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A novel bidirectional decomposition of exact solutions to the scalar wave equation has been shown to form a
natural basis for synthesizing localized-wave (LW) solutions that describe localized, slowly decaying transmis-
sion of energy in free space. We present a theoretical feasibility study that shows the existence of LW solutions
in optical fiber waveguides. As with the free-space case, these optical waveguide LW solutions propagate over
long distances, undergoing only local variations. Four different source modulation spectra that give rise to
solutions similar to focus wave modes, splash pulses, the scalar equivalent of Hillion's spinor modes, and the
modified power spectrum pulses are considered. A detailed study of the modified power spectrum pulse is per-
formed, the practical issues regarding the source spectra are addressed, and the distances over which such
LW solutions maintain their nondecaying nature are quantified.

1. INTRODUCTION

Brittingham's pioneering work' in finding focus wave
mode (FWM) solutions to Maxwell's equations has inspired
several researchers to explore the existence of nondis-
persive, packetlike solutions to the wave equation that
can propagate through free space without any decay.
Ziolkowski2 has argued that, although the FWM solutions
have an infinite total energy content, a superposition
of FWM's might have an advantage over the standard
plane-wave superposition when it comes to describing
the transfer of directed pulses in free space. Such pulses,
characterized by high directionality and slow energy decay,
have been termed localized waves (LW's).

Experimental investigations of launching acoustical
LW's have shown considerable success. It has been estab-
lished that a LW pulse launched from a linear synthetic
array propagates with little variation over extended near-
field distances. Recent results3 have shown that a 10-fold
improvement over continuous excitations is possible. An-
other area of research that is based on similar underlying
principles is Durnin's diffraction-free Bessel beam.4

Experimental verification of the larger depth of such a
beam, as compared with a Gaussian beam, has been pro-
vided by Durnin et al.5

To assimilate all these attempts toward synthesizing
highly directional pulses and beams into one representa-
tion, Besieris et al.6 have proposed a novel approach to the
synthesis of wave signals. Within the framework of this
new approach, exact solutions are decomposed into bidirec-
tional, backward and forward, plane waves traveling along

a preferred direction z, viz., exp[-ia(z - ct)]exp[-i3(z +
ct)]. These bilinear expressions can be elementary solu-
tions to the Fourier-transformed (with respect to x and y)
three-dimensional wave equation, provided that a con-
straint relationship involving a, /3, and the Fourier vari-
ables dual to x and y is satisfied. Such blocks have been
shown to constitute a natural basis for synthesizing Brit-
tinghamlike solutions, such as Ziolkowski's splash pulses,
Hillion's spinor modes,7 and the Ziolkowski-Belanger-
Sezginer scalar FWM's. An application of this technique
to infinitely long, cylindrical, metallic waveguides has been
discussed by Shaarawi et al.' By varying the free parame-
ters of specific source modulation spectra, one can synthe-
size within the waveguide the localized, nondecaying
pulses that move predominantly in the positive direction.
Questions about the physical nature and the causality of
the bidirectional representation have been thoroughly ad-
dressed and will be presented elsewhere.9

In this paper we apply the method of bidirectional de-
composition to optical fiber waveguides and investigate
the possibility of synthesizing pulsed solutions that can
propagate along such guides with only local variations.
The analysis is similar to that of the infinite waveguide
described by Shaarawi et al.,' with the exception of the
boundary conditions that the fields must satisfy at the
core-cladding interface. For simplicity, the core and
the cladding materials are assumed to be both nondisper-
sive and nonabsorptive. The only dispersive characteris-
tics are due solely to the core-cladding interface. The
general solution to the scalar wave equation in an optical
fiber is analyzed for four source modulation spectra, and
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the approximations that need to be made to generate solu-
tions similar to FWM's, splash pulses, the scalar equiva-
lent of Hillion's spinor modes, and the modified power
spectrum (MPS) pulses are considered.

Current research efforts in the area of high-speed, long-
distance fiber-optic communications are concentrated on
the development of new methods that will counter the
pulse dispersion effects introduced during information
transmission. The transmission of stationary, nonlinear
optical pulses, termed solitons, in dispersive optical fibers
was proposed by Hasegawa and Tappert'0 in 1973 and
demonstrated in practice by Mollenauer et al." in 1980.
While soliton-based communications systems are on the
verge of becoming a practical reality, limitations imposed
on system performance by fiber loss, frequency chirp, and
the interaction of neighboring pulses are still being stud-
ied. We propose a novel method of wave synthesis that
does not invoke the need for nonlinear effects in optical
fibers and that leads to solutions that are capable of coun-
tering the dispersive effects introduced by the waveguide.
Although only an elementary theoretical discussion is
presented in this paper, this technique may lead to the
emergence of a competing technology in the area of high-
capacity, fiber-optic communications.

In Section 2 we analyze the optical waveguide by assum-
ing a solution of the bidirectional type and arrive at a ge-
neric elementary solution to the scalar equation in terms
of the newly defined parameters. In Section 3 we take
recourse to the classical waveguide analysis to simplify the
generic solution further. A one-to-one correspondence is
established between the two methods, and the conditions
for the core and the cladding regions are established.
This leads to an elimination of the practically unrealizable
solutions and simplifies the mathematical analysis that
follows. In Section 4 we briefly describe the linearly po-
larized (LP) modes in the optical fiber and use the proper-
ties derived in the literature to specify the boundary
conditions. The superposition of the elementary solutions
obtained after the boundary conditions have been invoked
is described in Section 5. In Section 6 we consider the
singular source spectrum, the splash pulse spectrum, the
zero-order Bessel spectrum, and the MPS spectrum and
derive expressions for pulselike solutions in optical fibers.
In Section 7 we evaluate the nondecaying nature of the
MPS pulse shape and relate the free parameters to physi-
cally meaningful quantities. We quantify the distance for
which no decay will be observed in the MPS pulse solution
derived earlier. The feasibility of practical implementa-
tion of such spectra as well as future theoretical direc-
tions are considered in the concluding section.

2. SCALAR WAVE EQUATION

The scalar wave equation for an idealized optical fiber
made of a nondispersive and nonabsorptive material can
be written as

( ni2) i = 1 > core,

i = 2 > cladding, (1)
where V2 is the three-dimensional Laplacian, n is the re-
fractive index (n > n2; n, n2 assumed to be constant),
and c is the velocity of light in vacuo.

