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Abstract. The use of regularity constraints in formulating the scalar inverse source problem
(ISP) is investigated. Two kinds of regularity constraints are considered: compact supportness
in a given source region, and normal differentiability on the boundary of that region. Normal
solutions (minimumL2 norm solutions) to the ISP for square-integrable(L2) scalar sources
with and without the above-mentioned regularity constraints are derived and compared. The
(generally nontrivial) nonradiating parts of the corresponding normal solutions are evaluated.
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1. Introduction

A problem of considerable interest for the object
reconstruction branches of the wave disciplines (such as
optics and acoustics) is the so-called inverse source problem
(ISP) [1–3]. In its usual form, the ISP consists of deducing
a source of known support, sayD, from knowledge of
its generated field outsideD. Different aspects of this
problem have been investigated by Müller [4], Moses [5,6],
Friedlander [7], Bleistein and Cohen [1], Hoenders [8],
Devaney [9], Devaney and Porter [2, 3], LaHaie [10, 11],
Carter and Wolf [12], Wolf [13], Bertero [14], Marengo
and Devaney [15] and Marengoet al [16, 17]. Attention
has been given to both the scalar and electromagnetic cases,
for both deterministic and random sources. The focus has
been on the fundamental nonuniqueness question [18] and
a priori constraints that may render the ISP unique. The
latter include the constraint of minimizing the solution’s
L2 norm, which has lead to the so-called minimum energy
solutions [2, 3]. Applications include inverse scattering-
based surveys [18–21], holographic imaging [2, 3, 22] and
antenna design [4]. The time-dependent ISP with far-field
data has also received attention recently as an analogue of
the limited-view Radon inversion problem that arises in the
formalism of computerized tomography [16].

This work is concerned with the ISP for deterministic
square-integrable(L2) scalar sourcesρ contained within a
spherical volumeV = {r ∈ R3|r 6 a} of radiusa, with
centre at the coordinate origin. The focus is on the use of
a priori regularity (smoothness) constraints in formulating
the ISP. The formulation is based on the inhomogeneous

Helmholtz equation

(∇2 + k2)ψ(r) = −4πρ(r) (1)

in three-dimensional space. The fieldψ(r) generated by a
sourceρ(r) is then given by the familiar outgoing Green
function integral

ψ(r) =
∫

d3r ′ρ(r′)
eik|r−r′|

|r − r′| . (2)

We review first the ISP for generalL2(V ) sources, and
examine later the ISP forL2(V ) sources with additional
regularity constraints. We are particularly interested in
L2(V ) sourcesρ that possesscompact supportin the source
volume V , for which ρ(r) = 0 on the boundary∂V =
{r ∈ R3|r = a} of V . We shall also consider the more
regular class ofL2(V ) sources of compact supportV whose
normal derivatives also vanish on the boundary∂V ofV . The
results presented in this paper provide, to our knowledge, the
first investigation of ISPs with such regularity constraints.
Extension to yet more regular classes of sources, although not
to be considered here, follows lines similar to those provided
here for the cases above.

A unique solution to the usual ISP for general
L2(V ) sources, without additional constraints, cannot be
obtained due to the presence of nontrivial nonradiating (NR)
sources [1,7,23] localized within the source volumeV .
In particular, the field produced by a localized NR source
vanishes outside the source’s support. It then follows that,
without additional pieces of information about the field
and/or the source, the NR source components of a source
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cannot be deduced from knowledge of its exterior field.
The usual ISP admits a unique solution if one imposes the
additional constraint of minimizing the source’sL2 norm.
The solution in question is the usual minimum energy
solution [2,3], also known as ‘the normal solution’ in linear
inversion language [14]. Physical interpretations of these
normal solutions have been given in [2, 3, 22] in the context
of generalized holography.

Normal solutions to the usual ISP are orthogonal to all
L2 NR sources confined within the source region, i.e., they
lack a NR part [2, 3]. It is shown in this paper that, in
contrast, by imposing additional regularity constraints to the
usual ISP, one can actually extract NR source components
of the unknown source. In particular, we derive expressions
for the normal solutions corresponding to ISPs with regularity
constraints, along with their (generally nontrivial) NR source
contributions. We thus examine a means of extracting NR
source components of an unknown radiating (or scattering)
object that is knowna priori to be reasonably well behaved in
a sense specified by given regularity constraints. We then also
illustrate the use ofa priori information in formulating the
ISP. The latter question had been investigated, for other forms
of a priori information, by Moses [5, 6] and Bleistein and
Cohen [1]. In addition, the present analysis also corroborates,
for the special case ofL2 sources contained in the spherical
volumeV , a recent result derived in [17] which states that
anyL2 source of compact support having vanishing normal
derivatives on the boundary of its support must possess a NR
part. The general theory, based on spherical harmonics and
Bessel functions, is illustrated with a spherically symmetric
source example.

