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New aspects of the inverse source problem
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The time-dependent inverse source problem with far-field data is investigated within a limited-view Radon
inversion framework, analogous to that of a limited-view computed tomography reconstruction problem. We
investigate the domains in the Radon and Fourier spaces within which data are available for the reconstruc-
tion of the space–time structure of the source. Using a linear inversion formalism we derive a filtered back-
projectionlike procedure to reconstruct the minimum-energy source consistent with prescribed far-field data.
The source inversion technique developed in the paper is illustrated with a numerical example. The paper
also contains a new description of nonradiating sources in the time domain. © 1999 Optical Society of
America [S0740-3232(99)01507-0]
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1. INTRODUCTION
We consider the inhomogeneous wave equation

S ¹2 2
1

c2

]2

]t2DU~r, t ! 5 24pQ~r, t !, (1)

where Q(r, t) is a radiating source localized within a sim-
ply connected spatial region D in three-dimensional (3D)
space R3 [such that Q(r, t) 5 0 for r ¹ D]. The (time-
dependent) inverse source problem can be stated as being
that of deducing Q(r, t) from knowledge of the radiated
field1

U~r, t ! 5 E
2`

`

dt8E d3r8

Q~r8, t8!d S t8 1
ur 2 r8u

c
2 t D

ur 2 r8u
(2)

for all r ¹ D, for all times t P R, where d (•) is Dirac’s
delta function. It is well known that the inverse source
problem does not admit of a unique solution because of
the existence, within the source’s support D, of nonradi-
ating (NR) sources, whose fields vanish for r ¹ D.2–4

It is easily deduced from Eq. (2) that the radiated field
U(r, t) behaves as U(rs, t) ; 1/rF(s, t) as r → `, where
s is a unit vector specifying the observation direction, t
5 t 2 r/c, and

F~s, t! 5 E
2`

`

dt8E d3r8Q~r8, t8!d ~t8 2 r8 • s/c 2 t!.

(3)
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Knowledge of the time-domain radiation pattern F(s, t)
for all t P R and for all observation directions s P S2,
where S2 is the unit sphere in R3, completely determines
U(r, t) everywhere outside D.5 However, if the time-
domain radiation pattern F(s, t) is known only for a dis-
crete set of directions s, one cannot, in general, uniquely
determine U(r, t) for r ¹ D. Thus, the inverse source
problem with far-field data, i.e., that of reconstructing a
radiating source Q(r, t) of known spatial support D from
knowledge of the time-domain radiation pattern F(s, t)
for all retarded times t and for a discrete or continuous
set of observation directions s, is seen to reduce to the in-
verse source problem as stated earlier only in the full
view case wherein F(s, t) is known for all s P S2.

In this paper the inverse source problem with far-field
data is dealt with by using a limited-view Radon inver-
sion framework, analogous to that of a limited-view com-
puted tomography (CT) reconstruction problem.6,7 Our
motivation is twofold: (a) that of synthesizing the mini-
mum L2 norm [minimum-energy (ME)] source, of speci-
fied spatial support, that generates a prescribed far field
and (b) that of reconstructing an unknown source from
field data gathered in the far-zone region of the source
(e.g., a source/target interrogation application). Whereas
in (a) the far field can be prescribed for all s P S2, in (b)
far-field data are available only for a discrete set of obser-
vation directions. Also, whereas application (a) can in-
volve noise-free data, i.e., in the space of realizable far
fields (see, e.g., Yaghjian and Hansen8 and Friedlander,9)
application (b) involves noisy data. The former problem
1999 Optical Society of America
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will admit of an exact ME solution (i.e., the normal
solution10), whereas the latter will have an approximate
ME solution (i.e., the normal pseudosolution10).

The inverse source problem has been studied in the fre-
quency domain by many authors, for both scalar4,11 and
electromagnetic2 sources. The first treatment of the elec-
tromagnetic inverse source problem in the time domain
appears to be due to Moses,12 who addressed both the
nonuniqueness question and a priori constraints that
may render the inverse source problem unique. In Ref.
13, the same author explores inverse initial-value prob-
lems for the wave equation and Maxwell’s equations.
Most of the analysis in Refs. 12 and 13, although of the
most importance, applies only to sources with a certain
separable space–time dependence. The solutions in Refs.
12 and 13 are not, in general, ME solutions.

