponding fields. In fact, it is known
that an electron can be influenced in a physically
measurable way, e.g., in the form of a quantum-
mechanical wavefunction phase shift, in regions of
vanishing electromagnetic fields (E = 0, B = 0) but

nonvanishing electromagnetic potentials (A 6¼ 0, F 6¼ 0).
For example, quantum mechanics tells us that if an
electron in an electromagnetic field region is split into
two alternative trajectories, say, x1(t) and x2(t), then an
(A, F)-dependent relative phase shift [Lee et al., 1992]
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appears between the Schrödinger wavefunctions C1(r, t)
= C1

(0)(r, t)eif1(t) and C2(r, t) = C2
(0)(r, t)eif2(t) associated

with each path; C1
(0)(r, t) and C2

(0)(r, t) are reference
electron wavefunctions associated with the first and
second trajectories, respectively, in the absence of
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electromagnetic potentials (A = 0, F = 0); e is the
electron charge, h is Planck’s constant and c is the speed
of light. The phase shift in Equation (1) is physically
measurable, e.g., it can be observed by carrying out
electron interference experiments [Peshkin and Tono-
mura, 1989]. More importantly, this form of phase shift
can occur even in the extreme situation where the
electron traveling paths x1(t) and x2(t) are entirely inside
regions of vanishing electromagnetic fields and non-
vanishing electromagnetic potentials. This situation is
known to occur, e.g., in the exterior of certain static
toroidal solenoids having vanishing external magneto-
static fields but nonvanishing external magnetostatic
potentials [Carron, 1995]. Under such circumstances that
were first postulated by Aharonov and Bohm [1959] (see
Figure 1a) and later verified experimentally in electron
interference experiments [Peshkin and Tonomura, 1989],
it appears that the potentials (as opposed to the fields) are
the physically relevant electromagnetic entities. This
effect is known as the Aharonov-Bohm (A-B) effect and
applies in different forms to other fields, e.g., the
gravitational field [Harris, 1996].
[3] The A-B effect has been the subject of more than

1400 papers to date, and in recent years has been
proposed as the basis of novel devices that claim to
measure the electromagnetic vector potential A directly
[Lee et al., 1992; Gelinas, 1984]. Lee et al. [1992]

proposes the measurement of the potentials associated
with a light beam by letting the light beam suffer total
internal reflection from a crystal surface; the resulting
evanescent electromagnetic potentials that emanate from
the crystal are deduced via Equation (1) with electron
interference experiments. Gelinas [1984] proposes the
use of a superconducting Josephson junction, the
tunneling current of which can be shown to depend
(again, via Equation (1)) on the value of the vector
potential around the junction.
[4] Although a few papers have addressed the A-B

phase shift under time-varying, electrodynamic condi-
tions [see, e.g., Lee et al., 1992], most have dealt with
static versions of the effect [see, e.g., Aharonov and
Bohm, 1959]. The main focus has been on showing that,
even in the extreme case of vanishing electromagnetic
fields, one can measure quantum-mechanical effects of
nonvanishing electromagnetic potentials such as those
produced in the exterior of magnetostatic toroidal sol-
enoids, infinite solenoids, and similar field-confining
structures. Thus, the emphasis has been on showing
how in certain static situations, the electromagnetic
interaction can be mediated locally only by means of
the potentials, and not by the corresponding zero fields.
It is the enforcing of locality in the electron-electro-
magnetic field interactions that automatically forces one
to attach a special physical significance to the potentials

Figure 1. (a) Conceptual illustration of the postulated A-B conditions in the static case. A source
contained within the multiply connected source region s produces vanishing static fields but
nonvanishing static potentials outside its support s. (b) Corresponding electrodynamic picture. Are
the postulated A-B conditions (i.e., vanishing fields, nonvanishing potentials, outside s) possible
(or not) under general electrodynamic conditions?
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whenever the A-B conditions (E = 0, B = 0, A 6¼ 0, F 6¼
0) are met.
[5] However, the ideas for measuring the electromag-

netic potentials contained in works by Lee et al. [1992]
and Gelinas [1984] suggest the possibility of carrying
out such measurements by means of the A-B effect also
under time-varying conditions. From an engineering
standpoint, this immediately leads to a number of funda-
mental and practical questions. For example, from the
points of view of communications and remote sensing,
one naturally wonders whether anything fundamentally
new can be obtained by using devices that measure the
potentials, e.g., by means of the A-B effect, as opposed
to more conventional devices (antennas) that sense the
electric and magnetic field vectors. The central goal of
this paper is thus to elucidate the role of time-dependent
potentials in more general electrodynamic versions of the
A-B effect. The question raised in the electrodynamic
case is schematically illustrated in Figure 1b. Ultimately
we wish to clarify whether the potentials and the A-B
effect can (or cannot) yield anything fundamentally new
in communications and remote sensing applications with
time-varying, information-carrying electromagnetic
fields. Methodologically, we use a new nonradiating
(NR) source [Devaney and Wolf, 1973] presentation from
the point of view of electromagnetic potentials to exam-
ine the realizability of the postulated A-B conditions.

