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Novel space-time solutions to general classes of wave equations 
and their properties will be reviewed briefly. The localized wave 
(LW) solutions, in contrast to their continuous wave (CW) or 
monochromatic counterparts, exhibit enhanced localization and 
energy fluence characteristics. This has led to the analysis and 
construction of pulse-driven, independently addressable arrays 
to investigate nonstandard methods of wave energy transmission 
based upon these LW solutions. Such arrays allow different sig- 
nals to be transmitted from different locations in the array, thus 
allowing shading of the spectral features as well as the amplitudes 
seen by the array. It has been shown experimentally that the 
beams transmitted by these LW pulse-driven arrays outperform 
conventional CW driven arrays. 

I. INTRODUCTION 
Large classes of nonseparable space-time solutions of the 

equations governing many wave phenomena (e.g., scalar 
wave, [1]-[6] Maxwell’s, [3],  [7] Klein-Gordon [8] equa- 
tions) have been reported recently. When compared with 
traditional monochromatic, continuous wave (CW) solu- 
tions such as Gaussian or piston beams, these localized 
wave (LW) solutions are characterized by extended regions 
of localization; i.e., their shapes and/or amplitudes are 
maintained over much larger distances than their CW 
analogues. This is also true in complex environments such 
as naturally dispersive media (waveguides) [9] and lossy 
media. These discoveries have prompted several exten- 
sive investigations into the possibility of using these LW 
solutions to drive finite sized arrays, thereby launching 
fields having extended localization properties [ 101, [ 111. 
This paper presents a brief review of the theoretical re- 
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sults and experimental evidence associated with this LW 
effect. 

The possibility of solutions of Maxwell’s equations that 
might describe efficient, localized transfer of electromag- 
netic energy in space was first suggested by Brittingham 
[l]. It has been recently discovered that the original “Fo- 
cus Wave Modes” (FWM) introduced by Brittingham [1] 
represent Gaussian beams that translate through space with 
only local deformations [2]-[5]. Unfortunately, the FWM 
is not focused in the sense originally intended; i.e., it is 
not a purely localized, translationally invariant solution 
of the wave equation. The latter is in fact impossible to 
obtain. A boost solution of the form (a(,r, y. z - ~ t )  requires 
{A - be a 
harmonic function. This precludes from having a compact 
spatial support. Nonetheless, these fundamental Gaussian 
beams can be used to synthesize other interesting, novel, 
exact solutions of the wave and Maxwell’s equations. As 
will be discussed below, these LW solutions can be tailored 
to give localized transmission of wave energy in space and 
time. 

These LW solutions may also have some significance to 
our basic understanding of elementary particles, such as 
photons. They allow one to reconcile our intuition of ag- 
gregate macroscopic phenomena with a microscopic picture 
of our world. For instance, a self-consistent photon model 
has been constructed [ 121 which encompasses well-known 
characteristics of photons emitted from atomic transitions 
and those undergoing Compton scattering with electrons. 
This model also reproduces [13] the results of Young’s two- 
slit scattering experiment. In particular, i t  simultaneously 
incorporates the particle (the solution explains which slit 
the photons passes through) and the wave (the solution 
recovers the classic diffraction pattern) nature of the photon 
interaction with the two-slit screen. While many aspects of 
this model remain to be explored, the results to date offer a 
rather tantalizing point of view on the wave-particle duality 
as well as the possibility of reconciling contemporary ideas 
of photon localization and causality. 

Q(F1.z  - ct)  = Al(a  = 0; hence, that 
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11. WAVE EQUATIONS 
The scalar wave equation 

governs many basic wave phenomena in real, homoge- 
neous, isotropic, lossless media. It is the fundamental 
equation underlying the physics of wave propagation. 

