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Abstract. The use of regularity constraints in formulating the scalar inverse source problem
(ISP) is investigated. Two kinds of regularity constraints are considered: compact supportness
in a given source region, and normal differentiability on the boundary of that region. Normal
solutions (minimun’, norm solutions) to the ISP for square-integratilg) scalar sources

with and without the above-mentioned regularity constraints are derived and compared. The
(generally nontrivial) nonradiating parts of the corresponding normal solutions are evaluated.
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1. Introduction Helmholtz equation

A problem of considerable interest for the object (V2 + I (r) = —4mp(r) (1)

reconstruction branches of the wave disciplines (such as.

optics and acoustics) is the so-called inverse source probleni! thrée-dimensional space. The figldr) generated by a
(ISP) [1-3]. In its usual form, the ISP consists of deducing SCUrceA(r) is then given by the familiar outgoing Green

a source of known support, sap, from knowledge of  Tunctionintegral

its generated field outsid®. Different aspects of this gklr—r|

problem have been investigated byillér [4], Moses [5, 6], ¥(r) = /dSr',o('r') —. 2

Friedlander [7], Bleistein and Cohen [1], Hoenders [8], =l

Devaney [9], Devaney and Porter [2, 3], LaHaie [10, 11], we review first the ISP for generdl,(V) sources, and

Carter and Wolf [12], Wolf [13], Bertero [14], Marengo examine later the ISP foL,(V) sources with additional

and Devaney [15] and Marengat al [16, 17]. Attention  regularity constraints. We are particularly interested in

has been given to both the scalar and electromagnetic cases,, (V) sources that possessompact suppotin the source

for both deterministic and random sources. The focus hasyolume V, for which p(r) = 0 on the boundaryV =

been on the fundamental nonuniqueness question [18] and{r € RS|r = a} of V. We shall also consider the more

a priori constraints that may render the ISP unique. The regular class ol»(V) sources of compact suppdftwhose

latter include the constraint of minimizing the solution’s normal derivatives also vanish on the boundi¥yof V. The

L, norm, which has lead to the so-called minimum energy results presented in this paper provide, to our knowledge, the

solutions [2, 3]. Applications include inverse scattering- first investigation of ISPs with such regularity constraints.

based surveys [18-21], holographic imaging [2, 3, 22] and Extension to yet more regular classes of sources, although not

antenna design [4]. The time-dependent ISP with far-field to be considered here, follows lines similar to those provided

data has also received attention recently as an analogue ofiere for the cases above.

the limited-view Radon inversion problem that arises in the A unique solution to the usual ISP for general

formalism of computerized tomography [16]. L,(V) sources, without additional constraints, cannot be
This work is concerned with the ISP for deterministic obtained due to the presence of nontrivial nonradiating (NR)

square-integrabléL,) scalar sourcep contained within a  sources [1,7,23] localized within the source volurvie

spherical volumeV = {r € R%|r < a} of radiusa, with In particular, the field produced by a localized NR source

centre at the coordinate origin. The focus is on the use of vanishes outside the source’s support. It then follows that,

a priori regularity (smoothness) constraints in formulating without additional pieces of information about the field

the ISP. The formulation is based on the inhomogeneousand/or the source, the NR source components of a source
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cannot be deduced from knowledge of its exterior field. expansion form

The usual ISP admits a unique solution if one imposes the o

addltlonal_congtralnt of_ minimizing the sou_rc_e[sg norm. W(r) = ikz Z gz.mhfl)(kr)Yz,m(f‘) 4)

The solution in question is the usual minimum energy =

solution [2, 3], also known as ‘the normal solution’ in linear

inversion language [14]. Physical interpretations of these where# = r/r, b () is the spherical Hankel function of

normal solutions have been given in [2, 3,22] in the context the first kind and ordet (as defined in [24], p 740), and

of generalized holography. Y;.m(+) is the spherical harmonic of degreand ordetn (as
Normal solutions to the usual ISP are orthogonal to all defined in [24], p 99). The expansion coefficiegts, in