2. Nonradiating Sources and the

Aharonov-Bohm Conditions

[6] To observe the A-B effect one must create first a
source that generates vanishing fields and nonvanishing
potentials in a region of interest where the A-B experi-
ments will be carried out. Spatially localized NR sources
are essential for this purpose, particularly in the context
of communications and remote sensing applications.
These sources generate vanishing fields everywhere out-
side their region of support [Devaney and Wolf, 1973],
whether the support is simply or multiply connected. Of
particular interest for communications and remote sens-
ing applications is the possibility of observing electro-
dynamic A-B effects in the exterior of a NR source. If
this were possible, then information could be transmitted
remotely from a transmitter (or an imaging object) to a
receiver by means of the potentials even in the absence
of radiation fields.
[7] To motivate the matter further, we note that it was

Bohm himself (with Weinstein) [Bohm and Weinstein,
1948] who gave renewed impetus in 1948 to the old idea
of using NR sources to model stable particles and atoms.
Thus, Bohm knew of and contributed to the theory of NR
sources in electrodynamics. However, throughout the A-
B literature, little reference is made to NR sources or

electrodynamic conditions; and particular attention is
given to magnetostatic situations.
[8] Here we use a general NR source formalism to

show that quantum-mechanical effects of the potentials
in the exterior of a spatially localized NR source can
arise only if a certain static condition is met. Only then
may a special physical significance be attributed to the
potentials in the sense originally intended by Aharonov
and Bohm [1959]. In contrast, time-varying effects of
NR potentials in the exterior of a NR source are simply
not possible. Thus, the possibility is ruled out of using
the A-B effect for new, secure communications or object
interrogation with vanishing fields and nonvanishing
potentials. For example, A-B experiments with time-
varying fields of the type described by Lee et al.
[1992] and Gelinas [1984] simply do not convey electro-
dynamically additional information that is not already
available from the corresponding field measurements.

3. Nonradiating Sources and Their

Potentials

[9] Current distributions that do not radiate (NR sour-
ces) [Devaney and Wolf, 1973] have received attention
since the early days of electromagnetic theory, partic-
ularly in connection with models of atoms and electrons
and with questions of the electromagnetic self-force and
radiation-reaction [see Goedecke, 1964, and references
therein]. These NR sources have also received attention
in the inversion disciplines where they arise naturally as
members of the null space of the mapping from the
source (scatterer) to the field [Bleistein and Cohen,
1977]. Various tools such as multipole expansions, Four-
ier and Radon transforms, and Green function techniques
[Devaney and Wolf, 1973; Bleistein and Cohen, 1977;
Marengo et al., 1999; Marengo and Ziolkowski, 1999]
have been employed to characterize NR sources. Here
we derive a new alternative description, based on electro-
magnetic potentials.
[10] We consider a hierarchy of NR current distributions

which encompasses classes of NR sources not considered
before, including certain nonlocalized NR current distri-
butions. The latter class of NR sources is of interest in
extended particle models (e.g., an extended NR electron
cloud [Bohm and Weinstein, 1948]). A fundamental phys-
ical application that has been suggested from time to time
[Devaney and Wolf, 1973; Bohm and Weinstein, 1948;
Goedecke, 1964] is to create extended atom models with
stable atomic states corresponding to NR source modes.
[11] We consider first longitudinal current distribu-

tions. They form the simplest class of NR sources. Later
we describe the more general class of NR current
distributions with localized curl that encompasses the
special cases of transverse NR current distributions with
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localized curl and localized NR current distributions. The
developed classification leads to interesting new rela-
tions for the fields, the potentials and the transverse and
longitudinal components of a source that lend themselves
to isolating the role of the potentials for the objectives of
the present study.
[12] Henceforth we shall employ the usual relations for

the electromagnetic fields and potentials in the Coulomb
gauge as given, e.g., by Jackson [1975]. We summarize
these relations for the reader’s convenience in Appendix
A of this paper. Note that, in the Coulomb gauge, the
vector potential is transverse, i.e., A(r) = AT(r). Hence
we shall refer to A(r) as the transverse vector potential.

