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We study two different switching patterns of dynamic apertures illuminated by a focus-wave-mode excitation
field. The two sources are chosen to be identical except that one is illuminated with use of a Gaussian time
window, whereas the other uses a periodic function defined over the same time span. In spite of the similarity
between the two dynamic apertures, the decay patterns of the amplitudes of their radiated fields are signifi-
cantly different. A detailed analysis of the depletion of their spectral contents shows that the coupling be-
tween the spatial and temporal spectral components plays a decisive role in extending the range of the local-
ization of the radiated pulses. © 1996 Optical Society of America.
1. INTRODUCTION

In a study concerning the causality of the focus wave
modes (FWM’s),1 it has been shown that a causal FWM
pulse can be generated from a dynamic Gaussian
aperture.1–3 A source of this type is driven by a Gauss-
ian illumination characterized by the time variation of its
effective radius. If the excitation wave field is allowed to
illuminate an aperture situated at z 5 0 for an infinitely
long period of time, the generated FWM pulse propa-
gates without any dispersion into the z . 0 half-
space.1 Furthermore, it has been demonstrated that an
approximation to the FWM field4 can be generated from a
dynamic Gaussian aperture illuminated by a time-limited
excitation wave field.2 In this case the generated pulse
holds out as it propagates to a finite range beyond which
it starts to decay. The performance of such an aperture
has been studied in detail. Such a dynamic source pro-
vides an efficient scheme to launch narrow Gaussian
pulses from extended apertures.1–3

The FWM belongs to a wider class of solutions that has
come to be called localized waves.4–15 Such pulsed fields
exhibit extended ranges of localization and are character-
ized by their large bandwidths. The spatial and tempo-
ral frequency components of their excitation wave fields
are strongly coupled together. A combination of the
time-limited excitation of the FWM pulse and the
temporal–spatial distribution of the various elements
constituting its aperture can have a direct impact on its
spreading as it propagates away from the source
plane.2,3,15 In this paper, we investigate the effects of
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time limiting the excitation of the aperture on the deple-
tion of the spectral components of the generated wave
field. The depletion of the spectral content of the propa-
gating pulse shows exactly how its centroid holds out for a
specific range and why it starts to spread out beyond a
certain point.
In this paper the FWM wave field is used to illuminate

a dynamic aperture situated at z 5 0. However, such a
field exists over an infinite time span. To time limit the
excitation of the dynamic aperture, we use a window func-
tion to cut off the infinite FWM excitation. In particular,
we use two time windows; the first is a Gaussian function,
and the second is a periodic window restricted to the time
span of the first window. Thus the main difference be-
tween the two excitation wave fields is that one is turned
on and off several times over the same time period
throughout which the other one is on. However, the two
excitation fields are chosen to share the same spatial
spectrum. Hence the two generated localized pulses
have equal initial radii. Moreover, the ultrawide tempo-
ral bandwidths of the two pulses are indistinguishable be-
cause they differ only by the spectral widths of their
switching windows, which are negligibly small in com-
parison with the total bandwidths. As the pulses propa-
gate away from the source, the depletion of the spectral
components in the two situations exhibits a low-pass-
filtering effect, in which the contributions from the
switching spectral windows centered around the lower
spatial frequency components are removed first. Such a
depletion causes the amplitude of the pulse traveling
away from the aperture to decrease with distance. This
© 1996 Optical Society of America



Shaarawi et al. Vol. 13, No. 8 /August 1996 /J. Opt. Soc. Am. A 1713
issue is investigated in detail because it illustrates ex-
actly when and how the amplitude of the pulses starts to
decay. It will be shown that even though the bandwidths
of the two illumination fields are similar and the waists of
the initial pulses are equal, the amplitude of the propa-
gating field decays differently in the two situations.