According to the bidirectional decomposition,6 we as-
sume a solution of the type

T(p, 4, z, t) = I)(p, )exp[if3(z + ct)]exp[-ia(z - ct)]

= 1D(p,0)exp(i83q)exp(-iaY), (2)

where -q= z + ct and; = z - ct. Breaking up the
Laplacian into its transverse component V,2 and a longitu-
dinal component Oz2, we can write the following:

az2 = -( - a)2-

d 2, = -C2 (3 + a) 2P.

Equation (1) then becomes

(V,2 + K 2) ID = 0,

(3)

(4)

(5)

where K 2
= ni 2 (a + 63)2 - (a - p)2. In cylindrical coor-

dinates, V2 is given by

V,2 = 2/ap2 + p-la/ap + p-2 2 /a42. (6)

Substituting Eq. (6) into Eq. (5) and assuming separability
with respect to the variables p and , viz., cD(p,4) =
R(p)F()), we get a set of ordinary differential equations;
specifically,

d2R/dp2 + p-'dR/dp + (K,2
- v2/p2)R = 0,

d 2F/d4)2 + v2F = 0.

(7)

(8)

Equation (7) is the Bessel differential equation, and
Eq. (8) is the second-order, ordinary, harmonic differential
equation. Solving Eqs. (7) and (8) and recombining vari-
ables, we can write a general solution to the Helmholtz
equation [Eq. (5)] as

c'(po) = {AJp(Kjp) + BYXKp) COS V,
LCI,cKp) + DKV(Kp)J

Ki 2 > O

Ki2 < 0
(9)

where A, B, C, and D are constants and J,, Y I,, and K,
are the ordinary and the modified Bessel functions. In
the classical analysis of a waveguide solution, one would
determine which of these constants need to be zero so as
to acquire practically realizable solutions. To do that, we
first determine the respective regions of the waveguide in
which Ki > 0 and K,2 < 0.

3. CLASSICAL WAVEGUIDE ANALYSIS

We seek to establish a one-to-one correspondence between
the parameters in the bidirectional approach and the clas-
sical analysis. Since the waveguiding conditions that the
mode propagation constant ,Bcl should satisfy are known in
a classical analysis, the one-to-one correspondence will de-
termine the constraints on the parameters a and ,B as well
as help in establishing the regions denoted by KI2 > 0 and
Ki

2 < 0. This is a valid means of obtaining some of the
desired conditions because the bidirectional decomposi-
tion is an alternative method for the synthesis of pulselike
solutions and not a replacement for the classical Fourier
synthesis. There exists a parallel between the two meth-
ods, and it is most advantageous to extract maximum in-
formation from each of these approaches.

In the classical analysis we consider solutions of
the form

P(p, 4, z, t) = (D(p, 0)exp(tif,3jz)exp(+iwsjt), (10)
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where 3 is the propagation constant, &) is the angular fre-
quency given by 2'irc/A in terms of the wavelength, and the
subscript cl is used to denote the classical approach. Com-
paring Eqs. (10) and (2), we can show the correspondence

j01 (/3 - a), wli - -(a + /3)c (11a)

or

(lib)

The classical waveguiding condition in this case is given by

(12)wcc o < aec < n cto e

which can also be expressed as the set of expressions

(n 1 ).I)' - (3~,c)2 > 0,

(/361c) 2 - (n2 &o 1)2 > 0.

(13a)

(13b)

These properties of LP modes imply that the solution
CD(p,4) in Eq. (15) can be considered a representation of
the LP01 mode of a fiber, the first subscript denoting that
v = 0. To find a relation between the constants A and D
in Eq. (15), we use the property of LP modes that, to meet
all boundary conditions, it is sufficient that d1 and d/dp
be continuous at p = a, where a is the radius of the fiber. 2

This leads us to our final expression for the elementary
solution for the Helmholtz equation [Eq. (5)], viz.,

D(p) = AJo(Kip), p < a,

AKo(K2P) Jo(Kla), p > a

as well as to the characteristic equation of the fiber

KiJi(Kla) K2K1(K2a)

Jo(Kla) Ko(K2a)

(17)

(18)

The corresponding expressions for the bidirectional ap-
proach give us

n,2(a + 3)2 _ (a _ )2 > 0,

n2
2(a + 3)2 _ (a - /3)2 < o,

(14a)

(14b)

thereby implying that K 2 > 0 and K2
2 < 0. Elementary

solutions for the Helmholtz equation [Eq. (5)] in the two
regions of interest, the core and the cladding, are given by
Eq. (9). Since Y,(K1p) -- - for p = 0 and I,(K2P) -- - as
p -a> c, the constants B and C are taken to be zero so that
physically realizable solutions are obtained. Further, for
simplicity of analysis we assume that there is no azimuthal
dependence of the field (v = 0). Hence the solution sim-
plifies to

qD(p) = {o(KIP), p < a
DKo(K2 p), p > a

The constants A and D are determined in Section 4.

(15)

4. LINEARLY POLARIZED MODES IN
WEAKLY GUIDING FIBERS

In most practical optical fibers, the refractive indices of
the core and of the cladding are nearly equal. If the pa-
rameter , is defined as

n2 -n,2 2_ - n2, (16)

then the condition A << 1 is called the weak-guidance
condition, and an optical fiber with this property is called
a weakly guiding fiber. With this weak-guidance condi-
tion, we can simplify the exact solutions of Maxwell's
equations to give an insight into the properties of certain
combinations of modes, termed LP modes. Apart from
the simplification in the analysis and the ease in under-
standing the mode phenomena, the concept of LP modes
has other useful properties. Gloge12 has shown that it is
possible to calculate the fields in the fiber and the charac-
teristic equations of LP modes directly from Maxwell's
equations. The solutions so obtained are based on the
scalar wave equation, and for this reason the LP modes
are sometimes referred to as scalar modes.

where we have used the property of the Bessel functions,
Jo'(Kla) = -J(Kla) and Ko'(K 2a) = -K,(K 2a), where the
primes indicate derivatives with respect to the arguments
of the Bessel functions.