L, NR sources confined within the source region, i.e., they equgtion (4) are the multipole moments and are defined by

lack a NR part [2,3]. It is shown in this paper that, in theinner products

contrast, by imposing additional regularity constraints to the

usual ISP, one can actually extract NR source components

of the unknown source. In particular, we derive expressions where

for the normal solutions corresponding to ISPs with regularity _ . .

constraints, along with their (generally nontrivial) NR source Vin(r) = Am H (@ =) jikr)¥in(7) (6)

contributions. We thus examine a means of extracting NR 1=01...; m=-l-1+1...,1

source components of an unknown radiating (or scattering) where j;(-) is the spherical Bessel function of the first kind

objectthatis kpowa priort tobe regsonably vyell behaved in and ordef (as defined in [24], p 740) anid (-) is Heaviside’s
a sense specified by given regularity constraints. We then also

. L L . unit step function.
illustrate the use oé priori information in formulating the The field forr > a defined by equation (4) is uniquely

ISP, Th_e Igt_terques_tion hadbeen investigated, fo_r Otr?erformsdetermined by the multipole moments. Because of this, inthe
of a priori |nform_a_t|on, by Moses [5, 6] qnd Bleistein and following we formulate the ISP of deducing the(V') source
Cohen[1]. Inaddition, the present analysis also corroborates,, .1 minimum L, norm that is consistent with a given data

for the special case df, sources contained in the spherical vectorg = {g,») having entrieg; ,,. We assume the latter to
volume V, a recent result derived in [17] which states that g square-sdmmable so t@ﬁo’ S L 1giml? < 00. We

m

any L source of compact support having vanishing normal giso define the discrete Hilbert spaceof all such square-

derivatives on the boundary of its support must possess a NRsymmable data vectors and assign to it the inner product
part. The general theory, based on spherical harmonics and

Bessel functions, is illustrated with a spherically symmetric , o .
source example. @9y =D &nllm

m=—I

8l.m = (‘(/fl,ma p)X (5)

@)

1=0 m=—1

) To address the ISP in this framework, we define, by using
2. The inverse source problem for  L,(V) sources equation (5), the linear source-to-data vector mapping

In this section, we formulate, by means of a general linear Pp=g (8)
inversion formulation, the ISP fak, sourcespe of support

V = {r € R¥|r < a} (such thato(r) = 0 if r > a).
The general approach developed in this section will be
specializgd in section 310, (V) sources with various degrees (PP = Wi, P)x.- (9)
of regularity on the boundar§V = {r € R3|r = a} of the

source volumeV. In the present section, we also consider The class of., NR sources of suppoit is exactly the null
the unique decomposition of a source into its radiating and spaceN (P) of the linear mapping” [1, 23].

NR parts in the Hilbert spack of L,(V) sources with the Inthe fO”OWing, we shall assume the field foe- a and,
defined inner product in particular, its corresponding data vectoto be realizable

from L,(V) sources. In mathematical language, we require
, 3 s the data vectay to be in the range of the linear source-to-data
(0. P)x = /Vd rp”(r)p(r) ®) vector mapping associated with the source sgac® ). The
range in question has been defined explicitly in [17] by using
where * denotes the complex conjugate. The general the so-called Picard conditions [14] that apply to this ISP. In
source decomposition results developed here will find use particular, the rang®(P) of P consists of the data vectors
in section 4 in connection with a spherically symmetric g that obey the necessary and sufficient condition
source example. We will then illustrate how the NR source

which assigns to each sourpee X a data vectog € Y
according to the rule

components become, in general, increasingly noticeable i XI: |g1m|2/0? < 00 (10)
as one imposes stricter source regularity properties. In =
particular, it will be shown that normal solutions to ISPs
with regularity constraints contain, in general, NR source Where .
components in the Hilbert spage o? = (47,)2[ drr2 2 (kr)
It is well known [24] that forr > a the field ¥ (r) 0
radiated by a sourge € X can be expressed in the multipole = 872a®[jP(ka) — ji_1(ka) ji+1(ka)]. (11)
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Under this condition, the normal solution to the ISP,
corresponding to the unique sourg®f minimum L, norm
(minimum energy) associated with a given data vegtds
defined by the pseudoinverse Bfand is given by [14]
p=P'(PP") g (12)
where P is the adjoint of the linear mappin®, defined by