2. The inverse source problem for L2(V ) sources

In this section, we formulate, by means of a general linear
inversion formulation, the ISP forL2 sourcesρ of support
V = {r ∈ R3|r 6 a} (such thatρ(r) = 0 if r > a).
The general approach developed in this section will be
specialized in section 3 toL2(V )sources with various degrees
of regularity on the boundary∂V = {r ∈ R3|r = a} of the
source volumeV . In the present section, we also consider
the unique decomposition of a source into its radiating and
NR parts in the Hilbert spaceX of L2(V ) sources with the
defined inner product

(ρ, ρ ′)X =
∫
V

d3rρ∗(r)ρ ′(r) (3)

where ∗ denotes the complex conjugate. The general
source decomposition results developed here will find use
in section 4 in connection with a spherically symmetric
source example. We will then illustrate how the NR source
components become, in general, increasingly noticeable
as one imposes stricter source regularity properties. In
particular, it will be shown that normal solutions to ISPs
with regularity constraints contain, in general, NR source
components in the Hilbert spaceX.

It is well known [24] that forr > a the fieldψ(r)
radiated by a sourceρ ∈ X can be expressed in the multipole

expansion form

ψ(r) = ik
∞∑
l=0

l∑
m=−l

gl,mh
(1)
l (kr)Yl,m(r̂) (4)

wherer̂ ≡ r/r, h(1)l (·) is the spherical Hankel function of
the first kind and orderl (as defined in [24], p 740), and
Yl,m(·) is the spherical harmonic of degreel and orderm (as
defined in [24], p 99). The expansion coefficientsgl,m in
equation (4) are the multipole moments and are defined by
the inner products

gl,m = (ψl,m, ρ)X (5)

where

ψl,m(r) = 4πH(a − r)jl(kr)Yl,m(r̂)
l = 0, 1, . . . ; m = −l,−l + 1, . . . , l

(6)

wherejl(·) is the spherical Bessel function of the first kind
and orderl (as defined in [24], p 740) andH(·) is Heaviside’s
unit step function.

The field forr > a defined by equation (4) is uniquely
determined by the multipole moments. Because of this, in the
following we formulate the ISP of deducing theL2(V ) source
with minimumL2 norm that is consistent with a given data
vectorg = {gl,m} having entriesgl,m. We assume the latter to
be square-summable so that

∑∞
l=0

∑l
m=−l |gl,m|2 < ∞. We

also define the discrete Hilbert spaceY of all such square-
summable data vectors and assign to it the inner product

(g, g′)Y =
∞∑
l=0

l∑
m=−l

g∗l,mg
′
l,m. (7)

To address the ISP in this framework, we define, by using
equation (5), the linear source-to-data vector mapping

Pρ = g (8)

which assigns to each sourceρ ∈ X a data vectorg ∈ Y
according to the rule

(Pρ)l,m = (ψl,m, ρ)X. (9)

The class ofL2 NR sources of supportV is exactly the null
spaceN(P ) of the linear mappingP [1,23].

In the following, we shall assume the field forr > a and,
in particular, its corresponding data vectorg, to be realizable
from L2(V ) sources. In mathematical language, we require
the data vectorg to be in the range of the linear source-to-data
vector mapping associated with the source spaceL2(V ). The
range in question has been defined explicitly in [17] by using
the so-called Picard conditions [14] that apply to this ISP. In
particular, the rangeR(P ) of P consists of the data vectors
g that obey the necessary and sufficient condition

∞∑
l=0

l∑
m=−l
|gl,m|2/σ 2

l <∞ (10)

where

σ 2
l ≡ (4π)2

∫ a

0
drr2j2

l (kr)