5. GENERALIZED SOLUTION

We now develop the generalized solution to the scalar wave
equation by using the bidirectional representation. In
the analysis that follows, the constraint on a and /3, given
by the equation K,

2
= n,2(a + /3)2 _ (a - 3)2, is difficult

to handle. For this reason, we model the waveguide as
one with a core of refractive index nl = 1 and a cladding
of effective refractive index n2 = ne(ne < 1). It is fairly
simple to calculate this effective index ne, as shown in
Appendix A. This change in notation for the refractive
indices alters the constraints to

K12= 4a/3,

K22 = ne2(a + 3)2 - (a _ 3)2

(19a)

(19b)

A general solution to the scalar wave equation can be writ-
ten in terms of the superposition

p(PX tm) ( )2 f dKif da fd A(a,, ,K)KiJo(KP)

x exp(-iafexp(i/37)8(4aj6 - K 2) (20)

for p s a, where the constraint of Eq. (19a) has been incor-
porated within the integral with the help of the delta func-
tion. Similarly, for the region p 2 a we have

IP(p4 Cm) = (X2 IdKi dK 2 f daf d3A(a, ,K)KKo(K 2P)

x K () exp(-ia;)exp(i,6,)8[K 2 - f(K,)]

x 8(4a3 - K12
)8K2

2 -ne 2(a + 3)2 + (a - /3)2], (21)

which includes all the boundary conditions that 4 should
satisfy at p = a as well as the constraints of Eqs. (18) and
(19). In Eq. (21) f(Kj) denotes the constraint imposed on
the choice of K2 once a value is chosen for K, and can be
evaluated from the characteristic equation (18). A nu-
merical evaluation of Eq. (18) gives the functional relation-
ship between K2 and K, and is shown in Fig. 1.
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which, for ni = 1 and n2 = ne, gives us the two conditions

a// > s, a > 0. (27)

As a result, the limits of the integrals in Eqs. (20) and (21)
can be written, for the case when both a and / are greater
than zero, as

fdKif d,3f daI
0 o Us

(28)

or

f dKi J da f d,/I,0 0 0o
(29)

Kappa I x a

Fig. 1. Dependence of the cladding parameter K2 on the choice of
values for the core parameter Ki. The graph defines the func-
tion f(KI) in the text.

The limits on the integrals in Eqs. (20) and (21) will be
dependent on the constraints given by expression (12)
along with the two choices for the one-to-one correspon-
dence between the classical analysis and the bidirectional
approach, expressions (a) and (lib):

Choice 1: Expressions (a) reduce constraint expres-
sion (12) to

-n2(a + /) < ( - a) < -n,(a + /3), (22)

which, for n = 1 and n2 = , gives us the two conditions

a/ < s, a < 0, (23)

where s = [(1 + ne)/(l - ne)]. As a consequence, the lim-
its of the integrals in Eq. (20) and (21) can be written as

r 0 A're
JdKiJ d/PJ daI (24)

or

f dzi f daf d/3I, (25)

where I represents the integrand in each of the integrals.
The order in which the integrations are carried out (first
over the variable a and then over / or vice versa) deter-
mines which of the above two expressions is applicable. In
expression (24) we note, however, that, since /3 is always
negative, the integration over a is from zero to a negative
number, /3s (s > 0). But a should always be positive to
satisfy the condition a < 0. Hence expression (24) gives
us a contradiction in terms and leads to a trivial solution
that is always equal to zero. This is a mathematical veri-
fication of the fact that the boundary conditions do not
match. Similarly, we can show that changing the order of
integration [cf. expression (25)] will also lead to a situation
in which both conditions (23) cannot be satisfied.

Choice 2: Expressions (lib) reduce constraint expres-
sion (12) to

n2(a + /3) < (a - /3) < n(a + P),

where I represents the integrand in each of the integrals.
With this choice of the one-to-one correspondence, it is
possible to satisfy both conditions (27). Also, in the limit
n- 1, we would expect that the solution should vanish
since the waveguiding constraint is no longer met. This
is evident from the limits, since s -a oo, and integrals (28)
and (29) go to zero for any integrand.

The generalized solutions [Eqs. (20) and (21)] were ob-
tained under the assumption that the constraints [expres-
sion (26)] are satisfied in all the regions. Hence the limits
in integrals (28) and (29) are applicable to the evaluation
of the generalized solutions in the core as well as the clad-
ding region.

6. PULSELIKE SOLUTIONS IN OPTICAL
FIBERS
Different choices of the modulation spectrum A(a, ,/, K) en-
tering into the bidirectional representations [Eqs. (20)
and (21)] can now lead to the desired packetlike solutions.
In this section we consider four specific spectra and derive
solutions that resemble the ideal FWM, the scalar analog
to Hillion's spinor modes, the ideal splash pulse, and the
ideal MPS pulse. It is interesting to note in the analysis
that follows that the simplicity of the final expressions for
the localized solutions depends on the order in which the
integrations in Eq. (21) are carried out. For instance, the
integration, first over a and then over /3, described by
expression (28) would likely lead to a compact solution in
the form of an integral that may need numerical evalua-
tion. On the other hnd, if, the order of integration is
reversed, as described by expression (29), we may be able
to extract information about the ideal free-space solution
that the pulse would resemble. In such cases the solution
T is broken into two parts, viz., = , + ,, where the
subscript u indicates the unperturbed packetlike solution
and the subscript w stands for the additional wall term
introduced by the waveguiding constraint.

In the following subsections we summarize the results
obtained from the synthesis of four different spectra; the
details of the derivations are provided in Appendix B.
A discussion of the physical implications is given in
Section 7.

A. Focus Wave Modes
We first consider the singular spectrum

A(a,,/,K,) = (872 2 al)8(/3 - l3')exp(-aaj), (30)

7.1

6/

4./

3 . .- ..-. . .

2 . . ..... :
I ........ .

Q .: .

14

P.
=1

�2

(26)
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which, in free space, has given rise to FWM's, as intro-
duced by Belanger," Sezginer,'4 and Ziolkowski.'5 The
constants a, and 3' are free parameters in the source
modulation spectrum that will be useful in adjusting the
synthesized solutions to give directed energy transfer in
the waveguide.

Substituting the singular spectrum [Eq. (30)] into the
bidirectional representation [Eq. (20)] and carrying out
the details shown in Appendix B, we get the expression for
the ideal FWM solution [see Eq. (B6)]:

al exp(i/3f7) I- fp2 1,
'.=(al + i) ex (al + i) ) (31)

which is identical to that given by Ziolkowski.'5 The wall
term is found to be, from Eq. (B10),

where tan 0, = s, p = (al + i)cos 0 - i sin 0, q =
2p(sin 0 cos 0)1/2, d = b sin 0, and Qn (z) is an associated
Legendre function described in Appendix B. To obtain a
physical understanding of the pulse behavior described
by Eq. (38), we reverse the order of integration and ob-
tain the expressions for %, and t,, given by Eqs. (B24)
and (B26):

alb P{ 2 12 2-1/2

(al + i) (a, + i) J

t = (a +i) d,3 exp{-,3[(al + i)s - i]}

x {U,[-2i/3(a, + is,2p,/3V]
+ iU2[-2i,/(al + is,2p/3Vs]}.