(Pp,g)y = (p, PTg)x. (13)

The latter is found from equations (3), (7), (9), (13) to be
given by

00 ]
(P9 =Y">" grm¥im(). (14)

1=0 m=—1

It is not hard to show by using equations (6), (9), (11),
(12), (14) and the orthogonality property of the spherical
harmonics that

0 l
,OA(’I’) = Z Z gl,lnwl,nl(r)/alz

1=0 m=—I

00 1
=4rH@—r) Y > gmikr)Y @ /of.  (15)

1=0 m=—I|
The normal solutionp given by equation (15) consists

Inverse source problem with regularity constraints

where g, u(r) is an r-dependent function that can be
expanded in the Fourier—-Bessel series form

qu(r) =Yy an, L, M;v)p,,(r) (17)
n=0
where
2 3
Puiu(r) = \//7 H(a —r)jy(Bynr/a) (18)

|jv+l(,6v,n)|

wherev is an arbitrary non-negative integer. The parameters
Byv.» In equation (18) are consecutive zeros of the spherical
Bessel functiory,(-), i.e. j,(Byn) =0,n =0,1,2,.... The
functions p,..,(r) are orthonormal ovel’. The expansion
coefficientsa(n, L, M; v) associated with a giveq, y (r)

are then

a("y L, M; v) = (pn;m qL,M)X- (19)

In deriving these results we have made use of the
completeness and orthogonality of the spherical harmonics
Y. .m(-) overthe unitsphere, the completeness of the spherical
Bessel functiong, (8, ,r/a) for fixed non-negative integer

v and variable index over the interval [0a] for functions

that vanish at = a (see equation (11.51) of [25]), and the

of a source-free multipole expansion, over the truncated orthogonality property of the set of ordinary Bessel functions

spherical wavefunctions/; ,,, with multipole moments

Jy(By.ar/a) for fixed non-negative integer and variable

81.m/of. Expression (15) canbe shownto beintheformofthe indexx in ther-interval [0, a] (see equation (11.168) of [25]).

usual singular system representation of the normal solution

associated with the linear mappimg[1, 14]. The termsy?
are known to decay exponentially fast fas ka, confirming
the ill-posed nature of the ISP [14].

Now, the non-negative integer in equations (16)—
(19) is arbitrary. For our purposes, the particular choice
v = L > 0 will prove to be especially useful. With this
choice, expressions (17)—(19) become

The ISP results presented above can be used to uniquely

decompose a sourgdn the Hilbert spac& into its radiating
and NR source components. In particular, it is a well-
established fact [2, 3, 14] that any soureee X can be
uniquely decomposed into the sum = p + pyg Of A
radiating and a NR parg andpy z respectively, wherg(r)

is exactly the normal solution in equation (15) corresponding

to the data vector produced by the given The normal

solution to the ISP formulated above, in which we imposed

no regularity constraints, thus lacks a NR part in the Hilbert 59

spaceX. In section 3, we will depict a different scenario
for ISPs with regularity constraints. We will show then that

normal solutions to such ISPs do contain, in general, NR

source components in the Hilbert spaxe We will also

qru(r) = ioa(n, L, M; L)py;.(r) (20)

where
Prip(r) = %H(a —njLBrarfa)  (21)
a(n, L, M; L) = (pn:L, g1 M)x- (22)

The above results will enable us to formulate the ISP for
L, sources that possess compact supportin the source volume

illustrate an interesting result derived in [17] which states that V by means of a linear inversion formalism analogous to that
any L, source of compact support having vanishing normal employed in section 2 for generah(V) sources. In the
derivatives on the boundary of its support must possess a NRfollowing, we shall denote ag(zo)(v) C L»(V) the class

part.