2. INITIAL ILLUMINATION OF TWO FINITE
DYNAMIC APERTURES
It has been established that finite-energy localized-wave
solutions can be generated from dynamic apertures.2,3

Such sources are characterized by ultrawide frequency
bandwidths at the same time that they exhibit a strong
correlation between their spatial and temporal frequency
components. In a previous study2 we demonstrated that
a pulse that approximates the FWM can be generated
from a dynamic aperture that shrinks from its maximum
initial size at t 5 24T to its smallest radius at t 5 0 and
then expands back to its original size at t 5 4T. In order
to limit the extension of the initial excitation of a dynamic
aperture, we use a time window. In this section we in-
vestigate the illumination of two apertures excited by the
same initial field but controlled by two different time win-
dows. The first has a Gaussian distribution of the form
exp(2t2/4T2). This function will effectively force the ini-
tial excitation to exist over the time span given by
24T < t < 4T. The second time window has a periodic
distribution, which is explicitly defined as cos2(5pt/8T)
for 24T < t < 4T. Figure 1 displays the two windows
under consideration. From the figure it is clear that the
periodic time window is turned on and off several times
over the same time span that the Gaussian window is on.
Throughout this paper we shall refer to the aperture

controlled by the Gaussian time window as a Gaussian
aperture, and that controlled by the periodic window as a
periodic aperture. In both cases the initial field exciting
the aperture is considered to have the same spectrum as

Fig. 1. Time windows of the excitation of the periodic and the
Gaussian apertures.
that of the FWM source-free solution14,16 after the corre-
sponding time window has been applied. In particular,
the initial field exciting the Gaussian aperture is assumed
to have the following form:

C~r, t ! 5 Re$Ĉ~r, t !%,

where

Ĉ~r, t ! 5
1

4p~a1 2 ict !
exp@2br2/~a1 2 ict !#

3 exp~ibct !exp~2t2/4T2!, (2.1)

whereas for the periodic aperture the initial field is

Ĉ~r, t ! 5
1

4p~a1 2 ict !
exp@2br2/~a1 2 ict !#

3 exp~ibct !cos2~5pt/8T !, (2.2)

for 24T , t , 4T and is equal to zero otherwise. From
Eqs. (2.1) and (2.2) we can see that the illumination fields
driving the two apertures have the same effective time-
dependent radius ;O(ct/Aba1). Thus the two sources
are effectively varying their sizes with time. Since the
two apertures are illuminated for the same time interval,
their maximum radii are equal.
It has been shown in previous work1 that the source-

free FWM field can be represented as a superposition of
forward- and backward-propagating components.17 To
produce a FWM pulse dominated by the forward-
propagating field components, we must choose ba1 ! 1.3

The same condition is needed here in order to launch
causal approximations of the FWM pulse efficiently from
a dynamic aperture. A reasonable selection is to take
b 5 1.25 m21 and a1 5 0.00001 m. The period of illumi-
nation of the aperture is chosen to be cT 5 6.25 mm,
where c is the speed of light.
The Fourier spectrum of the initial excitation has a di-

rect effect on the behavior of the pulse as it propagates
away from the aperture. Hence it is convenient to start
by studying the Fourier spectral content in each case.
We define the Fourier spectrum as

f~x,v! 5 E
2`

`

dtE
0

`

drJ0~xr!r exp~2ivt !Ĉ~r, t !.

(2.3)

The Fourier spectrum of the initial excitation of the
Gaussian aperture can be obtained by substituting Eq.
(2.1) into Eq. (2.3) and integrating over r and t, yielding

f~x, v! 5
1
4b

d̂G@v 2 v0~x!; cT#exp~2x2a1/4b!,

where

d̂G@v 2 v0~x!; cT# 5
T

Ap
exp$2T2@v 2 v0~x!#2%

(2.4)

is the Gaussian d̂G function, whose width depends on T,
and its central value v0 5 (x2/4b1b)c is a function of the
x variable.
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The initial illumination of the periodic aperture has a
Fourier spectrum obtained by substituting Eq. (2.2) into
Eq. (2.3) and integrating over r and t to obtain

f~x,v! 5
1
4b

d̂P@v 2 v0~x!; cT#exp~2x2a1/4b!,

where

d̂P@v 2 v0~x!; cT#

5
1
2p

sin$@v 2 v0~x!#4T%X 1
@v 2 v0~x!#

2
@v 2 v0~x!#

$@v 2 v0~x!#2 2 ~5p/4T !2%
C (2.5)

is the periodic d̂P function. Figure 2 displays the spectra
given in Eqs. (2.4) and (2.5) at x 5 0. From the figure it
is clear that the Fourier spectrum of the periodic aperture
has an v window that is larger than that of the Gaussian
aperture even though its central lobe is narrower. Fur-
thermore, the periodic spectrum is characterized by hav-
ing negative and positive spectral amplitudes, whereas
the Gaussian spectrum does not have any negative com-
ponents.
We notice that in the limit as T → `, the Gaussian