The remainder of the paper is organized as follows. In
Section 2 we review the direct (radiation) problem and in-
vestigate the domains in the Radon and Fourier spaces
within which data are available for the reconstruction of
the space–time structure of the source. In Subsection
3.A we derive—by using standard methods of linear in-
version theory—a new filtered backprojectionlike proce-
dure to reconstruct the ME source QME(r, t), of known
spatial support D, that generates a prescribed time-
domain radiation pattern F(s, t) known for all t and for a
discrete or continuum set of observation directions s.
The reconstruction technique is developed analytically in
Subsection 3.B by means of spherical harmonics and is il-
lustrated in Subsection 3.C with a numerical example.
In Section 4 we present a new description of NR sources
in the time domain that makes use of results on time-
dependent multipoles derived in Ref. 5. In the final part
of Section 4 we derive an orthogonality relation between
NR sources and solutions of the homogeneous wave equa-
tion that leads to a new definition of NR sources in the
time domain. Section 5 contains our concluding re-
marks.

The work in Section 3 represents a new treatment of
the scalar inverse source problem with far-field data
through pseudoinversion of limited-view Radon-
transform operators. The approach is similar to that in
Ref. 14, where a regularized pseudoinverse technique is
applied to ground-penetrating-radar imaging. The dis-
cussion in Sections 3 and 4 sheds new light into the prop-
erties of ME and NR sources in the time domain.

2. THE DIRECT PROBLEM
On introducing the source function r(X ) [ Q(r, t) where
X 5 (X0 5 ct, X1 5 x, X2 5 y, X3 5 z), one obtains from
Eq. (3)

F~s, t! 5
1

A2
E d4XM~X!r~X!d ~ct/A2 2 X • Vs!,

(4)

where

Vs 5 S Vs0 5
1

A2
, Vs1 5 2

1

A2
sx , Vs2 5 2

1

A2
sy ,
Vs3 5 2
1

A2
szD , (5)

where s 5 (sx , sy , sz) and M(X ) is a masking function
defined by

M~X ! 5 H 1 if X P D
0 otherwise

, (6)

where D is a space–time region where the source is
known to be confined. For example, later in the paper we
will consider sources that are spatially localized within
two concentric spheres with center at the origin and radii
r [ uru 5 a and b, respectively, with b , a, so that

M~X ! 5 H 1 if b < r < a

0 otherwise
. (7)

For b 5 0 the masking function in Eq. (7) reduces to that
for a source that is known to be confined within the
spherical volume V:r < a.

The fourfold Radon transform (Rr)(V, j) of r(X ) cor-
responding to the hyperplane X • V 2 j 5 0, where V is
a unit vector in the four-dimensional (4D) Radon domain
(defining the orientation of the hyperplane) and j is a real
parameter (defining the distance of the hyperplane to the
origin), is defined as15

~Rr!~V, j! 5 E d4Xr~X !d ~j 2 X • V!. (8)

The time-domain radiation pattern F(s, t) is identified
from Eqs. (4) and (8) as being equal to the fourfold Radon
transform of r(X ) evaluated at the hyperplane X • Vs
2 ct/A2 5 0 (apart from a factor 1/A2). For fixed s and
as a function of t alone, F(s, t) is given by the projection
of r(X ) onto the line in the direction of the unit vector
Vs . (A projection of a multidimensional function onto a
line is the integral of this function over hyperplanes that
are perpendicular to the given line). Figure 1(a) depicts
a schematization of the 3D space–time counterpart of Eq.
(4) [where X 5 (X0 5 ct, X1 5 x, X2 5 y)], illustrating
the relationship between s and Vs and the line in the di-
rection of the unit vector Vs along which the projections
are computed. For prescribed F(s, t), data to recover
r(X ) are thus seen from Eq. (4) to consist of Radon pro-
jections along radial lines (in the 4D Radon domain) tan-
gent to a generalized cone with apex at the origin, i.e., the
light cone.1 Figure 1(b) illustrates the light cone in 3D
space–time. Radon projections onto directions outside
the light cone cannot be inferred from F(s, t), making the
inversion nonunique. The inverse source problem with
far-field data reduces to finding source functions consis-
tent with Radon projections provided only for directions
that lie tangentially on the surface of the light cone [NR
sources are those whose Radon projections onto those di-
rections vanish (see Section 4)]. This is analogous to a
limited-view CT reconstruction problem, where Radon
projections of an object are provided only for a limited
number of directions.6,7

The frequency-domain radiation pattern f (s, v)
[ *2`

` dt exp(ivt)F(s, t) is found from Eq. (4) to be
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f ~s, v! 5
1

c
E d4XM~X !r~X !expS i

A2v

c
Vs • XD . (9)

It is given by the fourfold (spatial–temporal) Fourier
transform of the masked source evaluated at points over
the surface of a generalized cone in the 4D Fourier do-
main (v/c, k) (where k is the spatial-frequency vector)
centered at the origin (v/c 5 0, k 5 0). We see that
while F(s, t) provides information about Radon projec-
tions of r(X ) only along lines tangent to the light cone
(see Fig. 1), f (s, v) provides information about the four-
fold Fourier transform of r(X ) only over the surface of an
analogous generalized cone in the 4D Fourier domain.
Thus f (s, v) alone is insufficient to uniquely determine
r(X ) through Fourier inversion, confirming the non-
unique nature of the inverse source problem.