= 8π2a3[j2
l (ka)− jl−1(ka)jl+1(ka)]. (11)
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Under this condition, the normal solution to the ISP,
corresponding to the unique sourceρ̂ of minimumL2 norm
(minimum energy) associated with a given data vectorg, is
defined by the pseudoinverse ofP and is given by [14]

ρ̂ = P †(PP †)−1g (12)

whereP † is the adjoint of the linear mappingP , defined by

(Pρ, g)Y = (ρ, P †g)X. (13)

The latter is found from equations (3), (7), (9), (13) to be
given by

(P †g)(r) =
∞∑
l=0

l∑
m=−l

gl,mψl,m(r). (14)

It is not hard to show by using equations (6), (9), (11),
(12), (14) and the orthogonality property of the spherical
harmonics that

ρ̂(r) =
∞∑
l=0

l∑
m=−l

gl,mψl,m(r)/σ
2
l

= 4πH(a − r)
∞∑
l=0

l∑
m=−l

gl,mjl(kr)Yl,m(r̂)/σ
2
l . (15)

The normal solutionρ̂ given by equation (15) consists
of a source-free multipole expansion, over the truncated
spherical wavefunctionsψl,m, with multipole moments
gl,m/σ

2
l . Expression (15) can be shown to be in the form of the

usual singular system representation of the normal solution
associated with the linear mappingP [1, 14]. The termsσ 2

l

are known to decay exponentially fast forl > ka, confirming
the ill-posed nature of the ISP [14].

The ISP results presented above can be used to uniquely
decompose a sourceρ in the Hilbert spaceX into its radiating
and NR source components. In particular, it is a well-
established fact [2, 3, 14] that any sourceρ ∈ X can be
uniquely decomposed into the sumρ = ρ̂ + ρNR of a
radiating and a NR part,̂ρ andρNR respectively, wherêρ(r)
is exactly the normal solution in equation (15) corresponding
to the data vector produced by the givenρ. The normal
solution to the ISP formulated above, in which we imposed
no regularity constraints, thus lacks a NR part in the Hilbert
spaceX. In section 3, we will depict a different scenario
for ISPs with regularity constraints. We will show then that
normal solutions to such ISPs do contain, in general, NR
source components in the Hilbert spaceX. We will also
illustrate an interesting result derived in [17] which states that
anyL2 source of compact support having vanishing normal
derivatives on the boundary of its support must possess a NR
part.

3. The inverse source problem for L2(V ) sources
with regularity constraints

In this section, we considerL2 sourcesρ that are compactly
supported in the spherical volumeV = {r ∈ R3|r 6 a}
(such thatρ(r) = 0 if r > a). Any such source must admit
a representation of the form

ρ(r) =
∞∑
L=0

L∑
M=−L

qL,M(r)YL,M(r̂) (16)

where qL,M(r) is an r-dependent function that can be
expanded in the Fourier–Bessel series form

qL,M(r) =
∞∑
n=0

a(n, L,M; v)ρn;v(r) (17)

where

ρn;v(r) =
√

2/a3

|jv+1(βv,n)|H(a − r)jv(βv,nr/a) (18)

wherev is an arbitrary non-negative integer. The parameters
βv,n in equation (18) are consecutive zeros of the spherical
Bessel functionjv(·), i.e.jv(βv,n) = 0,n = 0, 1, 2, . . . . The
functionsρn;v(r) are orthonormal overV . The expansion
coefficientsa(n, L,M; v) associated with a givenqL,M(r)
are then

a(n, L,M; v) = (ρn;v, qL,M)X. (19)

In deriving these results we have made use of the
completeness and orthogonality of the spherical harmonics
YL,M(·)over the unit sphere, the completeness of the spherical
Bessel functionsjv(βv,nr/a) for fixed non-negative integer
v and variable indexn over the interval [0, a] for functions
that vanish atr = a (see equation (11.51) of [25]), and the
orthogonality property of the set of ordinary Bessel functions
Jv(βv,nr/a) for fixed non-negative integerv and variable
indexn in ther-interval [0, a] (see equation (11.168) of [25]).