d̂G function and the periodic d̂P function in Eqs. (2.4) and
(2.5) reduce to the Dirac d function. The latter charac-
terizes the spectra corresponding to infinite-time excita-
tions of dynamic apertures.1 For the large values of cT,
the Gaussian and periodic spectral functions reduce to a
narrow distribution with a small bandwidth dv ; O
(2p/T), for which v ; v0(x) 5 [(x 2/4b) 1 b]c. Such a
narrow frequency window varies with x and provides
most of the significant contributions to the amplitude of
the centroid of the pulse.
The initial illumination of the aperture utilizes a wide-

band field whose temporal and spatial frequency compo-
nents are coupled together through the d̂ functions given
in Eqs. (2.4) and (2.5). Such a coupling does not exist for
quasi-monochromatic continuous-wave excitations. In
contradistinction to the continuous-wave radiation char-
acterized by a single carrier frequency, the localized-wave
pulses have ultrawide frequency bandwidths. Hence we
have to set a criterion to specify the maximum frequency
components for the temporal and spatial spectra. We
choose to define the maximum spatial and temporal fre-
quencies as those at which the amplitude of the spectrum
drops to (1/e4) of its maximum value. In order to de-
couple the temporal from the spatial frequency compo-
nents, we define the spatial spectrum as

fs~x, t ! 5
1
2p E

0

`

dvf~x,v!exp~ivt !. (2.6)

The spatial spectrum of the Gaussian aperture is ob-
tained by substituting Eq. (2.4) into Eq. (2.6) to produce

fs~x, t ! 5
exp~2x2a1/4b!

8pb
exp@2iv0~x!t#

3 exp~2t2/4T2!. (2.7)

In Fig. 3 we display fs(x, 0) where it is clear that most of
the significant components of the x spectrum are concen-
trated at the lower end of the spectrum. High oscilla-
tions introduced into the v windows sweeping the lower x
frequencies cause the pulse to decay as it propagates
away from the aperture. The bandwidth of the x spec-
trum, as is clear from the figure, is Dx 5 1415 m21.
The periodic aperture has a spatial spectrum obtained

by substituting Eq. (2.5) into Eq. (2.6), which explicitly
gives

fs~x, t ! 5
exp~2x2a1/4b!

8pb
cos2~5pt/8T !

3 exp@iv0~x!t#, 24T < t < 4T. (2.8)

It is obvious that the two spatial spectra given in Eqs.
(2.7) and (2.8) are identical when t 5 0. In both cases

Fig. 2. Fourier spectra of the illuminations of the periodic and
the Gaussian apertures.

Fig. 3. Spatial spectrum of the illumination of the Gaussian ap-
erture.
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the bandwidth of the x spectrum is controlled by the ex-
ponential factor exp(2x 2a1/4b). Thus the two apertures
have the same D(x) bandwidth.
In the same vein, the temporal spectrum of the two ap-

ertures gives an idea of the required frequency band-
widths of the elements exciting the apertures. We define
the temporal spectrum as

f t~r, v! 5 E
0

`

dxxJ0~xr!f~x,v!. (2.9)

The temporal spectrum of the Gaussian aperture is ob-
tained by substituting Eq. (2.4) into Eq. (2.9) and inte-
grating over x, which is given explicitly as

f t~r, v! 5
1
4b E

0

`

dxxJ0~xr!d̂G@v 2 v0~x!; cT#

3 exp~2x2a1/4b!. (2.10)

Equation (2.10) is plotted in Fig. 4, at r 5 0. From the
figure it is clear that the temporal spectrum closely re-
sembles the spatial spectrum, thus showing the strong
correlation between the temporal and spatial spectra.
The temporal bandwidth is fmax 5 19.1 THz.
The substitution of Eq. (2.4) into Eq. (2.8) gives the

periodic-aperture temporal spectrum:

f t~r, v! 5
1
4b E

0

`

dxxJ0~xr!d̂P@v 2 v0~x!; cT#

3 exp~2x2a1/4b!. (2.11)