A. FWM Representations 
We have shown [4]-[7] that one can construct exact solu- 

tions of the scalar wave equation and Maxwell’s equations 
that describe localized, slowly decaying transmission of 
wave energy in space-time. One such class of fundamental 
solutions [2] arises naturally if one assumes a solution of 
the form 

The latter reduces (2.1) to a Schrodinger equation for G in 
the pulse center or light cone variable 7 = z - ct. Setting 
the transverse distance p equal to d m  = d m  
and considering specifically an axisymmetric solution, the 
original wave equation (2.1) has the moving, modified 
Gaussian pulse 

(2.3) 

as an exacr solution. This is the scalar counterpart of the 
original FWM . The complex variance 1/V = 1/A - i / R  
yields the beam spread A = zo + T ~ / Z O ,  the phase front 
curvature R = T + z,”/r,  and beam waist W = (A/k)’/’. 
Because it can be associated with a source at a moving 
complex location ( p  = 0, z = ct + izo), (2.3) represents 
a generalization of earlier work by Deschamps 1141 and 
Felsen [ 151 describing Gaussian beams as fields radiated 
from stationary complex-source points. Nonetheless, the 
solution (2.3) is source-free in real space. One usually 
specifies the real-part of (2.3) as the desired field since 
the resulting function has its maximum at (p  = 0, z = 
et). These results are also related to earlier work by 
Trautman [ 161 who considered constructing new solutions 
of the wave equation by applying complex, inhomogeneous 
Lorentz transformations to known wave equation solutions. 
The parameter k is free and represents the lowest radian 
frequency w,in = kc  contained in the solution, i.e., the 
plane wave term in (2.3) acts like a high-pass frequency 
filter. Similarly, the parameter wmaz = c/zg defines the l / e  
roll-off point in spectrum of the solution, i.e., it represents 
the maximum radian frequency in the spectrum. 

The fundamental Gaussian pulses [3] have either a trans- 
verse plane wave or a particle-like character depending 
on whether IC is small or large. Moreover, for all k they 
share with plane waves the property of having finite energy 
density but infinite total energy. However, as with plane 
waves, this is not to be considered as a drawbackper se. The 
above solution procedure has introduced an added degree 
of freedom into the solution through the variable k that can 
be exploited, and these fundamental Gaussian pulse fields 

can be used as basis functions to represent new transient 
solutions of (2.1). In particular, 

f(7, t )  = lo; a/,-(?, t ) F ( k ) d k  
00 

- - 1 d k F ( q e - k  s ( P ? , t )  

47ri[zo + i ( z  - et)]  1 
(2.4a) 

where 

is an exact source-free solution of the wave equation. This 
representation, in contrast to plane wave decompositions, 
utilizes basis functions that are more localized in space and 
hence, by their very nature, are better suited to describe the 
directed transfer of wave (electromagnetic) energy in space. 
The resulting pulses have finite energy if, for example, 
F ( k ) / &  is square integrable 131. 

Solutions to Maxwell’s equations follow naturally from 
the scalar wave equation solutions. Let f be a LW solution 
“$ the scalar wave equ_ation (2.1). Defining the electric, 
II, = f n ,  or magnetic, IIh = f n ,  Hertz potential along the 
arbitrary direction f i ,  one readily obtains fields satisfying 
Maxwell’s equations-that are T E  or T M  with respect to 
n. For instance, if a TE Polarized Field is desired, 

E’= -2ov x acteh 

ii = V(V 0 e h )  - &&. (2.5) 

where 2 0  = d z  and Yo = d a  are, respectively, 
the free-space impedance and admittance. 

B. Modified Power Spectrum (MPS) Solution 
Clearly, different spectra F ( k )  in (2.4) lead to different 

wave equation solutions. Many interesting solutions of the 
wave equation are created simply by referring to a Laplace 
transform table. One particularly interesting spectrum se- 
lection is the MPS 131: 

F ( k )  = 
[47r iP/r (a)] (Pk  - b)a- le -a(Sk-b)  , > b/P 

0 5 k < b / P ‘  
(2.6) 

{ 0, 

It is so called because it is derived from the power spectrum 
F ( k )  = ka-le-ak by a scaling and a truncation. This 
choice of spectrum leads to the (MPS ) pulse 