Now, the non-negative integerv in equations (16)–
(19) is arbitrary. For our purposes, the particular choice
v = L > 0 will prove to be especially useful. With this
choice, expressions (17)–(19) become

qL,M(r) =
∞∑
n=0

a(n, L,M;L)ρn;L(r) (20)

where

ρn;L(r) =
√

2/a3

|jL+1(βL,n)|H(a − r)jL(βL,nr/a) (21)

and
a(n, L,M;L) = (ρn;L, qL,M)X. (22)

The above results will enable us to formulate the ISP for
L2 sources that possess compact support in the source volume
V by means of a linear inversion formalism analogous to that
employed in section 2 for generalL2(V ) sources. In the
following, we shall denote asL(0)2 (V ) ⊂ L2(V ) the class
of L2 sources that are compactly supported inV . From the
general results of section 2 and equations (16), (20)–(22), the
ISP forL(0)2 (V ) sources can be shown to reduce to finding the
source expansion coefficientsa(n, L,M;L) from knowledge
of the multipole momentsgl,m of the source’s exterior field.
The relevant linear source expansion vector-to-data vector
mapping is determined by substituting from equations (16),
(20)–(22) into (5), (6). With these observations, we proceed
next to evaluate the normal solution to the ISP investigated
here (with the additional compact supportness constraint).

By analogy with the procedure employed in section 2
for generalL2(V ) sources, we introduce the discrete Hilbert
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spaceU of source expansion vectorsa = {a(n, L,M;L)}
that are square-summable so that

∞∑
n=0

∞∑
L=0

L∑
M=−L

|a(n, L,M;L)|2 =
∫
V

d3r|ρ(r)|2 <∞,
(23)

and assign to it the inner product

(a,a′)U =
∞∑
n=0

∞∑
L=0

L∑
M=−L

a∗(n, L,M;L)a′(n, L,M;L).
(24)

We also recall here the definition, given in connection with
equation (7), of the discrete Hilbert spaceY of square-
summable data vectorsg having multipole moment entries
gl,m. With these Hilbert space definitions, we introduce next,
also by analogy with the procedure employed in section 2,
the linear source expansion vector-to-data vector mapping

Pa = g (25)

which assigns to each source expansion vectora ∈ U a data
vectorg ∈ Y according to the rule

(Pa)l,m =
∞∑
n=0

∞∑
L=0

L∑
M=−L

a(n, L,M;L)(ψl,m, ρn;LYL,M)X.
(26)

Now, because of the orthogonality of the spherical harmonics,

(ψl,m, ρn;LYL,M)X = δl,Lδm,Mαl,n (27)

whereδ·,· denotes the Kronecker delta and

αl,n ≡ 4π
√

2/a3

|jl+1(βl,n)|
∫ a

0
drr2jl(kr)jl(βl,nr/a)

= 2
√

2π2a−1(βl,n/k)
1/2

|jl+1(βl,n)|[k2 − (βl,n/a)2]
Jl+1/2(ka)J

′
l+1/2(βl,n) (28)

whereJl(x) =
√

2x/πjl−1/2(x) andJ ′l (x) = d
dx Jl(x), if ka

is not a zero ofjl(·), and

αl,n =
√

2/a3

4π |jl+1(βl,n′)|σ
2
l δn,n′ , (29)

with σ 2
l given by equation (11), ifka is then′th zero ofjl(·).

In evaluating the integral definingαl,n in equation (28), we
have made use of the first Lommel integral (see [25], p 594).
By substituting from equation (27) into (26) one obtains

(Pa)l,m =
∞∑
n=0

a(n, l,m; l)αl,n. (30)

We also introduce the adjointP† of the linear mapping
P. By using (Pa, g)Y = (a,P†g)U , one obtains from
equations (7), (24), (28)–(30) the result

(P†g)(n, L,M;L) = gL,MαL,n. (31)

We can now derive an expression for the sourceρ̂(0)

of minimum L2 norm, among allL2 sources that possess
compact support in the source volumeV , whose generated
field coincides with a given data field forr > a. In particular,

the source expansion vectorâ corresponding to the normal
solutionρ̂(0) is defined by the pseudoinverse ofP:

â(n, L,M;L) = P†(PP†)−1g. (32)

The linear operatorPP† : Y → Y is found from
equations (30), (31) to be defined by

(PP†g)l,m = gl,m
∞∑
n=0

α2
l,n. (33)

It then follows that

[(PP†)−1g]l,m = gl,m
[ ∞∑
n=0

α2
l,n

]−1

. (34)

By using equations (31), (32), (34) one obtains the result

â(n, L,M;L) = gL,MαL,n
[ ∞∑
n′=0

α2
L,n′

]−1

. (35)

The normal solution̂ρ(0) corresponding to a given data vector
g can be expressed directly in the configuration space by using
equations (16), (20)–(22). One obtains

ρ̂(0)(r) =
∞∑
n=0

∞∑
L=0

L∑
M=−L

â(n, L,M;L)ρn;L(r)YL,M(r̂)

=
√

2/a3H(a − r)
∞∑
n=0

∞∑
L=0

L∑
M=−L

gL,MαL,n

×
[
|jL+1(βL,n)|

∞∑
n′=0

α2
L,n′

]−1

jL(βL,nr/a)YL,M(r̂).