(38)

(39)

(32)

where s = [(1 + ne)/(1 - ne)] and U is the Lommel func-
tion of two variables defined in Appendix B.

A similar analysis can now be extended to the scalar
field solution in the cladding. The constraints imposed by
the delta functions in Eq. (21), however, necessitate the
use of a numerical integration, and we do not address that
issue in this paper.

B. Splash Pulses
We consider next the spectrum

Ao(a,,8,i<) = 8i 2ala 28(K, - y)exp[-(aal + 3a2)], (33)

which, without the delta function, yields Ziolkowski's
splash pulse in free space. Equations (B13) and (B14)
from Appendix B give us

'P = aa 2YJo(yp)Ko{y[(a + i)(a 2 - i1qW'21,

= - a1a2v fy da exp[-a(al + i)]
2 0 a

x exp Y2 (a2 - in)

D. Modified Power Spectrum Pulse
We now consider the MPS pulse spectrum

A(a,/,, K)

Pexp[-aal - (p/B - b)a2], /3 > b/p

.0, b/p > 3 > O0
(40)

which leads to localized, slowly decaying solutions in free
space.6 Substituting the spectrum from Eq. (40) into
expression (28), we arrive at the expressions for P, and T W
of the MPS pulse given by Eq. (B29) and expression (B32)
in Appendix B:

W. (P, ad-0 = exp[- (bx/p)]
=47r(a, + i)(a2 + X/P)

'P _ip exp(ba2) (- b f)
21-(al + i) P /

X {Ui[2ik(al + it)s,2pkvN1

+ iU2 2ib(al + i)s, 2p- V]} 
(34)

(41)

(42)

where

(35)

in the fiber core. The expressions for the cladding region
can be obtained by numerical methods, similar to the case
of the FWM solutions in Section 5.

P2

al + i)
fl= (pa2 - i) + s(al + i.

(43)

(44)

C. Scalar Analog to Hillion's Spinor Modes
We consider next the Bessel spectrum of order zero,

Ao(a, /3, Kl) = 87r2albJo(/3b)exp(-aa1), (36)

which, in free space, yields the scalar analog to Hillion's
spinor modes.7 Integrating first over /3 and then over a,
we find the total solution to be, from Eq. (B19) of Appen-
dix B,

IF= alb I dO
Jo (qd)"/2[(p2 + q

2 + d2) - 4q2d2]1/2

X Q-,/2' (37)

7. DETAILED STUDY OF THE MODIFIED
POWER SPECTRUM PULSE

Equations (31), (34), (38), and (41) for P, represent the
nondecaying, ideal, LW solutions in the core for the
FWM's, the splash pulses, the scalar equivalent of Hillion's
spinor modes, and the MPS pulses, respectively, while
Eqs. (32), (35), and (39) and relation (42) for t, describe
the deviations in those free-space solutions that are due to
the waveguiding constraint. The behavior of these solu-
tions is sensitive to the values of the free parameters al,
a2, b, p, 'y, and /3' To understand the properties of these
solutions, we analyze the pulses as they propagate through
the waveguide and quantify the distances over which they
maintain their nondecaying nature. Substituting values

'w = ( + exp[/3'(al + i)s](a + i2
x {UJ[-2i/3'(ai + is,2p/3'V-s]
+ iU2[-2i,3'(al + i)s,2p/3'V1]},

Vengsarkar et al.
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of the free parameters in the source modulation spectra
into the equations, we will be able to determine the
amount of localization of the initial pulse and the behavior
of the pulses traveling in the positive and the negative di-
rections. By doing so, we will relate the free parameters
in the spectra to physically meaningful quantities, such as
the width of the initial pulse and its amplitude.

We note that Eqs. (32), (35), (39), and (40) for tI can be
evaluated numerically only for specific values of the free
parameters. In this section we restrict ourselves to a
detailed analysis and quantification of the MPS pulse for
which a tractable, closed-form solution is available. How-
ever, to gain a better understanding of the properties of
the ideal pulses resulting from the remaining spectra, we
have determined the nature of the free parameters in the
spectra and their effect on the unperturbed, ideal pulse
shapes and amplitudes. A description is given in
Appendix C.

constants. We intentionally fix the constant a2 = 1.0 m;
the other constants control the following properties.

Normalizing the magnitude of the solution T at p = 0,
z = ct, to its initial value 4rala 2 , we obtain

IP(p = 0,z = ct)I = [1 + (2z/pa2) 2 ] 112

This means that the amplitude of the solution is main-
tained to the distance L pa2 . Since we desire to main-
tain the initial amplitude over distances L 40,000 km,
we take p to be very large, i.e., p = 108.

Note that the choice of values for p is not completely
determined by the localization distance L. The waist of
the beam, as well as the minimum angular frequency
°m in, controls the value of p as shown below. The maxi-
mum angular frequency of interest, to,,a, is fixed by al
to be

A. Similarity to Free-Space Modified Power Spectrum
Pulse
It is known that the unperturbed MPS pulse is localized in
space and can propagate without decay for thousands of
kilometers (for an appropriate choice of the free parame-
ters). We therefore compare the relative amplitudes of
the unperturbed and the wall terms for a specific case,
namely, at p = 0 and z = 0. We use the Bessel-function
expansion of Lommel functions [See Eq. (B9) of Ap-
pendix B] to evaluate the wall term at p = 0. Using
l'H6pital's rule and the recursive relations for Bessel func-
tions, we can show that

lim (az) 'm (45)
Z- ZIT =m!2m

) max = c/a , (50)

and the minimum angular frequency Wmin is fixed by the
ratio b/p to be

Wmin = cbIp. (51)

The transverse localization of the unperturbed MPS pulse
is given by its initial waist,

wo2 = pal Amin Amax
b 2- r i (52)

where Amax = 2
TC/&)min and min = 2 7Tc/Wmax. Hence the

waist is fixed if the minimum and the maximum wave-
lengths are specified. On the other hand,

The wall term tk can be expressed at p = 0 and z = 0,
from expression (42) and Eq. (45), as

I'IW( = O Z = 0)I = [1 - exp _ )] (46)27rala2 P

where we have assumed thatpa 2 » sa,. The ratio of the
unperturbed term to the wall term then becomes

I1'PUI _ 1 , (47)
iI'T 2[1 - exp(-x)]

where x = sba/p. For small values of x, this ratio
becomes

b a, 2'ir= = .
p W02 Am.x (53)