3. The inverse source problem for
with regularity constraints

L,(V) sources

In this section, we considdr, sourceso that are compactly
supported in the spherical volumeé = {r € R%|r < a}
(such thato(r) = 0 if r > a). Any such source must admit
a representation of the form

o0

L
P =" > qum)YLu ()

L=0M=—L

(16)

of L, sources that are compactly supported/inFrom the
general results of section 2 and equations (16), (20)—(22), the
ISP forL(zo)(V) sources can be shown to reduce to finding the
source expansion coefficient6:, L, M; L) from knowledge
of the multipole momentg; ,, of the source’s exterior field.
The relevant linear source expansion vector-to-data vector
mapping is determined by substituting from equations (16),
(20)—(22) into (5), (6). With these observations, we proceed
next to evaluate the normal solution to the ISP investigated
here (with the additional compact supportness constraint).
By analogy with the procedure employed in section 2
for generalL,(V) sources, we introduce the discrete Hilbert
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spaceU of source expansion vectoss =
that are square-summable so that

{a(n, L, M; L)}

atn, LM )P = [ drlomP < oo,
v
(23)
and assign to it the inner product

i XL: a*(n,L,M; L)a’(n,L, M; L).

n=0 L=0 —

09

(24)
We also recall here the definition, given in connection with
equation (7), of the discrete Hilbert spa&eof square-
summable data vectogs having multipole moment entries
g.m- With these Hilbert space definitions, we introduce next,

also by analogy with the procedure employed in section 2,

the linear source expansion vector-to-data vector mapping
Pa=g (25)

which assigns to each source expansion vagterU a data
vectorg € Y according to the rule

oo 00 L
Pa)m=Y_Y Y a®m L, M:;LYWim. pu:r¥r.0)x-

n=0 L=0 M=—
(26)
Now, because of the orthogonality of the spherical harmonics,
Wms Pus LY, M)x = 81,08, Mm% 0 (27)
wheres. . denotes the Kronecker delta and
4 /2/a
o, = V2 / A v (kr) j (B or )
Lji+1(Br.n)|
22w 20X (By /1) 2 /
Bn/ 0 Jiv1j2(ka)Ji1 (Brn) - (28)

" m Bl = (Bra/a)?]

whereJ;(x) = /2x /7 ji_1/2(x) andJ/ (x) = L Ji(x), if ka
is not a zero ofj;(-), and

2/a3
/a Uzan,nh

_— 29
Az | jrar(Bra)| ! (29)

Ujn =

with o2 given by equation (11), #a is then'th zero ofj;(-).
In evaluating the integral defining , in equation (28), we

have made use of the first Lommel integral (see [25], p 594).

By substituting from equation (27) into (26) one obtains

o0

(Pa)w =) a1 m;Da.,.

n=0

(30)

We also introduce the adjoirP’ of the linear mapping
P. By using (Pa,g)y = (a,P'g)y, one obtains from
equations (7), (24), (28)—(30) the result
(P'g)(n, L, M; L) = gL @y . (31)
We can now derive an expression for the sousé®
of minimum L, norm, among allL, sources that possess
compact support in the source volurtie whose generated
field coincides with a given data field fer> a. In particular,
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the source expansion vectarcorresponding to the normal
solution5© is defined by the pseudoinversef

an, L, M; L) =P PPHg. (32)

The linear operatorPP™ : ¥ — Y is found from
equations (30), (31) to be defined by

o0
(PP'@)im = gim ) _ef,. (33)
n=0
It then follows that
00 -1
[(,P,PT)ilg]l,m = 8l.m |: Z alz,n:l . (34)
n=0