(36)
It is not hard to see that wheneverka is a zero of the

spherical Bessel functionjl(·), expression (36) withαl,n
given by equation (29) reduces to the normal solution in
equation (15) corresponding to the ISP without regularity
constraints. This is to be expected since then, the (generally
nonregular) normal solution in equation (15) is, by itself,
compactly supported (regular) in the source regionV .
The effect of the additional compact supportness constraint
addressed in this section becomes visible, however, for the
general case whenka is not a zero of the spherical Bessel
function. The corresponding normal solution is then defined
by equation (36) withαl,n given by equation (28). The
associated nontrivial NR partρ̂(0)NR of ρ̂(0) in the Hilbert space
X is

ρ̂
(0)
NR = ρ̂(0) − ρ̂. (37)

The L2 norm of the normal solution defined by
equation (36) is∫
V

d3r|ρ̂(0)(r)|2 = (â, â)U

=
∞∑
n=0

∞∑
L=0

L∑
M=−L

|gL,M |2α2
L,n

[ ∞∑
n′=0

α2
L,n′

]−2

. (38)

Furthermore, the condition
∞∑
n=0

∞∑
l=0

l∑
m=−l
|gl,m|2α2

l,n

[ ∞∑
n′=0

α2
l,n′

]−2

<∞ (39)

can be shown to be exactly the Picard condition defining
the rangeR(P) of the linear mappingP. In particular,
equation (39) defines the class of valid data vectorsg = {gl,m}
associated with the source spaceL(0)2 (V ).
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3.1. Regularity constraints for the normal derivatives

The previous general formulation can be used for ISPs with
yet stricter regularity constraints. We consider next the ISP
forL2 sources that are compactly supported inV and possess
vanishing normal derivatives on the boundary∂V of the
source volumeV . For the sake of brevity, we shall refer
to sources obeying all the above-imposed localization and
regularity properties as ‘well-behaved sources’.

The ISP for well-behaved sources can be addressed by
means of an approach similar to that employed above for
the L(0)2 (V ) sources. However, we must define first an
orthonormal basis in terms of which all well-behaved sources
can be expanded. To derive such a basis, we note that any
well-behaved source must admit a representation of the form

ρ(r) =
∞∑
L=0

L∑
M=−L

sL,M(r)YL,M(r̂) (40)

where

sL,M(r) =
∞∑
n=0

a(n, L,M; v)ρn;v(r) (41)

whereρn;v(r) is defined by equation (18), and the expansion
coefficientsa(n, L,M; v) are constrained so as to ensure
d
dr sL,M(r)|r=a = 0. In particular,

∞∑
n=0

a(n, L,M; v) d

dr
ρn;v(r)|r=a = 0, (42)

i.e.,√
2/a3H(a − r)

∞∑
n=0

a(n, L,M; v)|jv+1(βv,n)|−1

× d

dr
[jv(βv,nr/a)]|r=a = 0 (43)

wherev is, as before, an arbitrary non-negative integer, which
we choose to bev = L > 0. Equations (40)–(43) are used
below to establish an orthonormal basis for well-behaved
sources.

Consider the sequence{up,L,M;L(r)}, p = 1, 2, . . . ,
L = 0, 1, . . . , M = −L,−L + 1, . . . , L, of well-behaved
functions

up,L,M;L(r) =
p∑
n=0

ν(p)(n;L)ρn;L(r)YL,M(r̂) (44)

with the expansion coefficientsν(p)(n;L) subjected to the
‘well-behavedness’ constraint equation

p∑
n=0

ν(p)(n;L) d

dr
ρn;L(r) = 0 (45)

in addition to the orthonormality constraint equation

p∑
n=0

ν(p)∗(n;L)ν(p′)(n;L) = δp,p′ (46)