Equations (52) and (53) imply that the maximum and
the minimum wavelengths Amin and Amax are fixed if al
and wo are specified. Since in practice the available fre-
quencies in the fiber are limited, we have chosen, for the
sake of demonstration, Amin = 0.3 Am and Amrax = 30 ,m.
The fiber dimensions limit the allowed choices for the
waists. Since our wavelength selection gives wo =
0.50 ,m, the initial waist is smaller than the chosen fiber
radius (r 2-5 Am),. Then the ratio b/p = 2.1 X 105 fi-
nally fixes the remaining constant b to be very large:
b = 2.1 X 1013. Therefore the assumption that al << p/a 2
or, since

IP.I 1

71W 1l: 2 xI

sbal (al 2X S _ << ,
P W

(54)
(48)

which implies that, for a more pronounced localization of
the total solution, one should choose the factor x to
be small.

that x << b/a2 , which was used to obtain Eq. (49), is valid.
In this small-x limit, expression (48) reduces to the form

IT" I 1 _ 1 W2_ I Amax_ 1 &Jmax
ITP1 2x 2s al2 2s Amin 2s min (55)

B. Practical Implications of Free Parameters
Using our knowledge from the analysis of the free-space
MPS pulse,6 we can now connect the behavior of the
guided LW solution directly to the values of its defining

This result indicates that an increase in the bandwidth or,
equivalently, an increase in the number of minimum
wavelengths in the waist will increase the difference be-
tween the unperturbed MPS core term and the wall term,

(49)
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thus making the guided LW solution more like its free-
space counterpart. The requirement that x << 1 sets a
practical limitation on the fiber structure: Either the
fiber material should be highly transparent to a broad win-
dow of wavelengths or the fiber should be strongly guiding.
One would therefore have to explore materials with large
transparent windows of transmission or reevaluate the
entire analysis without using the LP mode formulation.
The latter approach would necessitate the use of smaller-
core fibers to remain close to single-mode operation and
would in turn imply added complexity of source design.
Equation (55) also underscores the contribution of the
wall term as a function of the weak-guidance condition of
the fiber. For example, if the index of refraction of the
fiber cladding were made closer to the core refractive index,
the fiber would guide the modes in a weaker fashion, and
we would expect the contribution from the wall term to
increase. This physical insight is confirmed by Eq. (55)
since, as ne -> 1, s increases and the ratio ITP,/ITP, de-
creases, implying a growing influence of the wall term.

0.6
0.4
02

(a)

2.5 10'

Returning to the explicit representation of the wall term
[Eq. (43)], one finds that its transverse variations are con-
trolled by the Lommel-function terms. Since

= 4rx-
p Amin

(56)

except when p < Amin, an explicit numerical evaluation of
those terms is necessary. These terms yield an oscilla-
tory, rapidly damped function of p. The decay rate can be
obtained since, as z --- c, the function

Jn(az) -*(az2n+l)-1/2(57)

so that only the n = 1 term survives, and it goes to zero
like (/Amin)F' 2

. In contrast, the perturbed core term
decays transversely as exp[-(p2 /wo2)] except in the (for-
ward and backward) tail regions of the MPS pulse, where
IZ - ctl >> a,, so that the term's decay is more gradual,

0.6

0 .2 7. ~
0~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 Rais(in)

(C)

adius () i Radius ()Zeta (m )l U ~

(b) (d)

Fig. 2. Evolution of the MPS pulse as it propagates through the fiber. (a) z = 0. Normalized unperturbed free-space equivalent, Ilk,,12.
(b) z = 0 m. Normalized wall term, [T I . (c) z = 0 m. Normalized total solution, I1yu + %rW 2. (d) z = 40,000 km. The plots show that
the MPS pulse remains localized over distances of the order of several thousand kilometers, starts decaying slowly when z = 10,000 km,
and spreads out significantly (with a drop in peak amplitude) after propagating over a distance of 40,000 km. The parametric values
used are a, = 5 x 10-8 m, a2 = 1 m, b = 2.1 X 103 m 1',p = 108, and s = 10. These values correspond to Amax/Amin = 100.
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similar to its axial decay:

exp(-{p 2 /w 0
2 [1 + (z -t)2/a2])

1 + (z - Ct)2/a,2

exp{[p2a,2/wO2(z - t)2]} + (z - ct)2t1
1 + (Z - t)2/a, 2 l a, J

Let us consider another example, in particular, the
splash pulse spectrum. As we show in Appendix C, Sub-
section 4, for longitudinal amplitude maintenance along

(58)

Thus, if the waist is many wavelengths in size, the wall
term will be much smaller than the core term everywhere
except near the wall, where its decay rate becomes slightly
smaller than the core's. This comparison illustrates that
the wall term in the forward tail region of the core MPS
component will lead the central peak. This means that
one can visualize the wall component of the guided LW
solution as a low-level background field propagating in the
fiber with little significant contribution except near the
wall, where it provides a guiding and renovating mecha-
nism for the central, core component. Heuristically, it
appears that the core component surfs along in the fiber
on the background wall field.

C. Graphic Description of Modified Power Spectrum
The variation of the square of the amplitude of the unper-
turbed solution, i1,l2, for Amax/Amin = 100 is shown in
Fig. 2(a). The corresponding wall term is shown in
Fig. 2(b). Figure 2(c) shows the total launched pulse at
the input end of the fiber (z = 0); for a fiber core diameter
of the order of a few micrometers, the pulse is largely con-
fined to the core. The total pulse looks exactly like the
unperturbed solution, indicating that the effect of the wall
term is negligible for this choice of free parameters.
Local variations in the pulse shape are seen as a function
of the parameter . At distances of propagation of the
order of several thousand kilometers, there is no variation
in the amplitude of the pulse. At z = 40,000 km [shown
in Fig. 2(d)], the localized nature of the solution starts
collapsing, the pulse shape changes, and the peak ampli-
tude drops to less than half the original amplitude. The
plots in Fig. 2 were obtained for an x value of 0.2, and
hence the contribution that is due to the wall term is not
noticeable for a ratio IP./11 P. = 5.0. To emphasize the
heuristic surfing nature of the unperturbed core term
along the wall term, we plot the different components of
the MPS pulse for Aa/Amin = 25 or, equivalently, for
IIPI/I'IPI = 1.25. These plots are shown in Fig. 3. Once
again, the normalized unperturbed and wall terms behave
like their counterparts in Fig. 2; however, the total pulse
now appears to possess a noticeable contribution from the
wall term. Note that in Figs. 2 and 3 the squares of the
amplitudes are normalized; as a result, the total pulse so-
lution should not be considered to be a mere sum of the
individual contributions from the P, and the t, terms.