Much effort has been concentrated on this MPS pulse 
because it has an appealing analytical form and its pulse 
shape can be tailored to a particular application with 
a straightforward change in parameters. The transverse 
behavior of this MPS pulse at the pulse center is essentially 
f ( p , z  = et,  t )  N e - b p 2 / P z o f ( p  = 0 , z  = c t , t ) .  The 
corresponding transverse spatial spectra, that is, the k z  - k ,  
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MODIFIED POWER SPECTRUM PULSE 
EM ENERGY DENSITY 

PULSE CENTER = 0.00 km PULSE CENTER = 9.42 Y 18 km 

Fig. 1. The field energy density of an electromagnetic MPS pulse 
remains localized even at extremely large distance from its initial 
location. 

spectrum at various distances z = ct,  have been shown to 
remain nearly invariant as the MPS pulse propagates. Along 
the direction of propagation z and away from the pulse 
center the MPS pulse decays as f - 1/[4 + ( z  - ~ t ) ~ ] .  
Hence, it is localized along the direction of propagation as 
well. 

The MPS pulse can be optimized so that i t  is localized 
near the direction of propagation and its original amplitude 
is recovered out to extremely large distances from its 
initial location. Its component waveforms, and, therefore, 
their broad bandwidth spectra, are strongly correlated to 
each other, a self-similarity property inherent to the LW 
solutions. The uniqueness of such solutions is their intrinsic 
space-time nature: they are completely nonseparable. The 
MPS pulse can be recovered approximately from a finite 
array of radiating elements by specifying both their spatial 
and their temporal distributions [3], [lo], [ l l ] .  

The causal, localized nature of these solutions is demon- 
strated in Fig. I .  It shows surface plots and the correspond- 
ing contours plots of the electromagnetic energy density U 
of a T E  electromagnetic MPS pulse relative to the pulse 
center locations at z = 0.0 krri and z = 9.42 x lo9 krn. 
The MPS parameters are n = 1.0m, Q = 1.0, b = 
1.0 x 10l4 I K ~ ,  13 = 6.0 x and zo = 1.0 x lop2 m. U 
is normalized to its maximum value at f = 0. The transverse 
space coordinate p is measured in meters; the longitudinal 
space coordinate, z - ct, is the distance in meters along 
the direction of propagation away from the pulse center 
z = et. These results definitively show the localization 
of the field near the direction of propagation over very 
large distances. For the present choice of parameters, the 
MPS pulse becomes a 1/z field when z - pal2 = 
3.0 x 1015,. 

C. Bidirectional Representations 

A new decomposition of these exact, scalar wave equa- 
tion solutions into bidirectional, forward and backward, 
traveling plane solutions is also possible [4], [9]. In par- 

ticular, it has been shown that: 

S ( r : ~ ) - \ I l ( p . ~ . C = ( z - c t ) . 1 7 = ( z + c t ) )  

is actually a generalization of the representation (2.4). This 
bidirectional representation has the inverse: 

The representation (2.4) is obtained by taking the lowest 
order azimuthal mode, introducing the spectrum 

F(w)e-" '0 
87ri 

GO(71. 'U: X )  = 

and making the identification of the parameter v with 
k.  Like (2.4), the representation (2.8) is complete 
and has a well-defined inverse. The more conventional 
forward and backward propagating plane wave represen- 
tation can be extracted from (2.8) in a straightforward 
fashion. In particular, by introducing the variables 
k ;  = U -  v and w = IL + 7' into (2.8), the 
basis functions J7, ( x p )  exp(1714) exp(+ava) exp( - 7 ~ )  + 

. I ,(xp) exp(in4) exp( -7 (kZz -wt ) ) .  the constraint relation 
ILV = x2/4 + w2 = (k: + x 2 ) r 2 ,  and the representation 
(2.8) becomes 