3. SOURCE INVERSION FROM FAR-FIELD
DATA
We derive below the ME [minimum L2 norm
*d4Xur(X )u2] solution rME(X ) [ QME(r, t) to the inverse

Fig. 1. (a) Schematization of r(X ) and its Radon projection
(Rr)(Vs , j) in a viewing direction Vs , showing the relationship
between Vs , s, and the rotated coordinate axis j used in the defi-
nition of the Radon transform in 3D space–time. (b) The light
cone in 3D space–time.
source problem with far-field data. The method applies
to cases involving either full- or limited-view far-field
data as long as one uses integration *S2ds in the former or
summation (s over available directions s in the latter.
For the sake of brevity, we shall use the notation *S2ds for
either case. The general formulation is presented in
Subsection 3.A and developed further in Subsection 3.B
for the special case of sources characterized by the mask-
ing function in Eq. (7). A numerical example based on
the general results in Subsection 3.A is given in Subsec-
tion 3.C.

A. General Formulation
First we write Eq. (4) in the form of a linear mapping

F 5 Pr, (10)

where r(X ) P X; where X 5 L2(R4) is the Hilbert space
of L2 functions of X P R4, F(s, t) P Y; where Y is the
Hilbert space formed from the direct product of the space
of L2 functions of t P R with the space of L2 functions of
s P S2; and P:X → Y is a linear transform mapping the
space X into the space Y. The inner products in the Hil-
bert spaces defined above are defined in the usual way.
For example, for r1(X ) P X, r2(X ) P X,

^r1 , r2&X 5 E d4Xr1* ~X !r2~X !,

where * denotes the complex conjugate.
The adjoint P† of P, defined by

^F, Pr&Y 5 ^P†F, r&X ,

is found from Eq. (4) to be

~P†F !~X ! 5 M~X !
1

c
E

S2
dsF~s,A2Vs • X/c !. (11)

The operation associated with P† is that of
backprojection.16 The masking function M(X ) guaran-
tees that P† maps Y → X. Then the operators PP† and
P†P map Y → Y and X → X, respectively. In rewriting
Eq. (11) in the form

~P†F !~X ! 5 M~X !
1

c
E

S2
ds F~s, t 2 s • r/c !, (12)

we see that (P†F)(X ) is given by the product of the mask-
ing function with a superposition of time-dependent plane
waves whose amplitudes are determined by F(s, t). In
particular, (P†F)(X ) is defined by a free-field plane-wave
expansion truncated within D. Then (P†F)(X ) obeys
the homogeneous wave equation

S ¹2 2
1

c2

]2

]t2D ~P†F !~X ! 5 0, (13)

in the interior of the domain D, its boundary excluded.
The unique solution with minimum L2 norm to the in-

verse problem Eq. (10) is16,17

rME~X ! 5 ~P†F̄ !~X !, (14)

where F̄(s, t) is the filtered time-domain radiation pat-
tern defined by
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~PP†F̄ !~s, t! 5 F~s, t!. (15)

If the far-field data are noise free [i.e., F(s, t) P R(P),
where R(P) 5 $F P Y:F 5 Pr,r P X% is the range of P],
then expressions (14) and (15) define the normal solution
to the inverse source problem. When dealing with noisy
data or if the solution to Eq. (10) is unstable, the method
of Tikhonov–Phillips regularization (or any other regular-
ization method17) can be used to generate approximate
ME solutions to Eq. (10) (see, e.g., Ref. 14). For example,
the Tikhonov–Phillips regularized pseudoinverse-based
solution is

rME 5 P†@PP† 1 bI#21F, (16)

where I is the identity operator and b is the Tikhonov–
Phillips regularization parameter, whose value is deter-
mined by a trade-off between accuracy and computational
stability.14 As b → 0, the approximate solution Eq. (16)
approaches the least-squares solution of minimum L2

norm (i.e., the normal pseudosolution).
It follows from Eqs. (13) and (14) that

S ¹2 2
1

c2

]2

]t2D rME~X ! 5 0 (17)

in the interior of the domain D, its boundary excluded.
The frequency-domain analog of this result, i.e., that the
temporal Fourier transform of ME sources of spatial sup-
port D obey—for fixed frequency v—the homogeneous
Helmholtz equation inside D, is implicit in treatments of
the inverse source problem by Bleistein and Cohen,2 De-
vaney and Porter,4 and Porter and Devaney.18 However,
this property of ME sources appears to have received
little attention.