Numerical evaluation of Eq. (2.11) at r 5 0 leads to a dis-
tribution that is indistinguishable from that of the Gauss-
ian aperture. This result is expected, because for the
Gaussian case we have an v window centered at
v0(x) 5 c[(x2/4b) 1 b] and extending effectively from
v 5 [v0(x) 2 4/T] to v 5 [v0(x) 1 4/T]. As x in-
creases, the relative deviation of v from its central value
decreases. As an illustrative example, let us consider the
deviation of v from the central value at x 5 250 m21.
The central value v0(250) is 3.75 3 1012 rad/s, and the ef-

Fig. 4. Temporal spectrum of the illumination of the Gaussian
aperture.
fective range of v is 3.558 3 1012 < v < 3.942 3 1012

rad/s. Referring to Eq. (2.11), we notice that the central
value of the periodic v window is again at
v0(x) 5 c[(x2/4b) 1 b], which is the same as that of the
Gaussian v window. This v window extends effectively
from v 5 [v0(x) 2 2.5p/T] to v 5 [v0(x) 1 2.5p/T].
At x 5 250 m21 the central value of the v window is the
same as in the previous case. The range of v is
3.373 3 1012 < v < 4.127 3 1012 rad/s. Hence it is
clear that the width of the v windows for both the Gauss-
ian aperture and the periodic aperture are much smaller
than the central value v0(x). For the integrations over x
in Eqs. (2.10) and (2.11), the narrow v window sweeps the
x spectrum by varying v0(x) over an effective range hav-
ing 0 , x , 4b/a1 . Thus the bandwidths of the two v
windows are negligible in comparison with
D(v) > v0(xmax) 5 4c/a1 . Consequently, the total
bandwidth D(v) of the temporal spectrum of the periodic
aperture is the same as that of the Gaussian aperture.
In Section 3 it will be shown that in spite of this resem-
blance, the pulse radiated from the periodic aperture
holds out for farther distances than the pulse launched by
a Gaussian aperture.

3. FIELD PROPAGATING IN THE Z>0
HALF-SPACE
The excitation fields defined on the aperture are given in
Eqs. (2.1) and (2.2). These fields can be expressed as a
superposition of Bessel beams1,2,18 at the plane z 5 0;
specifically,

C i~r, t ! 5 ReX 1
2p E

0

`

dxxJ0~xr!E
0

`

dvf~x, v!

3 exp$2i@A~v/c !2 2 x2#z%exp~ivt !C
z 5 0

.

(3.1)

The normal derivative of the field on the aperture is ob-
tained by taking the derivative of the above expression
with respect to z before we set z 5 0. Furthermore, the
quantity A(v/c)2 2 x2 is restricted to positive values1,2 to
ensure the forward illumination of the aperture. The
spectrum f (x, v) is that given in Eqs. (2.4) or (2.5), de-
pending on whether we are dealing with the Gaussian or
the periodic aperture, respectively.
To calculate the outgoing field propagating into the

z . 0 half-space, we apply Huygen’s construction19 to the
initial excitation of the aperture. Accordingly, the field
at a point R and time t inside a wave-front surface that
has a zero field outside such a surface is given by the in-
tegration over the area of the aperture:

C~r, z, t ! 5
1
4p E

0

2p

df8E
0

`

dr8

3
r8

R F2]z8C~r8, z8 5 0, t8! 1
z
R2 C~r8, z8 5 0, t8!

1
z
Rc

] t8C~r8, z8 5 0, t8!G
t85t2R/c

, (3.2)
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where R 5 ( r 8 2 1 r 2 2 2 r 8r cos f8 1 z 2)1/2. The
primed coordinates refer to source points on the aper-
ture, and the unprimed ones refer to the observation
points in the z . 0 half-space. The substitution of the
initial field [Eq. (3.1)] into Eq. (3.2) yields1–3

C~r, z, t ! 5 Re@Ĉ~r, z, t !#, (3.3a)

where

Ĉ~r, z, t ! 5
1
2p E

0

`

dxxJ0~xr!E
0

`

dvf~x, v!exp~ivt !