(2.10) 

a superposition of forward and backward propagating Bessel 
Beams [17]. The conventional forward and backward prop- 
agating plane wave representation follows immediately: 
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Note that these results imply that the bidirectional repre- 
sentation does not replace the standard Fourier synthesis, 
but rather complements it, especially for the LW solutions. 
Moreover, the bidirectional representation allows for the 
intriguing result that locally in a very small region of 
space-time, one can have causal and acausal components 
coexisting, but that globally only a causal solution persists. 
In particular, a number of concerns about the causal nature 
of the original focus wave mode have been raised in [18]. 
As mentioned previously, the “tweaked-up’’ MPS pulse 
should not suffer from the same pathologies. This can 
in fact be demonstrated analytically with the bidirectional 
representation. Integrating over w to remove the delta func- 
tion constraint in the lowest order form of the azimuthally 
symmetric version of (2.10), the MPS pulse is recovered 
from the expression: 

where w = + , / m c  and the “bidirectional spectrum” 
[3i7 ~41: 

P.* 
d i 5 z  F ( X ,  k z >  = 

a-1 
x [ ; ( d m - k 2 ) - b ) ]  

[-+kL]zo / Z  

I (2.13) 

Note that the complicated form of this expression reveals 
the difficulty in developing the LW solutions from a con- 
ventional Fourier point of view. Equation (2.13) gives the 
spectrum for the forward and backward propagating form 
of the MPS pulse. When b / P  << 1, there clearly is no back- 
ward propagating component. If b / P  is not small, the ratio 
of the spectrum F ( x ,  + I C z )  and F ( x ,  - I C 2 )  is such that: 

Therefore, for the “tweaked-up” MPS pulse considered 
above where p >> 1, one has F(x,+Ic,) >> F(x , -k , )  
for nonnegligible IC,; as a consequence, only the forward 
propagating component contributes to the MPS pulse. On 

the other hand, if CY = ,8 = 1.0, b = 0, and a = zo one re- 
covers the Splash Pulse reported in [2] from the MPS pulse. 
For that case this ratio yields F ( x ,  +IC,)  - F ( x ,  - I C 2 ) ;  i.e., 
there are about equal amounts of forward and backward 
propagating waves, as illustrated by Figs. 3 of [2]. The 
same analysis applied to the focus wave mode reproduces 
known conclusions [12], [18]: the FWM consists mainly 
of backward propagating components for k z o  >> 1, and 
forward propagating components for IC zo << 1. 

111. SOLUTIONS IN COMPLEX MEDIA 
For many realistic situations, the wave equation (2.1) is 

not an adequate model of the underlying physics. Boundary 
conditions and material behavior must be included. As 
illustrated below, LW solutions in complex environments 
exist and are readily constructed from the bidirectional point 
of view. The following results have been extended recently 
to plasma environments [19] and to fiber optical waveguides 
P O I .  

A.  Klein-Gordon Equation Solutions: Bi-  and 
Uni- Directional Cases 

Consider the general Klein-Gordon (KG) equation 

(a:$ - v2 + p2)P = 0. 

The bidirectional form of the LW KG solution is obtained 
from the ansatz [8] 

P = G ( p ,  2, t)eip“ (3.2) 

where the variable 

, = z + ( $ ) t  

and the group velocity of the localized wave is 

This reduces (3.1) to the form 

i2p(a2 - v,l&)G(p, z ,  t )  + (a,” - c-’6’:) 

x G ( p ,  Z ,  t )  + V t G ( p ,  z ,  t )  = 0. 

T y(z - vgt) 

(3.4) 

Introducing the variable 

where the relativistic factor y = [l - ( ~ ~ / c ) ~ ] - ’ / ~ ,  (3.4) 
becomes a hyperbolized Schrodinger equation 

i 4 p y d T G ( p ,  T )  + d $ G ( p , ~ )  + V t G ( p ,  T )  = 0. (3.4’) 

A simple substitution 

G ( p ,  T )  = g(p, T)e-i2pYr (3.5) 

V ? g ( p l  7) + a,2g(p, + 4 P 2 y 2 g ( ~ ,  T )  = 0 (3.6) 

results in the Helmholtz equation 
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Klein-Gordon Localized Wave Solution 

(a) (b) 

Fig. 2. 
at t = 0. (a) Its amplitude QOO and (b) its energy density I l k o ~ l ’ .  