For a time-independent masking function M(X )
5 M(r), we obtain from Eqs. (4) and (11) the following
result, applicable to cases involving perfect (noise-free)
data:

~PP†F̄ !~s, t! 5
1

c
E dt8E d3r8M~r8!d ~ t 1 r8 • s/c 2 t8!

3 E
S2

ds8F̄~s8, t8 2 r8 • s8/c !

5
1

c
E

S2
ds8E dt9F̄~s8, t9!E d3r8M~r8!

3 d @t9 2 t 2 r8 • ~s 2 s8!/c#

5
1

c
E

S2
ds8F̄~s8, t! ^ h~s 2 s8, t!, (18)

where ^ denotes temporal convolution and

h~s 2 s8, t! 5 E d3r8M~r8!d @t 1 ~s 2 s8! • r8/c#.

(19)

It follows from Eqs. (15) and (18) that

1

c
E

S2
ds8F̄~s8, t! ^ h~s 2 s8, t! 5 F~s, t!. (20)
As a function of s and t for fixed s8, the quantity h(s
2 s8, t) in Eq. (19) is identified from Eq. (4) as being the
time-domain radiation pattern of a uniformly distributed
source whose support is specified by M(r), impulsively
excited (pulsed) with a progressive time delay r • s8/c,
i.e., a source of the space–time-separable form

Q~r, t ! 5 M~r!d ~t 2 r • s8/c !. (21)

A detailed analysis of the class of sources defined by Eq.
(21) is given in Refs. 19 and 20 with s8 playing the role of
the main beam axis in those papers. Equation (20)
states that the unfiltered data F(s, t) are equal to the
sum over all available directions s8 of the time-domain ra-
diation pattern of a source that consists of a uniform dis-
tribution of point radiators (within the spatial support of
the sought-after source) all of which are excited, with a
progressive time delay r • s8/c, by the same time signa-
ture, the latter being precisely—for a given s8—the time
signature of the filtered data F̄(s8, t). In other words,
for each direction s8, the filtered data F̄(s8, t) can be
thought of as the excitation signals that one must apply
at each point of an imaginary, uniform source distribution
of the form of Eq. (21) in order to obtain, by summing up
the time-domain radiation patterns associated with these
sources (i.e., for all available directions s), the original
data F(s, t).

Equation (20) must be inverted to compute the ME
source by means of Eqs. (11) and (14). This can be ac-
complished by taking the one-dimensional Fourier trans-
form of the available Radon projections of the source with
respect to the radial parameter in the definition of the Ra-
don transform (i.e., the temporal variable ct/A2) in a
manner analogous to the use of the projection-slice theo-
rem in the filtered backprojection algorithm or the Fou-
rier interpolation methods of CT (Ref. 21). By temporally
Fourier transforming both sides of Eqs. (19) and (20), one
obtains

1

c
E

S2
ds8 f̄~s8, v!h̃~s 2 s8, v! 5 f~s, v!, (22)

where

h̃~s 2 s8, v! 5 E d3r8M~r8!expF2i
v

c
r8 • ~s 2 s8!G .

(23)

We are now in position to evaluate the ME solution via
the following steps:

1. Solve the filtering operation [Eq. (22)] (either nu-
merically or analytically).

2. Recover the filtered data F̄(s, t) from f̄ (s, v) via
temporal Fourier inversion.

3. Backproject the filtered data F̄(s, t) with Eq. (11),
as is required by the reconstruction formula [Eq. (14)].

Other CT reconstruction methods, potentially applicable
to the inverse source problem with far-field data but not
to be considered here, are iterative in nature and include
the algebraic reconstruction technique and the simulta-
neous iterative reconstruction technique.21
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The quantity h̄(s 2 s8, v) in Eq. (23) is the frequency-
domain radiation pattern of an impulsively excited source
of the form of Eq. (21). Closed-form expressions for h̃(s
2s8, v) for canonical source geometries given in Refs. 19
and 20 can be used to solve integral equation (22) numeri-
cally (see, e.g., the numerical procedure used in Ref. 14).
This is the procedure employed in the numerical example
in Subsection 3.C. In Subsection 3.B we solve, by means
of spherical harmonics, the filtering operation [Eq. (22)]
analytically for sources characterized by the masking
function in Eq. (7).

B. Spherical-Harmonics Expansion Solution
The method developed in this section assumes that the
far fields are known for all s P S2; the method applies to
sources characterized by masking functions with radial
dependence only, i.e., such that M(r) 5 M(r). We will
consider sources localized within two concentric spheres
with center at the origin and radii r 5 a and b, with b
, a [masking function defined by Eq. (7)]. For the case
of a source that fills the whole spherical volume V:
r < a, we have b 5 0.