By using equations (31), (32), (34) one obtains the result

0
§ 2
oy

n’=0

-1
a(n,L,M; L) = gL,MOlL,n|: :| . (35)

The normal solutio©@ corresponding to a given data vector
g can be expressed directly in the configuration space by using
equations (16), (20)—(22). One obtains

00 00 L
Y30 an L Mi L)y (Y m(7)
L

n=0 L=0 M=—

pO(r) =

L

= \/%H(a —r) ZZ Z 8L.MOAL n
L

n=0 L=0 M=—
o) -1
X |:le+1(,3L,n)| Z 052,,/:| Jr(Brar/a@)Yr m (7).
n'=0

(36)

It is not hard to see that whenevit is a zero of the
spherical Bessel function(-), expression (36) withy, ,
given by equation (29) reduces to the normal solution in
equation (15) corresponding to the ISP without regularity
constraints. This is to be expected since then, the (generally
nonregular) normal solution in equation (15) is, by itself,
compactly supported (regular) in the source regidn
The effect of the additional compact supportness constraint
addressed in this section becomes visible, however, for the
general case wheku is not a zero of the spherical Bessel
function. The corresponding normal solution is then defined
by equation (36) withy;,, given by equation (28). The
associated nontrivial NR pgb O;Q of @ in the Hilbert space
Xis

par =5 = p. (37)

The L, norm of the normal solution defined by

equation (36) is

/ &Erip@@)? = (@, ay

ZZ Z lgL.ml aLn[iaf”]

n=0 L=0M= n
Furthermore, the condition

ZZZIgmlaln[Zaln] <o (39)
n=0 (=0 m=—I

can be shown to be exactly the Picard condition defining
the rangeR(P) of the linear mappingP. In particular,
equation (39) defines the class of valid data vegjoes{g; , }
associated with the source spdcf (V).

(38)



Inverse source problem with regularity constraints

3.1. Regularity constraints for the normal derivatives any well-behaved source. For instance, we can expand any

. . . well-behaved source as
The previous general formulation can be used for ISPs with

yet stricter regularity constraints. We consider next the ISP
for L, sources that are compactly supportedfiand possess
vanishing normal derivatives on the boundary of the
source volumeV. For the sake of brevity, we shall refer Where the expansion coefficientd(p, L, M;L) =
to sources obeying all the above-imposed localization and (#p...m:. p)x- It is important to show how the constraint
regularity properties as ‘well-behaved sources’. equations (45), (46) can be jointly satisfied. That this
The ISP for well-behaved sources can be addressed byis the case follows from the fact that each basis function
means of an approach similar to that employed above for #p...m:. () consists of a sum b + 1 linearly independent
the L(ZO)(V) sources. However, we must define first an functions, Whl|.e condition (4(:}) involves only the firgg + 1
orthonormal basis in terms of which all well-behaved sources Of these functions, wherg, is the smallest ofp and p'.
can be expanded. To derive such a basis, we note that am)Nlth this clarification, we arrive at the following procedure

well-behaved source must admit a representation of the form 0 constructthe orthoqor{nal set. Memlbﬂf,i,M;L(T) ofthe
set are constructed with? (0; L) andv® (1; L) selected so

00 00 L
p(r) =33 b(p, L, M; Lyu, 1 mr(r)  (47)

p=0L=0M=-L

o L as to satisfy equations (45), (46) with= p’ = 1. Members

p(r) = Z Z sem ()Y m(T) (40) uz.r . (r) of the set are constructed with? (0; L) and

L=0M=-L v@(1; L) selected so as to obey equation (46) with= 1
where andp’ = 2. This leaves? (2; L) arbitrary, and also leaves
00 v@(0; L) and v®(1; L) arbitrary up to a multiplicative

spm(r) = Za(n, L, M:;v)pn,(r) (41) factor. The multiplicative factor ana®(2; L) are then

n=0 uniquely determined from equations (45), (46) wjh=

wherep,., (r) is defined by equation (18), and the expansion p' = 2. The general result follows by induction. This

coefficientsa(n, L, M; v) are constrained so as to ensure approach is illustrated in section 4 for the special case of
s, m(P)]r—a = 0. In particular, a spherically symmetric source.