A localized wave solution in a dense plasma is shown as a function of the spatial variables 

which has the known, general solution 

where 

Consequently, the general bidirectional solution has the 
form 

qlT,,(r, t )  = 3 1 ( 2 f i y ~ ) ~ 7  (T) C o s ( r n ~ ) P ~ ~ 2 ~ ? ~ ~ ~ e ~ ~ ~ ” .  
E 

(3.8) 
We note that the wavevector of the localized wave is 

defined from (3.3) simply as 

P = .(?)b. (3.9) 

If we hold ug fixed and change p ,  the wavenumber [I 
changes proportionately to p. This is of interest because 
,F1 determines the length scale of the localization. In the 
case of a LW propagating at a group velocity 7ig << c in a 
plasma consisting of particles with charge q whose density 
is a constant n o ,  the term 

wPo being the associated plasma frequency; and one obtains 

P - &7lg. (3.10) 

Thus the LW solution in a plasma is more localized for 
larger electron densities and for larger velocities. For an 
example, consider the 1 = 0. m = 0 solution. The location 
of the first zero of j o  occurs at a distance d, either along 
the transverse, p ,  or longitudinal, y(z - v g t )  coordinate, 
given by the expression d N [~/(2-y[j)] - ( C / I I ~ ) ( C / W ~ O ) .  

For a plasma density no - 10” cmP3, the term [j = 
3.55 x 10’ cm-’; and one then finds that d - 1.0p m. 
This micron sized LW solution and its energy density 

/ \ l r o 0 1 ~  are shown in Figs. 2(a) and (b), respectively, for 
f = 0. The dashed contours in both figures indicate areas 
where the values are less than zero. Other LW solutions are 
possible. For instance, the unidirectional ansatz 

I$ = G ( p .  7)e-~Q[z-(c2/vs) t1  (3.11) 

reduces the Klein-Gordon equation directly to a Helmholtz 
equation 

V:G(p. 7 )  + d:G(p. 7 )  + x2G(p. 7 )  = 0.  

where the solution constants, cy and x, are related as 

(3.12) 

(3.13) 

Using known solutions to the Helmholtz equation, we arrive 
immediately at the general unidirectional form 

(3.14) 
In contrast to the bidirectional representation, note that 
(3.13) can be rewritten as 

(3.15) 

Thus the unidirectional form of the KG solutions differs 
from the bidirectional one in that given the group velocity, 
there are now two free parameters, a and x, rather than one, 
p. Moreover, with (3.15) it allows for positive and negative 
energy solutions. Superpositions of (3.8) or (3.14) over their 
free parameters lead to finite energy LW solutions. 

B. Waveguide Solutions 
Exact LW pulse solutions for a circular acoustic wave- 

guide and a perfectly conducting electric waveguide have 
also been obtained. For instance, with the bidirectional 
representation (2.8) restricted to a cylinder of radius R so 
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that the solution is zero on the wall of that cylinder and 
taking xmn to be the nth root of the Bessel function Jm, the 
general, lowest order, axisymmetric, acoustic waveguide 
solution has the form 

(3.16) 

Choosing the spectrum 

a LW waveguide solution results: 
m 

m=l 

x KO (F d[al + i ( z  - ct) ] [a; ,  - i ( z  + ct) ,)  

(3.18) 

that can be localized by design and can propagate large 
distances in the dispersive environment with little variation. 
In particular, with the constant values: a1 << 1 and 
a2 > 1, one finds that: 1) the energy is forward propa- 
gating, 2) the initial pulse is well localized along z axis 

the peak of the initial pulse is large but well-behaved 

because @(p,OlO) N J o ( ~ o m ~ / R ) l n  & G X o m / R  , 
and (4) the pulse's peak value remains unchanged for z << 
a2/2 and then decays logarithmically for xom -1 R << 
1. Thus for a1 = m, a2 = lo3 m and Xom/R = 
1000 m-l, the pulse propagates 500 m without any decay 
and only decays to half its value over the next 50 km. 

because Q(P> 2, 0) N J O ( X O ~ P / R )  e x p ( - X o m d s ) ,  3) 