Starting with the multipole expansion of the plane
wave,1

expS i
v

c
r8r̂8 • sD

5 4p(
l50

`

(
m52l

l

i lj lS v

c
r8DYl,m~ r̂8!Yl,m* ~s!, (24)

where r̂8 [ r8/r8, jl( • ) is the spherical Bessel function of
the first kind and order l, and Yl,m( r̂) is the spherical
harmonic of degree l and order m (as defined in Ref. 1, p.
99), Eq. (23) reduces—in view of the orthogonality of the
spherical harmonics—to

h̃~s 2 s8, v! 5 (
l50

`

(
m52l

l

s l
2~v!Yl,m~s!Yl,m* ~s8!, (25)

where

s l
2~v! 5 ~4p!2E

b

a

dr8r82jl
2S v

c
r8D 5 a l

2~v! 2 b l
2~v!,

(26)

where

a l
2~v! 5 8p2a3F jl

2S v

c
a D 2 jl21S v

c
a D jl11S v

c
a D G , (27)

b l
2~v! 5 8p2b3F jl

2S v

c
b D 2 jl21S v

c
b D jl11S v

c
b D G . (28)

In evaluating s l
2(v) we have made use of the second

Lommel integral (see Ref. 22, p. 594) and the recurrence
relations for the Bessel functions (see, e.g., Ref. 22, p.
576–578). For b 5 0 we obtain s l

2(v) 5 a l
2(v). The

singular values corresponding to this special case will be
used for normalization purposes later.

We expand f (s, v) and f̄ (s, v) as series of spherical
harmonics; i.e.,
f~s, v! 5 (
l50

`

(
m52l

l

~2i !lã l,m~v!Yl,m~s!,

f̄~s, v! 5 (
l50

`

(
m52l

l

~2i !laD l,m~v!Yl,m~s!, (29)

where

ã l,m~v! 5 ilE
S2

dsf~s, v!Yl,m* ~s!,

aD l,m~v! 5 ilE
S2

dsf̄~s, v!Yl,m* ~s!. (30)

If we now make use of Eq. (25), we can solve integral
equation (22). We find that

ã l,m~v! 5
1

c
s l

2~v!aD l,m~v!, (31)

which corresponds to the filtering operation in the filtered
backprojection algorithm.

Finally, by Fourier transforming to the time-domain
expressions (29)–(31), one solves for the filtered data
F̄(s, t), which can be then backprojected according to
Eqs. (11) and (12). This procedure yields

QME~r, t ! 5 M~r!
1

2p
E

2`

`

dv exp~2ivt !

3 (
l50

`

(
m52l

l

4pã l,m~v!s l
22~v!jlS v

c
r DYl,m~ r̂!

5
1

2p
E

2`

`

dv exp~2ivt !E
S2

dsf~s, v!H̃~r,s, v!

5 E
S2

dsF~s, t ! ^ H~r, s, t !, (32)

where we have made use of Eq. (24) and where we have
defined

H̃~r,s, v!

5 4pM~r!(
l50

`

(
m52l

l

i ls l
22~v!jlS v

c
r DYl,m~ r̂!Yl,m* ~s!,

H~r, s, t !

5 2M~r!E
2`

`

dv exp~2ivt !

3 (
l50

`

(
m52l

l

i ls l
22~v!jlS v

c
r DYl,m~ r̂!Yl,m* ~s!. (33)

Thus the ME solution to the inverse source problem is
given by convolution integral Eq. (32), where the quantity
H(r, s, t) plays the role of impulse response (for source in-
version of the ME source contribution only).

The L2 norm of the ME solution QME(r, t) is found from
Eq. (32) to be
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Fig. 2. (a) Plots of the normalized singular values s̄ l
2 versus l and parameterized by va/c for a source in the spherical volume V:r

< a. (b)–(d) Plots of s l
2(v)/a l

2(v) versus l and parameterized by va/c for sources in the spherical shells defined by b < r < a with
b 5 0.5a, b 5 0.9a and b 5 0.97a, respectively.

Fig. 3. Source spatial profile at different times.
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Fig. 4. Results for the time in Fig. 3(a): (a) original source spatial profile, (b) reconstructed source spatial profile obtained from the
filtered backprojection algorithm.
E
2`

`

dtE
D

d3ruQME~r, t !u2

5
1

2p
E

2`

`

dv(
l50

`

(
m52l

l

uã l,m~v!u2s l
22~v!. (34)

Plots of the normalized singular values s̄ l
2(v)

[ s l
2(v)/a l

2(0) versus l and parameterized by va/c for a
source in the spherical volume V [where b 5 0 and
s l