for any integerp′ > 0. It can be deduced from the
discussion in equations (40)–(43) that the above-defined set
of functions{up,L,M;L(r)} forms an orthonormal basis for

any well-behaved source. For instance, we can expand any
well-behaved source as

ρ(r) =
∞∑
p=0

∞∑
L=0

L∑
M=−L

b(p,L,M;L)up,L,M;L(r) (47)

where the expansion coefficientsb(p,L,M;L) =
(up,L,M;L, ρ)X. It is important to show how the constraint
equations (45), (46) can be jointly satisfied. That this
is the case follows from the fact that each basis function
up,L,M;L(r) consists of a sum ofp + 1 linearly independent
functions, while condition (46) involves only the firstp0 + 1
of these functions, wherep0 is the smallest ofp andp′.
With this clarification, we arrive at the following procedure
to construct the orthonormal set. Membersu1,L,M;L(r) of the
set are constructed withν(1)(0;L) andν(1)(1;L) selected so
as to satisfy equations (45), (46) withp = p′ = 1. Members
u2,L,M;L(r) of the set are constructed withν(2)(0;L) and
ν(2)(1;L) selected so as to obey equation (46) withp = 1
andp′ = 2. This leavesν(2)(2;L) arbitrary, and also leaves
ν(2)(0;L) and ν(2)(1;L) arbitrary up to a multiplicative
factor. The multiplicative factor andν(2)(2;L) are then
uniquely determined from equations (45), (46) withp =
p′ = 2. The general result follows by induction. This
approach is illustrated in section 4 for the special case of
a spherically symmetric source.

Clearly, equations (44)–(47) enable one to formulate the
ISP for well-behaved sources by means of a procedure similar
to that employed earlier forL(0)2 (V ) sources. In particular, the
problem reduces to using the series expansion equation (47)
with up,L,M;L(r) defined by equations (44)–(46) and the
associated discussion, in place of itsL(0)2 (V ) analogue,
defined by equations (16), (20)–(22). The relevant expansion
coefficients and functionsb(p,L,M;L) and up,L,M;L(r)
thus play the role previously assigned toa(n, L,M;L)
and ρn,L,M;L(r), respectively. The remaining steps of
the associated source-inversion procedure are developed in
section 4 for the special case of a spherically symmetric
source. We will then also compare the spherically symmetric
case results corresponding to the (three) ISP formulations
presented above, corresponding, respectively, to general
L2(V ), L

(0)
2 (V ) and well-behaved sources.

4. Special case: spherically symmetric source

The results of section 2, applicable to generalL2(V ) sources,
and the results of section 3, applicable toL(0)2 (V ) and
well-behaved sources, are illustrated next for a spherically
symmetric source. In this case all the multipole moments
of the field, exceptg0,0, vanish. We present first the
corresponding analytical results based on sections 2 and 3
above. At the end of the section, we highlight some of our
results with the aid of plots for the different cases.

4.1. TheL2(V ) case

The normal solutionρ̂ to the associated ISP for general
L2(V ) sources, without regularity constraints, is defined by
equations (11), (15) with the data vectorg having trivial
multipole moment entries exceptg0,0. One then obtains

ρ̂(r) =
√

4πg0,0H(a − r)j0(kr)/σ
2
0 (48)
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Figure 1. Normal solutions and NR source components, versus
r/a, for ka = π/2: (a) minimum energy solution̂ρ(r).
(b) Normal solutionρ̂(0)(r). (c) Normal solutionρ̂(1)(r). (d) NR
part ρ̂(0)NR(r) of ρ̂(0)(r). (e) NR partρ̂(1)NR(r) of ρ̂(1)(r).

where
σ 2

0 = 8π2ak−2[1− sinc(2ka)], (49)

where we have usedY0,0 = 1/
√

4π (see [25], p 682). In
deriving equation (49) we have usedj1(ka) = [sinc(ka) −
coska]/(ka) and the recurrence relations of the spherical
Bessel functions (see [25], pp 626–7).