( ) 

C. Lossy Media 
Well-behaved solutions for lossy media have also been 

constructed from a bidirectional representation generaliza- 
tion of the FWM superposition in [4]. A recent argument 
due to Besieris, Shaarawi, and Ziolkowski will achieve 
a lossy medium solution that consistently reduces to the 
FWM solution in the limit where the loss disappears. More- 
over, it demonstrates further the utility of the bidirectional 
approach to finding unusual LW solutions of wave equa- 
tions. Consider, for instdhce, the equation governing the 
behavior of a wave in a lossy medium having permittivity 
6 ,  permeability ,U, and conductivity U :  

{V2 - c,u~: - pc&}U(F,t) = 0. (3.19) 

Set v2 = ( c / 2 ~ c ) ~ .  Assuming for t 2 0 the solution 
form u(?,t) = e- ' (Ct)~(?lt) l  leads to a Klein-Gordon 
equation with an imaginary mass term for 4:  - V2 - 
v2}$(?, t )  = 0, which has the general bidirectional solution 

1 
x 6 a P  - -(x2 - v')] 

[ 4  
(3.20) 

where the restriction x 2 v is made to guarantee satisfac- 
tion of the constraint condition in the positive a, P quadrant. 
The bidirectional spectrum C(a,  P, x )  will now be chosen 
to have the FWM form introduced in [4]: C(a,P,x)  = 
( 7 ~ / 2 ) e - ~ ' o 6 ( p  - k). Clearly, modifications of the FWM 
spectrum appropriate for this lossy medium case are simply 
introduced, for instance, by including a function f (x)  in this 
expression. This will modify the behavior of the terms most 
closely coupled to the transverse behavior of the solution. 
Several integral and algebraic manipulations lead to the 
result 

which is the original FWM solution ~ F W M ( ? ,  t )  modified 
by the remainder term 

(3.22) 
( [ z o  + i ( z  - c t ) ]  

the latter, which accounts for the presence of the lossy 
medium, is bounded and clearly reduces to zero in the limit 
v + 0. On the other hand, in the large loss limit v ---f CO the 
ve term dominates the last sum so that limv.+m 4 ~ ( ? ,  t )  N 

Jo(vp), giving a well-behaved solution: 4(?, t )  = 
~ F W M ( ? , ~ )  + e i k ( z + c t ) J ~ ( v p ) / { 4 r [ a o  + i ( z  - c t ) ] } .  The 
remainder term is localized near p = 0 and z = ct as is the 
FWM solution. Other choices of the bidirectional spectrum 
C in (3.20) will lead to finite energy superpositions of 
these FWM-based solutions, possibly a MPS pulse type of 
solution for the lossy medium case. 

IV. LW TRANSMISSION EXPERIMENTS 
The physics behind the LW effect is the coupling of 

the usually disjoint portions of phase space: space and 
frequency, due to the nonseparable nature of the LW 
solutions. The component waveforms, and, therefore, their 
broad bandwidth spectra, are strongly correlated to each 
other, a self-similarity property inherent to the LW solution. 
This spatial spectrum correlation leads to different pulses 
arriving from different locations with different, but corre- 
lated, frequency content; i.e., they arrive at the right place at 
the right time with the frequency components necessary to 
reconstruct the wave packet. A moving interference pattern 
forms at enhanced distances as the individual waveforms 
continue to propagate away from their sources. From a 
practical point of view, a new type of array is necessary to 
achieve this effect-each array element must be indepen- 
dently addressable so that the appropriate waveform can be 
radiated from it. 

The LW effect has been verified with a set of three 
acoustic experiments using ultrasound in water. The first set 
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of acoustic experiments in water was reported in [lo]. Suc- 
cessful localization of a transient, pencil-beam of ultrasound 
launched from a LW pulse-driven array was exhibited. The 
array was linear, synthetic, and driven with the MPS pulse. 
The next set of experiments simply extended the previous 
results to circular and square synthetic arrays. In both 
cases the pencil-beam generated by the LW pulse-driven 
array outperformed the corresponding beam transmitted 
by an array driven with a CW tone burst. This was true 
when the array was uniformly illuminated (an effective 
piston which produces a naturally focussed beam) and 
when it was shaded with a spatial Gaussian taper (an 
initial transverse Gaussian with the same waist as the 
MPS pulse). The beam quality was better than the highest 
frequency Gaussian tested and avoided the inherent near- 
field variations associated with a piston generated field. 