3 exp$2i@A~v/c !2 2 x2#z%. (3.3b)

The field launched from the Gaussian aperture into the
z . 0 half-space is calculated by substituting Eq. (2.4)
into Eq. (3.3) to produce

C~r, z, t ! 5
1

8pb E
0

`

dxxJ0~xr!E
0

`

dv

3 exp~2x2a1/4b!d̂G@v 2 v0~x!; cT#

3 cos$vt 2 @A~v/c !2 2 x2#z%. (3.4)

The square root A(v/c)2 2 x2 acquires only positive
values1,2 to ensure that all the field components are
propagating away from the aperture. To study the decay
pattern of the field given in Eq. (3.4) we shall concentrate
on the centroid of the pulse at z 5 ct for t . 0. The in-
tegration given in Eq. (3.4) is evaluated numerically. As
z increases, the integrand becomes highly oscillatory.
This leads to some difficulty in calculating the double in-
tegration (3.4). However, the numerical job can be re-
duced significantly if we utilize the fact that the v window
associated with the d̂G function is relatively narrow. To
further our understanding of Eq. (3.4), we refer to Fig. 2
(dotted curve), where it is clear that f (0, v) represents a
finite extension around a central value given by v 5 cb
and that all of its significant components lie in the range
(b 2 4/cT)c < v < (b 1 4/cT)c. For values of x other
than zero the v window is shifted by x 2/4b. Hence the
integration over v may be limited from
v 5 [v0(x) 2 4/T] to v 5 [v0(x) 1 4/T], rather than
extending over an infinite range.
The field radiated from the periodic aperture has an ex-

pression similar to that given by Eq. (3.4), with the
Gaussian d̂G function replaced by the periodic d̂P function.
One should note, however, that the extension of f (0,v) is
relatively larger than that of the Gaussian aperture, as
clear from the solid curve in Fig. 2. Consequently, we
choose the range of variation of v to be between
v 5 [v0(x) 2 2.5p/T] and v 5 [v0(x) 1 2.5p/T]. The
cosine term in Eq. (3.4) introduces oscillations inside the
various v windows. These oscillations depend on both x
and z. As x increases, these oscillations decrease, but as
z increases these oscillations increase. Thus the net area
of the v window decreases as z increases. Consequently,
the field amplitude decays as it propagates away from the
aperture.
Next we shall compare the characteristics of the decay

of the pulse radiated from the Gaussian aperture with
those of the decay of the pulse radiated from the periodic
aperture. Figure 5 represents the decay of the centroid
of the pulses radiated from both apertures at distances
that are integer multiples of p/b. From the figure it is
clear that near the aperture the Gaussian pulse holds out
better than the periodic pulse. At larger distances, the
periodic pulse not only overtakes the Gaussian pulse but
also shows an obvious improvement in the decay rate
with distance.
To further our understanding of the behavior of the

pulses propagating away from the aperture, we analyze
the spatial spectrum of each pulse at various distances.
The spatial spectrum at any distance z is defined as

fs~x, z, t ! 5
1
2p E

0

`

dvf~x, v!

3 cos$@A~v/c !2 2 x2#z 2 vt%. (3.5)

The spatial spectrum of the Gaussian pulse at any dis-
tance z away from the aperture is obtained by substitut-
ing Eq. (2.3) into Eq. (3.5) to produce

fs~x, z, t ! 5
exp~2x2a1/4b!

8pb E
0

`

dvd̂G@v 2 v0~x!; cT#

3 cos$@A~v/c !2 2 x2#z 2 vt%. (3.6)

The integration given in Eq. (3.6) is evaluated numeri-
cally at different values of z, and the results are plotted in
Fig. 6. From the figure it is clear that the low x compo-
nents decay rapidly with distance because of the high os-
cillations that are introduced into the v windows sweep-
ing the lower x sections. We notice also that all spectral
components decay with distance because the oscillations
introduced for z . 0 always result in a loss of the net
area of all the v windows. This leads to the decrease of
the amplitudes of the different sections of the spatial
spectrum. One should emphasize, however, that the net
losses in the v windows centered around the lower x sec-
tions are always greater than those for the higher ones.
Next we consider the spatial spectrum of the periodic

pulse, which is given explicitly as

Fig. 5. Decay of the centroid of the periodic and the Gaussian
pulses.
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fs~x, t ! 5
exp~2x2a1/4b!