4.2. TheL(0)
2 (V ) case

We consider next the corresponding normal solutionρ̂(0) to
the ISP forL(0)2 (V ) sources addressed in section 3. The
normal solutionρ̂(0) associated with a data vectorg having
trivial multipole moment entries exceptg0,0 is found from
equations (29), (36) to be given by equations (48), (49) ifka

is a zero of the spherical Bessel functionj0(·) (i.e. ρ̂ andρ̂(0)

are then identical). The normal solution corresponding to the
general case whenka is not a zero ofj0(·) is described by
equations (28), (36) and can be expressed as

ρ̂(0)(r) = 1√
4π
g0,0

[ ∞∑
n′=0

α2
0,n′

]−1 ∞∑
n=0

α0,nρn;0(r) (50)

where

α0,n = 2
√

2π2a−1k−1/2(β0,n)
3/2

[k2 − (β0,n/a)2]
J1/2(ka)J

′
1/2(β0,n)

= 4π2
√

2(−1)n+1(n + 1)a1/2k−1

× sin(ka)/[(ka)2 − β2
0,n] (51)

Figure 2. Normal solutions and NR source components, versus
r/a, for ka = π : (a) minimum energy solution̂ρ(r). (b) Normal
solutionρ̂(0)(r). (c) Normal solutionρ̂(1)(r). (d) NR partρ̂(0)NR(r)
of ρ̂(0)(r). (e) NR partρ̂(1)NR(r) of ρ̂(1)(r).

and

ρn;0(r) =
√

2/a3β0,nH(a − r)j0(β0,nr/a) (52)

where

j0(β0,nr/a) = sin(β0,nr/a)

β0,nr/a
= sin[(n + 1)πr/a]

(n + 1)πr/a

β0,n = (n + 1)π = |j1(β0,n)|−1.

(53)

4.3. Well-behaved source case

Finally, we consider the ISP for well-behaved sources. In
this case, expressions (44)–(47) (withL = 0 andM = 0)
reduce to

up,0,0;0(r) = 1√
4π

p∑
n=0

ν(p)(n; 0)ρn;0(r), (54)

p∑
n=0

(−1)n+1(n + 1)ν(p)(n; 0) = 0, (55)

p∑
n=0

ν(p)∗(n; 0)ν(p′)(n; 0) = δp,p′ (56)

and

ρ(r) =
∞∑
p=0

b(p, 0, 0; 0)up,0,0;0(r). (57)
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Figure 3. Normal solutions and NR source components, versus
r/a, for ka = 1.5π : (a) minimum energy solution̂ρ(r).
(b) Normal solutionρ̂(0)(r). (c) Normal solutionρ̂(1)(r). (d) NR
part ρ̂(0)NR(r) of ρ̂(0)(r). (e) NR partρ̂(1)NR(r) of ρ̂(1)(r).

The coefficientsν(p)(n; 0) in equations (54)–(56) are defined
by

v
(p)

j (0) =
{ p−1∑
n=0

(n + 1)2 +
[
∑p−1

n=0(n + 1)2]2

(p + 1)2

}−1/2

, (58)

v
(p)

j (n) = (−1)n(n + 1)v(p)j (0) 0< n < p (59)

and

v
(p)

j (p) = v(p)j (0)
(−1)p+1∑p−1

n=0(n + 1)2

p + 1
. (60)

With these results, the normal solutionρ̂(1) to the associated
ISP can be derived by means of a procedure similar to that
employed above forL(0)2 (V ) sources. We obtain

ρ̂(1)(r) = g0,0

[ ∞∑
p′=0

γ 2
p′

]−1 ∞∑
p=0

γpup,0,0;0(r) (61)

where

γp =
p∑
n=0

ν(p)(n; 0)α0,n (62)

with α0,n defined by equations (28), (29) (note the similarity
between equations (61), (62) and theirL

(0)
2 (V ) counterparts,

equations (50), (51)).

4.4. Numerical illustration: L2(V ), L(0)
2 (V ) and

well-behaved source cases

In the following plots we have normalized the normal
solutions with respect tog0,0/a

3. Figures 1–5 show

Figure 4. Normal solutions and NR source components, versus
r/a, for ka = 2.33π : (a) minimum energy solution̂ρ(r).
(b) Normal solutionρ̂(0)(r). (c) Normal solutionρ̂(1)(r). (d) NR
part ρ̂(0)NR(r) of ρ̂(0)(r). (e) NR partρ̂(1)NR(r) of ρ̂(1)(r).

plots of the normal solutions defined above, versusr/a,
corresponding to theL2(V ), L

(0)
2 (V ) and well-behaved

source cases, for different values of the normalized
wavenumberka. Also shown are plots of the corresponding
NR partsρ̂(0)NR andρ̂(1)NR.