The final experimental series involved an actual array 
of ultrasonic transducers. This experiment was designed to 
avoid some of the ambiguities that arise in comparing LW 
and CW driven arrays. In particular, the LW solutions are 
composed of broad bandwidth waveforms while traditional 
performance criteria are based upon CW, narrow-band 
concepts. There is no special frequency that can be selected 
to define, for instance, a Rayleigh distance when several 
different broadband spectra are involved. Nevertheless, per- 
formance comparisons are desirable and a specific Rayleigh 
distance L R  was derived for these comparisons [ 111. 

A 25 element, 5 x 5 ,  square array was fabricated which 
is 1.1 cm on a side and has 0.5 min diameter disc 
elements (acoustic transducers) spaced on 2.5 I I ~ I I ~  centers. 
The small number of elements limits the number of CW 
configurations; there are too few elements for any effective 
shading or focusing. Six unique waveforms were designed 
for this array to achieve a tenfold experiment; i.e., main- 
taining localization at least to 10 x LR. For the maximum 
frequency of significance included in these signals, L R  - 
2 - 3 cm. The signal design was accomplished with a 
numerical simulation of the experiment which accounted 
for the effects (time derivatives of the signals) of the 
receiving transducer as well as those of the transmitting 
ones. Although the resulting time derivatives have no effect 
on a CW field other than multiplication by a constant, 
they greatly impact the result of the LW fields because 
of the inherent spatial spectrum correlation (coupling of 
space and time). Comparisons of the energy efficiency 
(energy received relative to the energy delivered to the 
array) and beam profile (half width at half maximum of 
the intensity profile) were made and confirmed more than 
a ten-fold enhancement of the Rayleigh distance of the 
beam. As in the synthetic array experiments, the pencil- 
beam generated by the LW pulse-driven array outperformed 
the corresponding beam transmitted by an array driven 
with an equivalent CW tone burst. The sidelobe levels 
of the LW pencil beam were greatly reduced, especially 
when compared to beams exhibiting grating lobes which 
are generated by driving this sparse array with much higher 
frequency CW tone bursts. The LW pencil-beam is quite 
robust even with a variety of losses and perturbations 

inherent in the experimental apparatus. Recent analytical 
results [21], [22] have extended the meaning of diffraction 
lengths for the radiated and measured field energies and 
intensities and of the transverse widths of these beam 
quantities to the broad bandwidth cases associated with 
these localized wave pulse-driven arrays. The theoretical 
and experimental results are in excellent agreement. 

v. CONCLUSIONS AND FUTURE PLANS 
Some very interesting physics, mathematics, and engi- 

neering issues have surfaced because of the many studies 
on localized wave transmission. These include questions 
on causality, localization, space-time field representations, 
complex source interpretations of beam fields, and time 
domain antenna effects. The macro-photon and macro- 
particle results suggest that alternate descriptions of photons 
and particles are possible which have physically interesting 
and appealing properties. The issue of determining optimal 
source distributions that could generate fields that at least 
closely approximate these LW solutions is a very complex 
one and poses a current challenge to workers in this 
field. The efficiency and beamwidth limits derived in [21] 
and [22] suggest that with improvements in the source 
distributions currently in use, one can realize beams with 
these enhanced localization properties. 

Many of these LW issues are in the formative stages and 
require further investigation and clarification. Nonetheless, 
much progress has been made. The studies of the generation 
(or launching of) LW pulses from finite sized arrays of 
radiating elements have many potential applications. These 
include the design of pulses with localized wave transmis- 
sion characteristics for remote sensing, communications, 
power transmission, and other directed energy applications. 
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