2(v) 5 a l
2(v)] are given in Fig. 2(a). Plots of

s l
2(v)/a l

2(v) versus l and parameterized by va/c are
given in Figs. 2(b), 2(c) and 2(d), for the cases b 5 0.5a,
b 5 0.9a, and b 5 0.97a (a thin spherical shell), respec-
tively. The plots in Figs. 2(a) and 2(d) show that the sin-
gular values s l

2(v) corresponding to the case of a thin
spherical shell (quasi-spherical surface) decay more rap-
idly with l than those for the case of a fully spherical vol-
ume where b 5 0. Thus it appears in view of Eq. (34)
that ME solutions to the inverse source problem that fill
the whole spherical volume V are, in general, more effi-
cient than equivalent quasi-surface sources in the vicinity
of the boundary r 5 a in radiating prescribed fields out-
side V. In all cases considered, the normalized singular
values s̄ l

2(v) are seen to decay rapidly for l * va/c, con-
firming ill-conditioning [see Ref. 18 for a detailed account
of the properties of a l

2(v)]. It follows that in order to
make practical use of Eqs. (32) and (33), one must trun-
cate the spherical harmonics expansion in Eq. (32) so as
to enforce the stability requirement l & va/c.

C. Numerical Illustration
We present below the results of computer simulations in
two-dimensional space. We considered a uniformly dis-
tributed source Q(r, t) of the form

Q~r, t ! 5 M~r!G~t 2 ẑ • r/c ! (35)

spatially confined in (x, z) space within the rectangular
region $r P R2:uxu < ax/2,uzu < az/2% (i.e., M 5 1 inside
this region and M 5 0 elsewhere), so that from Eqs. (22)
and (23),
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h̃~s 2 s8, v! 5 h̃~ f, f8, v!

5 axaz sincFvax

2c
~sx 2 sx8!G

3 sincFvaz

2c
~sz 2 sz8!G

5 axaz sincFvax

2c
~sin f 2 sin f8!G

3 sincFvaz

2c
~cos f 2 cos f8!G , (36)

where sinc(•) 5 sin(•)/(•) and where s 5 sin fx̂ 1 cos fẑ
and s8 5 sin f8x̂ 1 cos f8ẑ.

It is to be noted that in the following reconstructions
we have incorporated (as we have done, in fact, through-
out the paper) a priori knowledge of the source’s support;
however, a priori knowledge of the functional form [Eq.
(36)] of the source is not incorporated in the reconstruc-
tion algorithm.

Figure 3 depicts the spatial profile of the source Q(r, t)
used in the simulations for different, successive times of
interest. It consists of a Gaussian wave packet traveling
within the source’s support (rectangular region) in the ẑ
direction. Data for the computer simulations consisted of
sampled time-domain radiation-pattern data generated
synthetically from the canonical, rectangular source dis-
tribution described in Fig. 3 and collected for a finite
number of uniformly spaced directions s. The data was
processed by means of the filtered backprojection formu-
las of Subsection 3.A. In particular, we used a discrete
version of Eq. (22) for observation angles f1 ,
f2 ,..., fn :
Fig. 5. Results for the time in Fig. 3(c): (a) original source spatial profile, (b) reconstructed source spatial profile obtained from the
filtered backprojection algorithm.
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~1/c !F G~1, 1 ! G~1,2! • G~1, n !

G~2, 1 ! G~2, 2 ! • G~2, n !

• • • •

G~n, 1! G~n, 2! • G~n, n !

GF f̄~1, v!

f̄~2, v!

•

f̄~n, v!

G
5 F f~1, v!

f~2, v!

•

f~n, v!

G (37)

where, in view of Eq. (37),

G~i, j ! 5 axay sincFvax

2c
~sin f i 2 sin f j!G

3 sincFvaz

2c
~cos f i 2 cos f j!G . (38)

Figures 4 and 5 show the results of a representative
computer simulation based on time-domain radiation-
pattern data provided over 50 angles. Figure 4(a) shows
the spatial profile of the original source function (within
its rectangular support) for the time in Fig. 3(a), and Fig.
4(b) shows the spatial profile of the reconstructed source
function—evaluated at the same time—as obtained from
our filtered backprojection algorithm. The agreement be-
tween the original and the reconstructed source functions
is encouraging. Figure 5 shows analogous results for the
time in Fig. 3(c). In all cases considered, the source-
inversion technique was seen to yield good reconstruc-
tions of the original source structure.