We note that, in contrast to the generalL2(V ) case,
for L

(0)
2 (V ) sources (i.e., with the additional compact

supportness constraint) the normal solution to the ISP is
guaranteed to vanish on the boundary∂V of the source
volumeV . This holds regardless of the value ofka. The
plots corresponding to the normal solutions to ISPs with and
without the compact supportness constraint coincide only
if ka is a zero ofj0(·), i.e., for ka = (n + 1)π , where
n is an integer. This is to be expected since, in the latter
case, the normal solution defined by equations (48), (49)
possesses compact support inV . For the well-behaved source
case, the associated normal solutions possess (additionally)
a continuous normal derivative on the boundary of the source
regionV . We see that the NR partŝρ(0)NR and ρ̂(1)NR are, in
general, nontrivial. The nontrivial NR source components
corresponding to the well-behaved source case are clearly
more visible than those for theL(0)2 (V ) case.

These results are consistent with results derived recently
in [17]. In particular, it was shown in [17] that in order for a
localized source (in this case, a source to the inhomogeneous
Helmholtz equation) to lack a NR part, it must necessarily
obey the homogeneous form of the corresponding partial
differential equation (e.g. the Helmholtz equation) in the
interior of its support. This automatically explains why,
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Figure 5. Normal solutions and NR source components, versus
r/a, for ka = 2.67π : (a) minimum energy solution̂ρ(r).
(b) Normal solutionρ̂(0)(r). (c) Normal solutionρ̂(1)(r). (d) NR
part ρ̂(0)NR(r) of ρ̂(0)(r). (e) NR partρ̂(1)NR(r) of ρ̂(1)(r).

out of all L(0)2 (V ) sources, only thoseL(0)2 (V ) sources that
are also resonant wave solutions lack a NR part. We
verify this situation in figure 2. This also explains why
minimum energy solutions are homogeneous wave solutions
(see expression (15) in section 2 and its spherically symmetric
version equation (48) in this section). Now, it is not hard
to show that no source that vanishes along with its normal
derivatives on the boundary of a given spherical domain can
obey the requirement of being a homogeneous wave solution
(in particular, no zero of the spherical Bessel functionjl(·)
is also a zero ofj ′l (·)). One arrives at the same conclusion
for a more general source, confined in an arbitrary simply
connected source region, by noting that the only solution
to the homogeneous Helmholtz equation which obeys the
above-imposed overspecified boundary conditions is the
trivial solution. Thus, no source exists that is both well
behaved and lacks a NR part. In the present context, we see
that not even normal solutions to ISPs for such well-behaved
sources lack a NR part.

5. Conclusion

In this paper, we investigated the ISP for generalL2

sources confined within a given spherical volume. We also
investigated two, more restricted versions of the ISP, with
additional regularity (smoothness) constraints: an ISP for
L2 sources that possess compact support in a given source
region (such sources therefore vanish on the boundary of
the specified support), and an ISP for well-behaved sources

(L2 sources that vanish along with their normal derivatives
on the boundary of their specified support). Expressions
for the normal solutions and their associated NR parts were
derived corresponding to the ISP formulations considered.
The formalism developed in the paper makes use of standard
linear inversion theory in addition to spherical harmonics and
Bessel functions and can be applied to other forms of ISP, with
other regularity constraints.

For the ISP without regularity constraints, the
corresponding normal solution is the usual minimum energy
solution. The latter is orthogonal to allL2 NR sources
in the source’s support. It thus lacks a NR part. For the
ISPs with regularity constraints addressed in this paper the
situation is different: the associated normal solutions possess,
in general, nontrivial NR parts. From an inversion point
of view, we thus established a strategy for extracting NR
source components of an unknown source, by imposing
a priori constraints of regularity, in addition to the usual
localization constraint. It is worth emphasising, however,
that the normal solutions corresponding to the ISPs with
regularity constraints illustrated here had the form of (only)
small-perturbation versions of their affiliated minimum
energy solutions. Naturally, the associated perturbation
was seen to increase as we imposed further regularity
constraints.

The present discussion also illustrated some recently
derived properties of NR sources and purely radiating sources
(i.e. sources that lack a NR part). Our formulation, applicable
to a spherical coordinate system, can be generalized to other
(separable) systems.
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