8pb E
0

`

dvd̂P@v 2 v0~x!; cT#

3 cos$@A~v/c !2 2 x2#z 2 vt%. (3.7)

The integration over v is evaluated numerically for vari-
ous distances z. Figure 7 represents the spectrum of Eq.
(3.7). From the figure it is clear that the depletion of the
spatial spectrum of the periodic pulse differs greatly from
that of the Gaussian pulse. In this case the oscillations
introduced into the spectrum result in conversion of the
negative values of the spatial spectrum to positive ones
and vice versa. This means that some components are
added to the spectrum while others are subtracted. Such
behavior results in an increase and a decrease, respec-
tively, of the net area of the v window at any constant x
section of the spatial spectrum as the distance is in-
creased. Consequently, the amplitude of the pulse falls

Fig. 6. Depletion of the spatial spectrum of the Gaussian FWM
pulse with distance.

Fig. 7. Depletion of the spatial spectrum of the periodic FWM
pulse with distance.
off quickly at shorter distances from the aperture. On
the other hand, the narrow central lobe of the pulse’s
switching spectral window (see Fig. 2) slows down the de-
terioration of the x spectral components by holding out
against the introduced oscillations. This reduces the de-
cay rate of the pulse as it propagates away from the ap-
erture.
Furthermore, it is convenient to look at the decay of the

central pulse with distance. The periodic and the Gauss-
ian pulses are identical at z 5 ct 5 0, and their power
distribution is displayed in Fig. 8. From the figure it is
clear that the minimum radius of the Gaussian pulse is
Rmin 5 2.832 mm. Near the aperture the periodic pulse

Fig. 8. Power amplitude of the FWM central pulse on the aper-
ture at z 5 ct 5 0.

Fig. 9. Power amplitudes of the periodic and the Gaussian
FWM central pulses at different distances from the aperture.
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decays at a faster rate. The power content of the central
Gaussian pulse is greater than that of the periodic pulse.
This is clear from Fig. 9, which displays the power ampli-
tude of both pulses at z 5 ct 5 236.2 m. One should
note that the displayed power amplitudes are normalized
with respect to that of the central pulse at the aperture,
i.e., at z 5 ct 5 0. The power lost from the periodic
pulse as it propagates to distances farther from the aper-
ture is less than the power lost from the Gaussian pulse.
Figure 9 also compares the two pulses at z 5 ct 5 708.6
m. It is clear that at such a distance the power content of
the periodic pulse is now greater than that of the Gauss-
ian one. At large distances the power content of the cen-
tral FWM pulse generated by a periodic excitation can be
orders of magnitude greater than that of the Gaussian
pulse. Thus the propagation characteristics of the two
generated pulses have been shown to vary significantly,
even though we have used two apertures that have the
same maximum radius and the same temporal and spa-
tial bandwidth but differ only in the form of the Fourier
spectrum of the excitation time window.

4. CONCLUSION
In this paper we have studied the possibility of launching
approximations to the FWM pulse from dynamic aper-
tures. The type of aperture investigated varies its effec-
tive radius with time. We have studied two different
windowing schemes to time limit the FWM excitation
wave field. The first uses the Gaussian time window [Eq.
(2.1)] and the other utilizes the periodic excitation given
in Eq. (2.2). The causal fields generated by the apertures
were calculated with Huygen’s construction.1,2,19 In the
near-to-far-field range, the generated fields resemble the
source-free FWM pulse3,4 that has highly focused central
Gaussians that hold out for extended ranges. We have
demonstrated that the narrow central Gaussians gener-
ated by such apertures use the capabilities of their
sources efficiently. This is the case because the energy of
the illumination of a dynamic aperture2 is always spread
over its entire extension as it expands with time.
Apart from their excitation schemes, the two dynamic

apertures that we have investigated are identical. They
launch pulses having narrow Gaussian waists of equal ex-
tensions. Furthermore, they share the same spatial
spectrum, and their temporal frequency bandwidths are
equal. We have demonstrated that in spite of the simi-
larity of the two sources, the generated localized pulses
decay quite differently as they propagate away from their
source plane. This is the case because the ranges of such
highly focused pulses depend on the spatial–temporal dis-
tribution of the various elements constituting the sources.
Thus one can control the range by temporally varying the
sequence of the excitation of the various elements in a flat
aperture. The coupling between the spatial and tempo-
ral frequency components ensues from the spectral d̂ func-
tions, which are directly related to the Fourier spectral
content of the illumination sequence of the aperture.
This explains how two identical sources can launch pulses
that vary significantly as far as the decay of their ampli-
tudes with distance is concerned. A detailed study of the
depletion of the spectral components with distance, such
as the one presented here, provides a decisive tool to de-
sign the decay pattern of a narrow pulse in the near-to-far
field of its dynamic source. One should emphasize, how-
ever, that the case of the dynamic FWM aperture consid-
ered here is not the only possible way by which the exci-
tation field of a narrow pulse is allowed to fill the
extension of its source. Other possible schemes can be
investigated simply by varying the transverse x spectral
content. This will change the manner by which the illu-
minating field fills up the aperture as the latter varies its
size.