To ensure propagation of electromagnetic energy in the
positive direction, it is instructional to analyze the be-
havior of the pulse traveling in the negative direction. We
evaluated the behavior of the MPS pulse in the negative
direction and found that the solution in the negative direc-
tion decays rapidly over distances of the order of 10'8 m
and is of the order of 10-'9 times the original pulse ampli-
tude after propagating a distance of 1 m. This result fur-
ther confirms that the choice of the free parameter values
can lead to positive pulse propagation without any nega-
tive component's being supported by the waveguide.

0 .
0 .

(a)

(b)

"2.5 lo 7

Radius (m)

(C)
Fig. 3. MPS pulse composition for Amax/Amin = 25. (a) Normal-
ized unperturbed free-space equivalent, JrI2. (b) Normalized
wall term, .1t2. (e) Normalled total solution, ITU + t 12. Note
that the effect of the wall term is noticeable in the final solution,
in contrast to the case depicted in Fig. 2. All parameters are the
same as in Fig. 2, except that b = 8.4 X 1013 m 1 .

2.5 o

Radius (m)
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p = 0 for z 1000 km, the free parameter a 2 in the
splash pulse spectrum should be of the order of 10'. At
the same time, we also find that, for the energy in the
pulse to be maintained within the core (transverse con-
finement), a2 should be in the 10-4_10-3 range. An imme-
diate conclusion drawn from this result is that the free
parameter a2 dictates not only the decay of the pulse but
also the field confinement in the core. Hence the require-
ments imposed on this parameter for a well-confined, lo-
calized pulse to propagate over long distances cannot be
met, as seen from the wide variance in the desired values
of a2 . This example proves that the synthesis process
must be carried out with caution by balancing the require-
ments on the different free parameters.

8. CONCLUDING REMARKS

In summary, we have shown the existence of slowly decay-
ing, nondispersive solutions in an optical fiber waveguide.
A novel bidirectional decomposition of solutions to the
scalar wave equation into multiplicatively backward- and
forward-traveling plane waves was applied to an optical
fiber operated in the linear region. Four choices of the
source spectra were considered, and closed-form solutions
were obtained. The MPS pulse proved that, even though
the solution deviated from the ideal MPS pulse owing to
the waveguiding constraint, a proper choice of the free pa-
rameters could lead to large distances over which the pulse
would maintain its original amplitude. We also showed
that the synthesis process leading to exact solutions needs
to be performed with caution and demonstrated this in
the case of the splash pulse spectrum without the delta
function when it was not possible to tweak the free pa-
rameters to obtain nondecaying localized pulses confined
to the fiber core. This example underscores the fact that
all the spectra that have given rise to LW solutions in free
space need not be suitable for generating nondispersive so-
lutions in waveguides.

In the practical realization of localized pulse-launching
schemes, the source spectra that are most easily imple-
mentable should be considered. It is not clear whether
the four spectra considered in this paper will prove to be
the right candidates. However, a rich class of other re-
lated spectra A(a,/3,K) of the form 6(/3 - /')exp(-aa,)
Io(a 2 K), 8(,3 - /')exp(-aa,)Jo(a2K), 6(, - /')exp(-aaj)
Jo(a 2 K2 /4), or a exp(-aa)exp(-,/a 2 )exp(-a3/a), which
are theoretically more cumbersome, may lend themselves
to easier implementation because of the extra free pa-
rameters available for tweaking. Such spectra may also
reduce the restriction on the highly broadband nature of
the MPS pulse spectrum described in this paper. Utiliz-
ing the full potential of the bidirectional superposition
may thus pave the way for future experimental systems.

In practical fiber-optic systems, pulse dispersion is sig-
nificantly affected by material properties, especially when
a broadband spectrum is used as the source. To aid our
analysis when material dispersion is present, we have
looked at a much simpler system, namely, a plasma-filled
cylindrical metallic waveguide. Our results indicate that,
despite the presence of material dispersion, the localized
propagation of pulses is feasible; these results will be pre-
sented elsewhere. Future theoretical efforts will include
a more detailed analysis that incorporates material disper-

sion and losses in the fiber. Several numerical methods
or asymptotic techniques available in the literature can be
used to perform this analysis.'6 Despite the centrally lo-
calized nature of these solutions, the possibility of generat-
ing higher-order modes in the fiber cannot be ignored.
Higher-order modes will act as noise in the system, and
their effect on the localization of the fundamental solution
needs to be analyzed. In the practical arena the avail-
ability of the optical equivalents of the arrays used for
generating the acoustic LW's will finally determine the re-
alizability of such schemes.

APPENDIX A: EFFECTIVE INDEX
CALCULATION

A method to calculate the effective refractive index, ne, of
the cladding for a unity core refractive index is now given.
The analysis is carried out in the classical notation. The
underlying principle is that the expressions for the fields in
the core and the cladding, as well as the eigenvalue equa-
tion, should remain unchanged by this transformation.

We first define the parameters U W and V as follows:

U = koa(nl - 32)1/2

W. = koa(f32 _ ,2)1/2

V = (U2 + W2)1/2.

(Al)

(A2)

(A3)

Here ,B = ,/ko is the normalized propagation constant,
ko = 2wr/A is the free-space propagation constant, and a is
the fiber core radius. The fields in the core and the clad-
ding can be described completely in terms of U and W.
Eigenvalue equation (18) can be expressed in the form
f(U,W) = 0. This implies that, if by a simple transforma-
tion we can express U and W in terms of ni = 1 and n2 =

ne we will have an equivalent waveguide.
Consider the transformation, ko' = konj. We can write

the transformed normalized propagation constant /3' as
,' = 0//ko' = /3/konj. U and W can then be expressed as

U = ko'a(l _ p2)1/2

W = k'a[ 2 -

(A4)

(A5)

For n = 1 and ne = n2/n,, we now have an equivalent
waveguide in a frequency-scaled system that maintains
the eigenvalue equation of the fiber as well as the expres-
sions for the fields in the core and the cladding regions.