3.1. Longitudinal Current Distributions

[13] It follows from Equations (A5), (A7), and (A8) in
Appendix A of this paper that, for a longitudinal current
distribution JL(r), the transverse vector potential A(r) = 0
so that the magnetic field H(r) = 0. Since there is no
magnetic field, a longitudinal current distribution gen-
erates no radiation fields. The quasi-static electric field is
related to the scalar potential F(r) and to JL(r) via

E rð Þ ¼ �rF rð Þ ¼ 4p
iw
JL rð Þ: ð2Þ

3.2. Nonradiating Current Distributions With
Localized Curl

[14] We consider next the class of NR current distri-
butions that have a localized curl. First we show that the
magnetic field produced by the most general NR current
distribution whose curl is localized within a certain
simply or multiply connected region s (such that r 	
J(r) = 0 for r =2 s) must vanish everywhere outside s.
Second, we consider the electric field and the transverse
vector potential of a special type of NR current
distributions with localized curl: transverse ones. Finally
we complete our description of the fields and potentials
associated with the most general NR current distribution
with localized curl by combining the results correspond-
ing to the longitudinal and transverse cases.
[15] Consider a NR current distribution J(r) whose

curl is localized within a certain region s. It follows from
Equation (A1) that

r2 þ k2
� �

HðrÞ ¼ �4p
c
r	 J rð Þ ð3Þ

so that when r 	 J(r) is localized

r2 þ k2
� �

H rð Þ ¼ 0 if r =2 s: ð4Þ

Now we note that, since we require J(r) to be NR, its
magnetic field H(r) must decay faster than 1/r outside of
s. It follows immediately from Equation (4) and a

theorem on solutions of the homogeneous Helmholtz
equation that decay sufficiently rapidly at infinity [see
Müller, 1969, pp. 87–88] that the magnetic field H(r),
produced by a NR current distribution J(r) whose curl is
localized within s, will vanish everywhere outside s, i.e.,

H rð Þ ¼ 0 if r =2 s: ð5Þ

[16] If the NR current is longitudinal (so that s is the
empty set), the connection between the fields, potentials,
and currents remains the same as in Section 3.1. On the
other hand, if the NR current distribution is transverse
and has a localized curl, it follows from Equation (5) and
the fourth of Equation (A1) that the electric field

E rð Þ ¼ 4p
iw
JT rð Þ if r =2 s: ð6Þ

By substituting from Equation (6) into Equation (A7),
one then obtains the desired connection between the
transverse vector potential and the NR transverse current:

A rð Þ ¼ �4pc
w2

JT rð Þ if r =2 s: ð7Þ

[17] We can now combine the longitudinal and trans-
verse current results to describe the most general NR
current distribution with localized curl. In particular, we
note by superposition that the longitudinal and transverse
parts can be treated separately, and their fields can be
superposed to evaluate the total fields. By means of this
procedure, the total electric and magnetic fields and
transverse vector potential generated by a NR current
distribution J(r) whose curl is localized within s are
found from Equations (2, 5, 6, 7) to be

E rð Þ ¼ �rF rð Þ þ 4p
iw
JT ðrÞ ¼

4p
iw

JL rð Þ þ JT rð Þ½ �

¼ 4p
iw
J rð Þ if r =2s; ð8Þ

H rð Þ ¼ 0 if r =2 s; ð9Þ

and

A rð Þ ¼ �4pc
w2

JT rð Þ if r =2s ð10Þ

outside of the curl’s region of localization s. Next we
apply these relations to the important special case of a
localized NR current distribution.

3.3. Localized Nonradiating Current Distributions

[18] Although it is actually a special case of the NR
current distributions considered in Section 3.2, the local-
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ized NR current distribution is considered separately
because of its importance in practical applications. In
this case, J(r) = 0 if r =2 s (where, again, s can be simply
or multiply connected) so that from Equations (8) and (9)
the electric and magnetic fields vanish outside of the
support of the current, i.e.,

E rð Þ ¼ 0; H rð Þ ¼ 0; if r =2 s: ð11Þ

This result was derived first by Devaney and Wolf
[1973]. It establishes the vanishing of the electromag-
netic field produced by a localized NR current distribu-
tion outside its region of localization.