o Clearly, equations (44)—(47) enable one to formulate the
d ISP for well-behaved sources by means of a procedure similar
Za(”, L, M:v) - Pnv(M)lr=a = 0, (42) tothatemployed earlier fdry (V) sources. In particular, the
n=0 problem reduces to using the series expansion equation (47)
ie. with u, 1 u..(r) defined by equations (44)—(46) and the
00 associated discussion, in place of iléo)(V) analogue,
V2/a3H(a —r) Z“(”’ L, M; v)|jps1(Bon)| 7t defined by equations (16), (20)—(22). The relevant expansion
n=0 coefficients and functioné(p, L, M; L) and up .y (r)

o0

d . thus play the role previously assigned a@n, L, M; L)
Xa[fv(ﬁvv"r/“)“r:a =0 (43) and p,.r .. (r), respectively. The remaining steps of
the associated source-inversion procedure are developed in
section 4 for the special case of a spherically symmetric
source. We will then also compare the spherically symmetric
case results corresponding to the (three) ISP formulations
presented above, corresponding, respectively, to general
Ly(V), Lgo)(V) and well-behaved sources.

wherev is, as before, an arbitrary non-negative integer, which
we choose to be = L > 0. Equations (40)—(43) are used
below to establish an orthonormal basis for well-behaved
sources.

Consider the sequende, ; m..(r)}, p = 1 2,...,
L=01....,.M=—-L,—L+1, ..., L, ofwell-behaved
functions

4. Special case: spherically symmetric source

P
Up.r.m;L(1) = Z v (13 L) ()Y 1w (F) (44) The results of section 2, applicable to gendralV) sources,
n=0 and the results of section 3, applicable t§” (V) and
with the expansion coefficients? (n; L) subjected to the WeII-behgved sources, are illustrated next f(_)r a spherically
‘well-behavedness’ constraint equation symmetric source. In this case all the multipole moments
of the field, exceptgoo, vanish. We present first the
P d corresponding analytical results based on sections 2 and 3
> v L) puir(r) = 0 (45) above. At the end of the section, we highlight some of our
n=0 results with the aid of plots for the different cases.

in addition to the orthonormality constraint equation
4.1. TheL,(V) case

)4

Zv(l’)*(n; L (n; L) =6, (46) The normal solutionp to the associated ISP for general

n=0 L, (V) sources, without regularity constraints, is defined by
equations (11), (15) with the data vectgrhaving trivial

for any integerp’ > 0. It can be deduced from the 1516 moment entries exceps o. One then obtains
discussion in equations (40)—(43) that the above-defined set '

of functions{u, ; m..(r)} forms an orthonormal basis for o(r) =4 gooH (a — r)jo(kr)/oo2 (48)

183



E A Marengo ad R W Ziolkowski

012 0.15
(a) (b}
0.11
=3 0.1
Qo1 \
=
= 0.09 0.05
=
%0.08
0
Coo7
0.06 -0.05
02 , 04 06 08 1 0 02 04 06 08 1
r/a
03 0.1
(© (d)
0.25
0.2 0.05
0.15
o V\/\/\/\/\/\A o |
0.05
0 -o.osf
-0.05
-0. -0.1
o 02 04 06 08 1 02 04 06 08 1
0.3
(e
0.25
0.2
0.15
0.1
0.05
o
-0.05

0.2 0.4 0.6 0.8 1

Figure 1. Normal solutions and NR source components, versus
r/a, for ka = 7/2: (@) minimum energy solutiop (r).
(b) Normal solutions© (r). (c) Normal solutions® (r). (d) NR

partp O (r) of 5@ (r). (€) NR partpin(r) of 5D (r).

where
002 = 8r%ak?[1 — sind(2ka)],

where we have usellyo = 1/v/4r (see [25], p 682). In
deriving equation (49) we have usggka) = [sinc(ka) —
coska]/(ka) and the recurrence relations of the spherical
Bessel functions (see [25], pp 626-7).