APPENDIX B: DETAILS OF
LOCALIZED-WAVE PULSE DERIVATIONS

1. Focus Wave Modelike Solution
After integrating over K, and using the sifting property of
the delta function, we find %U to be

"u(p, ,77) = a,f daJo[(4aj8')11 2p]exp(-iat - aal)

X exp(+iffq7), (B1)

Vengsarkar et al.
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and Tw, is expressed as

Pw(p, ;,,q) = -a, f daJo[(4a/')"p]exp(-ia; - aal)

X exp(+il3"'r),

equation [Eq. (20)] and integrating over ,B and Kj, we get

T(p, = 2aja 2Jo(YP) - exp[-a(al + i)]
fJ / 2 4 a

(B2)

where a' = ,'s.
We first obtain a closed-form solution for PU. Using

identity (6.614.1) from Gradshteyn and Ryzhik,7 viz.,) 7 1/2 1' b2

fd/Jo(Vb)exp(-/3a) = 3 (i3 ex - )

8a) (8a)
(B3)

and the Bessel-function relation

[I-/2(z) - I 2(z)] = ( ))exp(-z),

we obtain the relation

I e(b2fd/3Jo(b N/i)exp(-/3a) = expi - - .fo, a \4a

(B4)

(B5)

From Eqs. (Bi) and (B5) we then obtain the FWM
solution

,P ) = exp(i/3",j) [ p32 ~,) =a, l+ i,) exp (a i) .

We can rewrite the expression for P,, Eq. (B2), as

Tw(p, ,77) = 2a, exp(+i,3'77) f wdwJo[(4')/2pw]

X exp[-w2 (a + i)],

(B6)

X [exp E 2 (a2 ]i)) (B11)

Breaking the solution into %, and T, and using identity
(2.3.16.1) from Prudnikov et al., 8 namely,

Yx exp(-xa)exp (- -) = 2Ko[2(ab)/2]

we can arrive at the expressions

'.u = aja2yJo(yp)Ko{y[(aj + i) (a 2 - i7)] 2}s

'P = - a J -d exp[-a(al + i)]

[ 2 a
4a

(B12)

(B13)

(B14)

3. Hillion's Splash Modes

a. Integrate over ,3 First
Substituting the Bessel spectrum [Eq. (37)] into expres-
sion (28) and integrating over K, we obtain

T(p, ,77) = alb f da exp[-a(a + i]

" d/3Jo[(4a/3)"2p]Jo(/3b)exp(ipq,7),

(B7)

where we have made the substitution w2 = a. Using
identity (1.8.2.4) from Prudnikov et al., 8 namely,

J xV+ exp(ax2)J,(bx)dx = (2iax+l)

X [U,+(2iax 2, bx) + iUv+2 (2iax 2, bx)], (B8)

(B15)

where a' = a/s. When we substitute = r cos 0, a =
r sin 0, and dad3 = rdrd0, Eq. (B15) becomes

T(pV,71) = alb f do frdrJo[(4 sin 0 cos 0)1"2pr]

X J(br sin 0)

X exp{-r[cos 0(a + i) - i sin ]}, (B16)

where tan ' = 1/s. Using identity (2.12.38.2) from
Prudnikov et al., 8 namely,

where f dxxJo(bx)Jo(cx)exp(-px) = Ao o2 ,

j -Ik Z 2 k + P U. (Z, 0 = k- 2+~

is the Lommel function of two variables, we obtain

ia,
Pw= + exp[-/3'(a + i)s](a, + i)

X {Uj[-2i,'(a, + i)s,2p3'Vs]
+ iU2[-2i/3'(a + i)s,2p,/'V-s]},

(B9)

(B17)

where

A02 =-pk 
2 ( qd) -3 2 , (2 k2

Ao o2 = 2 - q))/ Q-1/2( k k)
we- ko2) 1 2ak 2n

we obtain

(B10)

which gives us the final closed-form solution for the
wall term.

2. Splash Pulse
Substituting the splash pulse spectrum [Eq. (34)] into the
expression for the generalized solution of the scalar wave

(B18)

o (qd) 2[(p2 + q2 + d2) 42d2]1/2Q-/2

( p2 + q2 + d2
2qd (B19)

Here k2 = 4qc/[p2 + (b + d)2], p = (al + i)cos 0 -
iq sin 0, q = 2p(sin 0 cos 0)1/2, and d = b sin 0. Q(z),
an associated Legendre function, is a solution of the dif-
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ferential equation

(1 _ Z2)d2Qm _ 2zdQnm + [n(n + 1) M2 Q nm = 0.

(B20)

b. Integrate over a First
Substituting the Bessel spectrum [Eq. (37)] into expres-
sion (29), integrating over K1, and breaking the solution
into two parts, %, and T,,,, we obtain

"'u(P, ,71) = baif d/fB da exp[-a(al + i)]

X J[(4a/3)"l 2p]Jo(/3b)exp(i/3'q). (B21)

Using identities (2.12.39.10) and (2.12.8.3) from Prudnikov
et al.," namely,

1
| exp(-ipx)Jo(c )Jo(bx)dx = (b2 _P 2)1/2

[ 4(b2 _ P2)}K4(b2 _p2)] (B22)

| exp(-ipx)Jo(cx)dx = (c2 - 2)1/2 (B23)

respectively, we obtain the following expression for the
unperturbed pulse:

bal [ P 2 2 2 b2
(a, + i~) (a, 2 j' (B24)(al+ t) al+ i) - +b

The contribution from the wall term, TPL, can be written as

P-(Ap, ';,7) = -alb db/Jo(b)exp(i37 )

X J da exp[-a(al + i)]Jo[(4a/3) 12p].

(B25)

The integral over a is of the same form as Eq. (B2). Using
an approach similar to that adopted for solving Eq. (B2),
we obtain

t = (a + i ) | d exp{-,/[(al + is - i77]}

X {UJ[-2i/3(ai + is,2p,8]

+ iU2[-2i/3(al + it)s,2p/3\s]}. (B26)

4. Modified Power Spectrum
We substitute the MPS pulse spectrum [Eq. (41)] into ex-
pression (29) and separate the integral into two parts, viz.,

T = T. + P1 = fdKJ daf dol

- f dKJ fdaf d,I, (B27)

where W. and %, correspond to the first and the second
terms, respectively. We first evaluate T,. Integrating

over a first, we can write I, as

'U = 8i7 b/p - exp[(-/3p + b)a2 + i71

lofwdKKJoK~pexp[~K, (al/+ i[ )] (B28)

Using the identity equation (B5) and integrating over Ki

and ,3, we obtain

exp[-(bx/p)]
Pu(P4X1) 47r(al + i) (a2 + /P) (B29)

which is identical to the MPS pulse derived by Besieris
et al.6

To evaluate 4,1 we switch the order of integration of a
and 3 and use the identity equation (B8) to obtain