4. Nonradiating Gauge and the

Aharonov-Bohm Effect

[19] The question of interest now arises: ‘‘Is there a
gauge choice for which the external scalar and vector
potentials produced by a localized NR source vanish?’’,
or, in contrast, ‘‘Can the potentials influence the physics
outside of a NR source region?’’. Aharonov and Bohm
taught us to be especially careful when addressing these

questions. For this purpose, we consider next two distinct
possibilities.

4.1. A Communication Scenario

[20] Figure 2 illustrates schematically the first possi-
bility. We picture a transmitting station T consisting of a
hypothetical time-varying NR source that generates van-
ishing external fields and nonvanishing external poten-
tials, along with a receiving station R consisting of a
potential-measuring device based on the A-B effect. The
question of interest is whether the receiving station R can
(or cannot) acquire signals contained in the potentials
produced by the NR source at the transmitting station T.
It turns out (we shall show this in Section 4.2) that this
question can be addressed in the usual way, i.e., by
asking whether a gauge transformation of the form (refer
to Equations (A1, A5, A6, A7))

F
0 rð Þ ¼ F rð Þ þ i

w
c
c rð Þ ¼ 0

A0 rð Þ ¼ A rð Þ þ rc rð Þ ¼ 0
ð12Þ

exists that suppresses the potentials. The answer to the
latter question is found to be ‘‘Yes’’, i.e., a NR gauge
exists that eliminates the potentials. In particular, for a

Figure 2. Hypothetical secure communications by NR potentials. The transmitting station T
consists of a NR source that generates vanishing external fields but nontrivial potential signals in
the direction of a remote receiving station R. The receiving station uses an A-B effect apparatus to
detect the transmitted potential signals.
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localized NR source, the choice F
0 = 0 for the scalar

potential in Equation (12) yields from Equations (A3,10)

A0ðrÞ ¼ A rð Þ þ i
c

w
rF rð Þ

¼ �4pc
w2

JT rð Þ þ JL rð Þ½ � ¼ 0 if r=2s: ð13Þ

In this NR gauge, both potentials A0(r) and F0(r) are thus
seen to vanish everywhere outside the NR source region.
[21] Note that in this context the localized NR

source is very unique because of the particular form
of the associated transverse vector potential A(r) in
Equation (10). This feature of the NR source played a
key role in the above cancellation of the associated
external potentials. In contrast, for a localized radiating
source, H(r) = r 	 A(r) 6¼ 0 outside the source’s
support. Consequently, A(r) cannot be of the form
Equation (10) for a radiating source (recall that r 	
JT (r) = 0 if r =2 s).
[22] Summarizing, the above result, Equations (12,13),

rules out any possibility of using the strategy illustrated
in Figure 2 for new secure communications by NR
potentials. This conclusion will become more evident
after investigating next the more general remote sensing
scenario depicted in Figure 3.

4.2. A Remote Sensing Scenario

[23] Figure 3 depicts a yet more tricky scenario. Here
one considers the same NR source as shown in Figure 2.

However, unlike the situation in Figure 2, the electron
path integrals are now allowed to ‘‘chain’’ the NR
source. Thus they can cross potentially nonzero magnetic
fluxes created in the interior of the NR source. The
question of practical interest is whether one can extract
NR source information contained in the source’s internal
magnetic fluxes by measuring the perhaps nontrivial,
external NR potentials.
[24] To address this problem, one is forced to consider

the path integrals (co-chains) that determine the electron
phase shift associated with the A-B effect [Lee et al.,
1992; Peshkin and Tonomura, 1989; Carron, 1995;

Figure 3. Hypothetical remote sensing by NR potentials. Information about a NR source is
extracted by measuring the A-B phase shift associated with split electron paths around the NR
source.

Figure 4. Schematization of the relevant A-B path
integral and magnetic internal flux for the NR source in
Figure 3. The figure suggests a toroidal-like NR source
to ease comprehension, but the general considerations
apply to the most general localized NR source.
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Aharonov and Bohm, 1959]. It is not hard to show from
Equation (1) that for A-B experiments in the exterior of a
spatially localized NR source, the A-B phase shift is
determined by the closed-path integral

H
C dx � A(x, t)

where C is a path that surrounds the NR source. The

other, F-path integral, vanishes identically for electron
paths in the exterior of a NR source. We note from
Equations (A1, A5, A7) that, in general, if C is an A-B
path that surrounds (with no loss of generality) only one
NR source and Si is an interior surface of that NR source