(49)

4.2. TheL(ZO)(V) case

We consider next the corresponding normal solupéh to

the ISP forLY’ (V) sources addressed in section 3. The
normal solutions® associated with a data vectgtaving
trivial multipole moment entries excegb o is found from
equations (29), (36) to be given by equations (48), (48)if

is a zero of the spherical Bessel functigye) (i.e. 5 andp©

are then identical). The normal solution corresponding to the

general case wheku is not a zero ofjy(-) is described by
equations (28), (36) and can be expressed as

1 00 -1 o
~(0) _ 2
o) = 7580,0[ o ,,/] a0, pn;0(r)  (50)

where
22120 kY2 (B ,)3/?
[k%2 = (Bon/a)?]
= 47°V2(-)" (n + Da®k
x sin(ka)/[(ka)? — B3]

oo = J1y2(ka) J1;5(Bo.n)

(51)
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Figure 2. Normal solutions and NR source components, versus
r/a, for ka = m: (a) minimum energy solution (r). (b) Normal
solution 5@ (r). (c) Normal solutions® (). (d) NR partp s (r)

of 5@ (r). (e) NR partp % (r) of 5D ().

and
pn;O(r) =V 2/a3/30,n H(a - r)jO(,BO,nr/a) (52)
where
o(Bor/a) = sin(Bo.nr/a) _ sin[(n+ Lzr/a]
Jotion a Bont/a T o+ Drr/a (53)

Bon = (n+Dm = |j1(Bo,) %

4.3. Well-behaved source case

Finally, we consider the ISP for well-behaved sources.
this case, expressions (44)—(47) (with= 0 andM = 0)
reduce to

1 <
up000(r) = = > v n; 0)puo(r),  (54)
n=0

p
> (1" + Dy (150) =0, (55)
n=0

p ’

Z vP*(n; 0P (n; 0) = Sp.p (56)
n=0

and
p(r) =) b(p,0,0;0)u,000(r). (57)
p=0
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Figure 3. Normal solutions and NR source components, versus ~ Figure 4. Normal solutions and NR source components, versus

r/a, for ka = 1.5 (a) minimum energy solutio (r). r/a, for ka = 2.33r 1A([<;3) minimum energy 59|Utj01l73(r)-
(b) Normal solutions© (r). (c) Normal solutions®(r). (d) NR (b) Normal solutions® (). (c) Normal solutions™® (r). (d) NR
partp 2, (r) of 5O (r). (€) NR partp (s (r) of 50 (r). partpyr(r) of 5O (). (€) NR partpyy (r) of 52 ().

The coefficients” (n; 0) in equations (54)—(56) are defined plots of the normal solutions defined above, versys,
by corresponding to thelo(V), LY (V) and well-behaved
_ _ 3 source cases, for different values of the normalized
® & e, (a2 Y2 beka. Also sh lots of th d
0(0) = {Z(’“Ll) y LLm } . (58) wavenumbeka. Also shown are plots of the corresponding

g (p+1)? NR partsp O, andp.
) ) ) We note that, in contrast to the geneig(V) case,
v =D e+ Y0 O<n<p (59 for (V) sources (ie., with the additional compact
and L supportness constraint) the normal solution to the ISP is
2P (p) = v(p)(o)(—l)p+1 Yo+ 1)? (60) guaranteed to vanish on the boundary of the source
J J p+1 ’ volume V. This holds regardless of the value /af. The

plots corresponding to the normal solutions to ISPs with and
{Without the compact supportness constraint coincide only
if ka is a zero ofjy(-), i.e., forka = (n + D)7, where

n is an integer. This is to be expected since, in the latter
o0

-1 o . . .
N case, the normal solution defined by equations (48), (49
pY(r) =go,o[ ) yﬁ] Y pitpooo)  (61) y eq (48), (49)
p=0