4. TIME-DEPENDENT NONRADIATING
SOURCES
It was shown in Ref. 5 that for r . a the field U(r, t) ra-
diated by a source Q(r, t) whose spatial support D is con-
tained inside the spherical volume V: r < a is given by
the time-dependent multipole expansion

U~r, t ! 5
1

r (
l50

`

(
m50

l

(
j51,2

emSl,m
( j) ~ r̂!L l

(r, t)ql,m
( j) ~t !, (39)

where r̂ [ r/r and where Sl,m
( j) ( r̂) are the real spherical

harmonics, defined as Sl,m
(1) ( r̂) 5 Re$Yl,m(r̂)% and Sl,m

(2) ( r̂)
5 Im$Yl,m(r̂)%, Re and Im denoting the real and the
imaginary parts, respectively. The constant coefficients
em 5 1 or 2 if m 5 0 or m > 1, respectively, and

L l
(r, t)ql,m

( j) ~t ! 5 (
n50

l
~l 1 n !!

n!~l 2 n !! S 2r

c D 2n

] t
2nql,m

( j) ~ t!, (40)

where, as before, t 5 t 2 r/c and ] t
2n [ (] t

21)n denotes
nth-order time integration, where

] t
21ql,m

( j) ~t ! 5 E
2`

t

dt8ql,m
( j) ~t8!.

The expansion coefficients ql,m
( j) (t) are the time-dependent

multipole moments of the radiated field and are defined
below.

The far field corresponds to the lowest-order term (n
5 0) in series expansion (40) for operator L l

(r, t) . By us-
ing only this term in series expansion (40), one obtains
from Eq. (39) the far-field behavior

U~rs, t ! ;
1

r (
l50

`

(
m50

l

(
j51,2

emSl,m
( j) ~s!ql,m

( j) ~ t! as r → `

so that

F~s, t! 5 (
l50

`

(
m50

l

(
j51,2

emSl,m
( j) ~s!ql,m

( j) ~ t!. (41)

It follows from relation (41) and the orthogonality of the
real spherical harmonics Sl,m

( j) (s) over the unit sphere S2,
i.e.,5

E
S2

dsSl,m
( j) ~s!Sl8,m8

( j8)
~s! 5 d l,l8dm,m8d j, j8

1

em
,

that

ql,m
( j) ~t ! 5 E

S2
dsF~s, t !Sl,m

( j) ~s!. (42)

Thus the time-dependent multipole moments ql,m
( j) (t) are

defined from Eq. (42) as the projections of the time-
domain radiation pattern onto the set of real spherical
harmonics.

By analogy with the frequency-domain treatment in
Ref. 3, we define a NR source QNR(r, t) confined within D
as being a source for which the radiated energy

E [ E
2`

`

dtE
S2

dsuF~s, t!u2

5 E
2`

`

dt(
l50

`

(
m50

l

(
j51,2

em@ql,m
( j) ~t !#2 5 0. (43)

It follows immediately that a source Q(r, t) is NR if and
only if any of the following conditions holds:

1. ql,m
( j) (t) 5 0 for all l 5 0, 1,...; m 5 0, 1,..., l,

j 5 1, 2, for all t P R;
2. F(s, t) 5 0 for all t P R and s P S2.

Conditions 1 and 2 are, in fact, the same condition since
one implies the other; we have separated them to clarify
the following observations. The first condition implies,
in view of Eq. (39), that the radiated field itself vanishes
for r . a, i.e., the field generated by a NR source
QNR(r, t) localized within D vanishes (at all times t) iden-
tically at all points outside V. In fact, it is widely known
that the field produced by such a NR source must vanish
everywhere outside D.4,9 Also, since F(s, t) is [from Eq.
(4)] determined by the fourfold Radon transform of r(X )
corresponding to the hyperplane X • Vs 2 ct/A2 5 0 in
the 4D Radon domain or, alternatively, by the Radon pro-
jections of r(X ) taken along directions Vs that lie (tan-
gentially) on the surface of the light cone, we conclude
from condition 2 that a necessary and sufficient condition
for a source to be NR is the vanishing of the Radon pro-
jections of r(X ) taken along those directions (see Fig. 1).
Hence NR sources in the time domain are analogous to
the so-called ghost (invisible) objects of CT.23–25

In addition to NR sources, there are sources that gen-
erate nulls in the time-domain radiation pattern [wherein
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F(s, t) 5 0] only for certain discrete and/or continuous
sets of directions s (corresponding to subsets of the unit
sphere S2). Sources of the latter class are of concern in
the mathematical setting of inverse source problems with
discrete far-field data. In particular, unlike in the full-
view case, in the discrete-set case nonuniqueness arises
both from sources that do not radiate at all (NR sources)
and from sources that are NR only with respect to certain
observation directions. The latter belong to the null
space of the Radon transform corresponding to limited-
view angles.23–25 By borrowing ideas from inverse
scattering26 and CT theories,25 one readily finds that
sources of the form

Q~r, t ! 5 Pn50
N S sn • ¹ 1

1

c

]

]t DA~r, t !, (44)

where A(r, t) is a differentiable function of compact spa-
tial support D, generate far fields with nulls at the dis-
crete set of directions s0 , s1 ,..., sN . By evaluating the
spatial–temporal Fourier transform of the source defined
by Eq. (44) for k 5 ( v

c )s, one finds that

E
2`

`

dt exp~ivt !E
D

d3r exp~2ivs • r/c !Q~r, t !