Figure 5. Schematization of the geometrical relations between the NR source support s, a simply
connected region s0 completely enclosing the NR source support, and the path integrals for the
communications and remote sensing examples in Figures 2 and 3, respectively. (a) Communica-
tions scenario. The path does not penetrate the simply connected domain s0 enclosing the NR
source support s. There are no net magnetic fluxes enclosed by the A-B path shown; therefore, no
A-B effect is measured. (b) Remote sensing scenario. In this case the path must necessarily
penetrate a simply connected domain s0 enclosing the NR source support s. Thus the path can
enclose internal magnetic fluxes inside the NR source as shown in Figure 4. These fluxes are
responsible for the A-B phase shift.
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through which one can measure the total magnetic flux
Ci(t), where Ci = @Si is the boundary of that interior
surface, then the path integralI

C

dx � E x; tð Þ ¼
I
Ci

dx � E x; tð Þ ¼ �@

@t

Z
Si

dS � B x; tð Þ

¼ �@

@t
Ci tð Þ ¼ �1

c

@

@t

I
Ci

dx � A x; tð Þ:

ð14Þ

This connects the electric field co-chain directly with the
time derivative of the corresponding NR source vector
potential co-chain. Since the fields vanish everywhere
outside the NR source, the enclosed magnetic flux is
contributed only by the internal fluxes inside the source.
Figures 3 and 4 illustrate schematically the relevant A-B
path and its associated enclosed magnetic flux Ci.
[25] For a NR source, E(r, t) = 0 everywhere outside

the source support for all times t. Then for any path taken
outside a NR source, expression (14) reduces to the
fundamental result

I
Ci

dx � A x; tð Þ ¼ Ci tð Þ ¼ constant; ð15Þ

i.e., the co-chain of the NR source vector potential must
be a constant for all time. This ‘‘static’’ condition is
necessary and applies to the most general, time-varying,
localized NR source. In particular, note that if the co-
chain value is zero at t = 0 as it would be for the general
electrodynamic case, i.e., for those cases that can vary
with time, then it will be zero for all time. It is only for a
static NR source that this co-chain value can be nonzero
for t = 0, hence, for all time. Thus, only for static NR
fields, i.e., those that cannot vary with time, the total
internal fluxes available for the relevant noninvasive A-B
experiments can be nonzero constants.
[26] The fundamental result Equation (15), therefore,

tells us that it is not possible to measure time-dependent,
information-carrying aspects of the external NR poten-
tials. Consequently, no electrodynamic information about
the source can be detected in the external potentials.
[27] The triviality of the NR potentials described by

Equations (12, 13) is now evident in the usual A-B
terms. In particular, we note that the formulation leading
to Equations (12,13) implicitly assumes that the mag-
netic flux crossing the A-B electron paths is exactly zero.
Such paths do not ‘‘invade’’ the vicinity of the source
region (see Figure 5a). Now, since the fields vanish
everywhere outside the NR source, it follows at once
that the relevant A-B magnetic fluxes are zero for the
situation in Figure 5a. This situation is also perfectly
addressed locally, i.e., in differential form, by enforcing
r 	 A(r) = H(r) = 0 for r =2 s, as we required, in fact, in
the formulation leading to Equations (12, 13).

[28] On the other hand, the situation depicted in
Figures 3, 4 and 5b shows that for the remote sensing
application the A-B path essentially ‘‘enters’’ a simply
connected region s0 enclosing the NR source support s.
In this case, the A-B measurements can involve internal
fluxes of the NR source. Therefore, care must be
exercised in evaluating the possible physical significance
of the potentials as has been known since the time of
Aharonov and Bohm’s [1959] original paper. In this case
the approach employed in connection with Equations
(12,13) is incomplete. Instead, one must investigate the
A-B path integrals. By using this general approach, the
possibility of observing quantum-mechanical effects of
the potentials was found in the present paper (see the
discussion in Equation (15)) to be very limited. In
particular, only static effects were found to be potentially
measurable. One concludes that the A-B effect cannot be
used for communications or imaging applications, both
of which require dynamic information.
[29] Finally, a connection is worth making to a paper

[Afanasiev and Stepanovsky, 1995] that presents the
opposite view. Afanasiev and Stepanovsky [1995] pro-
vides a number of examples of time-dependent NR
sources with supposedly nonvanishing external poten-
tials. The NR sources in Afanasiev and Stepanovsky
[1995] are infinitesimally small, and are confined to
the origin. They do not involve multiply connected
regions and, therefore, cannot induce A-B effects. In
other words, the question of measurability of potentials
associated with such sources can be addressed directly
with the gauge transformation approach presented in
Equations (12,13). After some manipulations, one finds
that the external potentials of the examples of Afanasiev
and Stepanovsky [1995] vanish trivially with the NR
gauge transformation in Equations (12,13). Finally, the
authors of that study argue that perhaps the finite
counterparts of their infinitesimal NR sources can exhibit
time-dependent A-B effects. However, this contradicts
the necessary static condition derived here, Equation
(15). This result establishes in the most general case that
A-B effects associated with NR potentials are possible
only in static situations.