With these results, the normal solutipf? to the associated
ISP can be derived boy means of a procedure similar to tha

employed above foL.5’ (V) sources. We obtain

possesses compact supportinFor the well-behaved source

'=0 . . L.
r case, the associated normal solutions possess (additionally)

where ) a continuous normal derivative on the boundary of the source
; +(0) (D) i
Yy = Z v (n; 0)arg, (62) regionV. We see that the NR .parﬁé,R andpy are, in
= general, nontrivial. The nontrivial NR source components

with o, defined by equations (28), (29) (note the similarity corresponding to the well-behaved source case are clearly

between equations (61), (62) and thelf’ (V) counterparts, ~ MOr€ visible than those for the;"(V) case. _
equations (50), (51)). These results are consistent with results derived recently

in [17]. In particular, it was shown in [17] that in order for a
localized source (in this case, a source to the inhomogeneous
Helmholtz equation) to lack a NR part, it must necessarily
obey the homogeneous form of the corresponding partial
In the following plots we have normalized the normal differential equation (e.g. the Helmholtz equation) in the
solutions with respect tagoo/a®. Figures 1-5 show interior of its support. This automatically explains why,

4.4, Numerical illustration: Ly(V), L (V) and
well-behaved source cases
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s @ 4 ) (L, sources that vanish along with their normal derivatives
3 3 on the boundary of their specified support). Expressions
a, ) for the normal solutions and their associated NR parts were
2 ; derived corresponding to the ISP formulations considered.
E ! The formalism developed in the paper makes use of standard
<§: 0 0 linear inversion theory in addition to spherical harmonics and
1 -1 Bessel functions and can be applied to other forms of ISP, with
o 2 other regularity constraints.
AP A ooee e me0E For the ISP without regularity constraints, the
4 © o4 @ corresponding normal solution is the usual minimum energy
3 03 solution. The latter is orthogonal to all, NR sources
\ Zf in the source’s support. It thus lacks a NR part. For the
N ISPs with regularity constraints addressed in this paper the
! _O? w situationis different: the associated normal solutions possess,
o oz in general, nontrivial NR parts. From an inversion point
1 03 of view, we thus established a strategy for extracting NR
2 04 source components of an unknown source, by imposing
[} 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 . . . . . ..
1 © a priori .constramts.of regglanty, in addmo.n .to the usual
localization constraint. It is worth emphasising, however,
o that the normal solutions corresponding to the ISPs with
regularity constraints illustrated here had the form of (only)
small-perturbation versions of their affiliated minimum
0 energy solutions. Naturally, the associated perturbation
was seen to increase as we imposed further regularity
constraints.

0562 o4 06 08 1

The present discussion also illustrated some recently
Figure 5. Normal solutions and NR source components, versus  derived properties of NR sources and purely radiating sources
r/a, for ka = 2.67x: () minimum energy solutiof (r). (i.e. sources that lack a NR part). Our formulation, applicable

ions© ions D - . :
(b) i\l%)mal S‘f"?}gf’”" (r)m(;) th)rm?l 50“:“2[}"’ ). @NR to a spherical coordinate system, can be generalized to other
Partpyr(r) of S7(r). (€ NR partpyy () of 57(r). (separable) systems.

out of all LY (V) sources, only thosey (V) sources that
are also resonant wave solutions lack a NR part. We
verify this situation in figure 2. This also explains why
minimum energy solutions are homogeneous wave solutions
(see expression (15) in section 2 and its spherically symmetric
version equation (48) in this section). Now, it is not hard
to show that no source that vanishes along with its normal
derivatives on the boundary of a given spherical domain can
obey the requirement of being a homogeneous wave solutionReferences
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