REFERENCES
1. A. M. Shaarawi, R. W. Ziolkowski, and I. M. Besieris, ‘‘On

the evanescent fields and the causality of the focused wave
modes,’’ J. Math. Phys. 36, 5565–5587 (1995).

2. A. M. Shaarawi, I. M. Besieris, R. W. Ziolkowski, and S. M.
Sedky, ‘‘Generation of approximate focused-wave-mode
pulses from wide-band dynamic Gaussian apertures,’’ J.
Opt. Soc. Am. A 12, 1954–1964 (1995).

3. R. W. Ziolkowski, I. M. Besieris, and A. M. Shaarawi, ‘‘Ap-
erture realizations of the exact solutions to homogeneous-
wave equations,’’ J. Opt. Soc. Am. A 10, 75–87 (1993).

4. R. W. Ziolkowski, ‘‘Exact solutions of the wave equation
with complex source locations,’’ J. Math. Phys. 26, 861–863
(1985).

5. A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, ‘‘Lo-
calized energy pulse trains launched from an open, semi-
infinite, circular waveguide,’’ J. Appl. Phys. 65, 805–813
(1989).

6. P. Hillion, ‘‘Spinor focus wave modes,’’ J. Math. Phys. 28,
1743–1748 (1987).

7. A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, ‘‘A
novel approach to the synthesis of nondispersive wave
packet solutions to the Klein–Gorden and the Dirac equa-
tions,’’ J. Math. Phys. 31, 2511–2519 (1990).

8. A. M. Vengsarkar, I. M. Besieris, A. M. Shaarawi, and R.
W. Ziolkowski, ‘‘Closed-form, localized wave solutions in op-
tical fiber waveguides,’’ J. Opt. Soc. Am. A 9, 937–949
(1992).

9. M. K. Tippet and R. W. Ziolkowski, ‘‘A bidirectional wave
transformation of the cold plasma equations,’’ J. Math
Phys. 32, 488–492 (1991).

10. R. Donnelly and R. W. Ziolkowski, ‘‘A method of construct-
ing solutions of homogeneous partial differential equations:
localized waves,’’ Proc. R. Soc. London Ser. A 437, 673–692
(1992).

11. R. W. Ziolkowski, ‘‘Localized transmission of electromag-
netic energy,’’ Phys. Rev. A 39, 2005–2033 (1989).

12. R. W. Ziolkowski, I. M. Besieris, and A. M. Shaarawi, ‘‘Lo-
calized wave representation of acoustic and electromagnetic
radiation,’’ Proc. IEEE 79, 1371–1378 (1991).

13. R. W. Ziolkowski, ‘‘Properties of electromagnetic beams
generated by ultra-wide bandwidth pulse-driven arrays,’’
IEEE Trans. Antennas Propag. 40, 888–905 (1992).

14. R. W. Ziolkowski, ‘‘Localized wave physics and engineer-
ing,’’ Phys. Rev. A 44, 3960–3984 (1991).

15. R. W. Ziolkowski and J. B. Judkins, ‘‘Propagation charac-
teristics of ultrawide-bandwidth pulsed Gaussian beams,’’
J. Opt. Soc. Am. A 9, 2021–2030 (1992).

16. J. N. Brittingham, ‘‘Focus wave modes in homogeneous
Maxwell’s equations: transverse electric mode,’’ J. Appl.
Phys. 54, 1179–1189 (1993).

17. I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, ‘‘A bi-
directional traveling plane wave representation of exact so-
lutions of the scalar wave equation,’’ J. Math. Phys. 30,
1254–1269 (1989).

18. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, ‘‘Diffraction-
free beams,’’ Phys. Rev. Lett. 58, 1499–1501 (1987).

19. P. M. Morse and H. Feshbach,Methods of Theoretical Phys-
ics (McGraw-Hill, New York, 1953), Sec. 11.3.