5. Conclusions

[30] In this paper, we presented a new description of
NR current distributions from the point of view of
electromagnetic potentials. We considered first certain
nonlocalized NR current distributions. We then special-
ized the general results to localized NR current distribu-
tions. In the process, we arrived at an interesting
hierarchy of NR current distributions.
[31] The general NR source results presented here are

relevant to studies and patents addressing the question of
(quantum) measurability of electromagnetic potentials
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[Lee et al., 1992; Gelinas, 1984]. These results conclu-
sively show that electrodynamically not only the fields
but also the associated potentials are unobservable every-
where in the exterior of a spatially localized NR source.
On the other hand, if the source does radiate, then not
only the potentials but also the fields are necessarily
nonzero. However, since the electrodynamic fields and
potentials can both be expressed in terms of the other, it is
obviously questionable whether any device, be it quan-
tum-mechanical or classical, that claims to measure the
electromagnetic potentials can actually do so. It follows
that in the electrodynamic case encountered, e.g., in
communications and imaging systems, measurements of
the potentials automatically also measure the fields, and
vice versa. We arrive at the fundamental conclusion that
only under the static condition derived in this paper,
Equation (15), as encountered in the vast majority of A-
B experiments [Peshkin and Tonomura, 1989], can the
potentials possess a measurable physical significance in
the exterior of a spatially localized NR source.

Appendix A: Review

[32] In Gaussian system of units, the Maxwell equa-
tions in free space reduce, under time-harmonic condi-
tions, to [Jackson, 1975]

r � E rð Þ ¼ 4pr rð Þ
r �H rð Þ ¼ 0

r	 E rð Þ ¼ i
w
c
H rð Þ

r 	H rð Þ ¼ 4p
c
J rð Þ � i

w
c
E rð Þ:

ðA1Þ

In Equation (A1), E(r) and H(r) are, respectively, the
space-dependent parts of the time-harmonic electric
and magnetic fields E(r, t) = <{E(r)e�iwt} and H(r, t)
= <{H(r)e�iwt}, where < denotes the real part, r and t
denote the position and time, respectively, and w is the
angular frequency of oscillation. In addition, c is the
speed of wave propagation. The terms r(r) = r � J(r)/
(iw) and J(r) are, respectively, the space-dependent
parts of the time-harmonic charge and current
distributions r(r, t) = <{r(r)e�iwt} and J(r, t) =
<{J(r)e�iwt}. The source J(r) can be written as [Van
Bladel, 1993]

J rð Þ ¼ JL rð Þ þ JT rð Þ ðA2Þ

where JL(r) and JT(r) are, respectively, the long-
itudinal and transverse parts of J(r). They are given,
respectively, by the curl-free and divergence-free
components

JL rð Þ ¼ �i
w
4prF rð Þ

JT rð Þ ¼ r 	W rð Þ
ðA3Þ

where

F rð Þ ¼ � i
w
R
d3r0

r�J r0ð Þ
r�r0j j

W rð Þ ¼ 1
4p

R
d3r0

r	J r0ð Þ
r�r0j j :

ðA4Þ

[33] By means of the usual procedure, next we write

H rð Þ ¼ r 	 A rð Þ ðA5Þ

where in the Coulomb gauge

r � A rð Þ ¼ 0: ðA6Þ

Then, the Coulomb gauge vector potential is transverse,
i.e., A(r) = AT (r).
[34] It is not hard to show from Equations (A1), (A2),

(A3), (A5), and (A6) that the electric field is given by

E rð Þ ¼ 4p
iw
JL rð Þ þ iw

c
A rð Þ ¼ �rF rð Þ þ iw

c
A rð Þ ðA7Þ

where the transverse vector potential A(r) is related to
the transverse part of the current distribution, JT (r), by

A rð Þ ¼ 1

c

Z
d3r0JT r0ð Þe

ik r�r0j j

r� r0j j
: ðA8Þ
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