5 FPn50
N i

v

c
~sn • s 2 1 !G E

2`

`

dt exp~ivt !

3 E
D

d3r exp~2ivs • r/c !A~r, t !,

which is seen to vanish for s 5 s0 , s 5 s1 ,..., s 5 sN ,
thereby confirming the vanishing of the far fields at those
observation directions.

We conclude this section with an orthogonality relation
between NR sources and solutions of the homogeneous
wave equation that leads to a new definition of NR
sources in the time domain. The time-harmonic counter-
part of the relation in question was derived first in Ref. 27
and is generalized here to arbitrary time dependence.

Let UR(r, t) and UNR(r, t) be the real-valued fields that
are produced by a radiating and a NR source QR(r, t) and
QNR(r, t), respectively, and that obey the inhomogeneous
wave equations

S ¹2 2
1

c2

]2

]t2DUR~r, t ! 5 24pQR~r, t !, (45)

S ¹2 2
1

c2

]2

]t2DUNR~r, t ! 5 24pQNR~r, t !. (46)

Let QR(r, t) and QNR(r, t) be localized, respectively, in
disjoint simply connected spatial–temporal domains DR
and D. By multiplying Eq. (45) by UNR(r, t) and Eq. (46)
by UR(r, t), we obtain

UNR~r, t !S ¹2 2
1

c2

]2

]t2DUR~r, t !

5 24pUNR~r, t !QR~r, t !, (47)
UR~r, t !S ¹2 2
1

c2

]2

]t2DUNR~r, t !

5 24pUR~r, t !QNR~r, t !. (48)

By subtracting Eq. (47) from Eq. (48) and integrating both
sides of the resulting equation over space–time, one ob-
tains by means of Green’s theorem

E
D

dtd3rUR~r, t !QNR~r, t ! 5 0, (49)

where we have used the fact that UNR(r, t) vanishes out-
side the spatial–temporal support D. By noting that

S ¹2 2
1

c2

]2

]t2DUR~r, t ! 5 0 if ~r, t ! P D, (50)

one concludes from Eq. (49) that NR sources localized in
the spatial–temporal region D are orthogonal to solutions
of the homogeneous wave equation inside D.

Finally, we conclude by showing that a source of
spatial–temporal support D is NR if and only if it obeys
orthogonality relation (49) with respect to any solution of
homogeneous wave equation (50) inside D. The analysis
above reveals that this condition is necessary. We need
to show only sufficiency. This is accomplished readily by
noting that the causal Green function

G~r 2 r8, t 2 t8! 5 d~t8 1 ur 2 r8u/c 2 t !/ur 2 r8u

obeys

S ¹2 2
1

c2

]2

]t2DG~r 2 r8, t 2 t8! 5 0

if the space–time point (r, t) is inside D and (r8, t8) is
outside D. Then, by using UR(r, t) 5 G(r 2 r8, t 2 t8)
(for fixed (r8, t8) outside D) in Eq. (49), we find that

E
D

dt8d3r8G~r 2 r8, t 2 t8!QNR~r8, t8! 5 0

if ~r, t ! ¹ D. (51)

One concludes from Eq. (51) that QNR(r, t) must vanish
at all space–time points outside the spatial support of
QNR(r, t), which confirms the NR nature of QNR(r, t).
We have thus obtained a new definition of NR sources in
the time domain based on orthogonality relation (49).

5. CONCLUSION
We have presented a new treatment of the (time-
dependent) inverse source problem with far-field data
that makes use of standard linear operator theory and a
Radon-transform representation of the time-domain ra-
diation pattern. In Subsection 3.A we derived a new fil-
tered backprojectionlike method to reconstruct the ME
source consistent with prescribed far-field data. Among
other results, ME sources contained in a spatial–
temporal domain D were found to obey a homogeneous
wave equation in the interior of D. The general theory in
Subsection 3.A was developed further in Subsection 3.B,
where we addressed the canonical example of a source lo-
calized within a spherical shell. In Subsection 3.C we
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presented the results of a numerical simulation that illus-
trated the general theory. In Section 4 we characterized
NR sources in the time domain by using time-dependent
multipoles. We found that NR sources in the time do-
main are analogous to the so-called ghost objects that
arise in the formalism of the limited-view CT problem.
An orthogonality relation for NR sources derived under
time-harmonic conditions in a previous paper,27 was gen-
eralized to the time domain and used as the basis for a
new definition of a NR source having a given spatial–
temporal support.
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