=ip exp(ba2) fd3x(/f
P = 2Pr(a, + i | dp exp(-Q)

X {U,[2i/3(a1 + i)s,2p,6/]

+ iU2[2i,/(al + i)s,2p,3]}, (B30)

where Q = (pa2 - i) + s(a + i). By expressing the
Lommel functions U and U2 in terms of a series of Bessel
functions [see Eq. (B9)] and switching the summation and
the integral evaluation, one can show that the integrand is
bounded and that an end-point evaluation of the form

£ exp[-/3f(x)]g(x)dx -- exp[-/3f(a)]g(a) + o(,-2)
a /[(df/dx) (a)]

(B31)

is justified. Using the result from such an end-point
evaluation, we arrive at the final expression for Pt,, viz.,

'P ip exp(ba 2) (_ b Q
=2,7(a, +it) Px~- 

x {U, [2ik(aI + i)s, 2 pV ]

+ iU2[2ib(aI + i)s,2pb N/]}- (B32)

APPENDIX C: EVALUATION OF
NONDECAYING PULSE DISTANCES

1. Focus Wave Mode Solution
The initial pulse amplitude of the ideal FWM solution is
given by

( ° (P2 
1%,01 = exp - -al (Cl)

The variation of the field amplitude in the radial direction
is dictated by the magnitude of the ratio 6/a1. A pulse
propagating in the positive z direction has a pulse peak
given by

18 + = exp ( p2 ) (C2)
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which is identical to the initial pulse amplitude. The dis-
tance over which this pulse can be utilized for communica-
tions purposes depends on the losses and the material
dispersion of the waveguide. Transmission of energy in
the positive direction seems possible with little constraint
on the free parameters of the source spectra. The wall
term can be expected to impose further constraints on the
pulse parameters.

2. Splash Pulse Solution
The amplitude of the unperturbed splash pulse solution,
PT, evaluated at z = t = 0 can be expressed as

'.= aa 2yJ0(yp)Ko[y(aja 2 )12 ]. (C3)

The radial dependence of the field is governed by the mag-
nitude of y. We need to ensure during synthesis that we
do not impose any further constraints on the free parame-
ter when considering the distances over which this pulse
can remain nondecaying. At z = t = 0, P,,01 is given at
the center of the fiber (p = 0) by the equation

1 =,1 3 2 al a2
3 -- exp[-4y(ala 2)1 2 ], (C4)

where we have used the large-argument expansion of the
Bessel function and the fourth power of the amplitude is
taken only for convenience in deriving the results that fol-
low. At z = ct, the amplitude of the pulse traveling in the
positive direction, P,j'I, can be written as

~UI = '4(a 2
2 + 4"

X exp[-4,y\/__(a 22 + 4 2 )1"4 COS 4)], (CS)

where 4) is given by the relation tan 24) = 2/a 2 . Ex-
pressing cos 4) in terms of z and a 2 , using the approxima-
tion a 2 »> z of interest, and defining a decay factor F,4 as
I~p Pu 4

/hIi 'p 01, we obtain an estimate for the nondecaying
pulse distances. The decay factor F,4 can be written as

F4
= 

4Z2

a2
2 ,
1/expI -2y(a,a 2)1/2 2 1

(C6)

which shows that, for the decay factor to remain 1, the
value of the free parameter a 2 should be a few orders of
magnitude greater than the distance, z, of interest. Note
also that the nondecaying nature of the solution does not
depend on the value of y, which defined the confinement of
the field in the fiber core.

3. Scalar Analog to Hillion's Spinor Modes
The amplitude of the unperturbed pulse expression for the
Bessel spectrum can be written, at z = t = 0, as

'jU= [I + 2 2 12

The corresponding expressions for Pu'J and PU,+j are

IPY"0
= 1I

The decay factor F" has the same expression as P(,given
by Eq. (C9), and we note that the pulse in the positive di-
rection is singular at p = 0 and z = b/2. This behavior of
the unperturbed, ideal pulse is physically unrealizable. If
the wall term P,, cancels this singularity, the sensitivity
to variations in initial distribution may make this pulse
extremely difficult to realize in a practical sense.

4. Splash Pulse Spectrum without the Delta Function
In all the previous examples in this appendix we consid-
ered the effect of the free parameters on the ideal pulse
shapes. The only total pulse ( 0 + P%) that we considered
was the MPS pulse in the main text of this paper. We now
investigate the case in which the free parameters cannot
be tweaked to generate a pulse that will propagate for long
distances and at the same time be confined to the fiber
core. Consider the splash pulse spectrum without the
delta function 6(K - y). After going through lengthy alge-
bra we can show that the final expression for this pulse is
given by

41 aja2 '.{ps+ [(a, ~s a - 12
(a + .)PS +&Ts k2

(ClO)

The initial pulse amplitude is given by

1P0 I = a2[4p 2s + (ais + a 2 )
2
] -1

2
. (Cli)

At the center of the fiber core, the amplitude of the pulse
traveling in the positive direction can be written as

1qP+1 = a2[4z
2s + (ais + a 2 )

2
]"-1

2
, (C12)

As a result, the decay factor, , can be expressed in the form

r,= i~iP = I1 + 4zA 11/2
IPI L (ais + a2)

(C13)

From Eq. (Cli), the variation of the initial field amplitude
in the core can be plotted versus the radius p as shown in
Fig. 4. The variation of the decay factor, F, is given in
Fig. 5, where we have made the assumption that as «<
a2. Figure 4 shows that, to confine the field to the core,
the free parameter values should be of the order of 1V-
i0-'. At the same time, Fig. 5 shows that the decay factor

'0

.2

's

0
(C7)

1.0

0.8 

0.6-

0.4-

0.2-

-2

a 1 32

-4
a2 10

a2 1

0
(C) Fiber Core Radius (i ptn)

Fig. 4. Dependence of the field confinement in the fiber on the
(C9) free parameter a2 for the splash pulse. For guided confinement

of the field power, a 2 values of the order of 1085 will be preferred.
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Fig. 5. Variation of the decay factor r as a function of the free
parameter a2 for the splash pulse. Note that for nondecaying
transmission of energy the values of a2 should be of the order of
10

7 , which contradicts the requirement imposed on the field con-
finement as seen from Fig. 4.

will remain close to 1 for a2 values of the order of 107 if
nondecaying solutions over 1000-km distances are de-
sired. This shows that the free parameter a2 dictates
both the variation of the field within the core and the dis-
tance over which the field remains nondecaying and that
it cannot meet the requirements.
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