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We compare the depletion of the spectral components of pulsed wave fields as they propagate away from their
sources. The spectral performance of a narrow localized Gaussian pulse launched from a dynamic aperture is
compared with that of the traditional Gaussian-waisted, quasi-monochromatic, and broadband signals gener-
ated by flat apertures. The effect of using a derivative receiver to slow down the decay rate of the measured
localized wave fields is expounded upon by using the same spectral analysis. © 1996 Optical Society of
America.
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1. INTRODUCTION

Brittingham’s1 proposal of the nondispersive focus wave
mode (FWM) solution to Maxwell’s equations resulted in
an ample investigation of ultrawide bandwidth signals
exhibiting extended ranges of localization. The original
FWM field is characterized by having an infinite total en-
ergy content.2 However, a class of finite-energy field so-
lutions has been deduced by using superpositions of the
source-free FWM.3 Such a class of pulsed wave fields has
become known as localized waves4–10 (LW). The genera-
tion and transmission of such fields have been studied ex-
tensively. The LW pulses are characterized by a strong
coupling between their spatial and temporal spectral
components.11,12 Such a connection exists over all of
their ultrawide spatial–temporal bandwidths. This
property is reminiscent of the original FWM field. Fur-
thermore, it has been demonstrated that the coupling al-
lows the generated pulses to propagate with very little
dispersion over extended ranges.8,11,12

In a recent study11 it was shown that a very good ap-
proximation to the scalar FWM pulse can be launched
from a dynamic aperture excited for an infinitely long pe-
riod of time. Since such an infinite illumination is not
practical, one may resort to time limiting the initial FWM
excitation of the aperture.12 In a study of the finite-
illumination scheme, it was shown that the use of dy-
namic apertures provides an efficient method to generate
pulses of narrow Gaussian waists from extended sources
of much larger dimensions. Similarly to all other LW so-
lutions, the approximation to the FWM pulse generated
from a finite-time dynamic aperture exhibits a close
0740-3232/96/0901827-10$10.00
coupling between its spatial and temporal spectral
components. In fact such a spectral correlation allows
the generated LW pulse to outperform Gaussian beams
characterized by single carrier frequencies. In such a
comparison12 we assumed that the continuous wave (CW)
Gaussian beam is generated from a static aperture of the
same extension as the maximum radius of the dynamic
source. The focused waist of the CW beam and of the LW
pulse are taken to be equal. Furthermore, the carrier
frequency of the CW is chosen to be equal to the highest
temporal frequency component of the illumination wave
field of the dynamic aperture. One can then show (see
Ref. 12) that the half-amplitude range of the LW pulse
generated from a dynamic aperture is several orders of
magnitude larger than that of the Gaussian beam gener-
ated from a static aperture.
The study of the effects of time limiting the excitation

of a dynamic FWM aperture on the depletion of the spec-
tral components of the generated wave field shows exactly
how the centroid of the LW pulse holds out for the ex-
tended range mentioned above and why, beyond such a
point, it starts to spread out. Various time-limiting
schemes as well as spatial spectral distributions have
been investigated. In this study we demonstrate that the
spectral depletion of the frequency components of LW
pulses generated from dynamic apertures is completely
different in nature from that of other transient pulsed
wave fields having the same waist and longitudinal time
duration. We compare the spectral depletion of the
Gaussian-waisted LW pulse generated by a FWM dy-
namic source with that of a quasi-monochromatic time-
limited pulse having the same Gaussian waist but
© 1996 Optical Society of America
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launched from a static aperture. The switching time in-
tervals of the excitations of those two pulsed fields are
taken to be equal. Furthermore, to clarify some aspects
of the comparison, we include a third case of a transient
beam having a broad spectral width. For the latter case,
the longitudinal dimension of such a broadband pulse is
chosen to be of the same order of magnitude as the length
of the central portion of the FWM pulse. Finally, we
demonstrate the effect of the measurement of a FWM
pulse with a derivative detector.13

2. EXCITATION OF TIME-LIMITED WAVE
FIELDS
Consider the following representation of an azimuthally
symmetric illumination of a flat aperture located at
z 5 0:

C i~r, t ! 5 Re$Ĉi~r, t !%, (2.1a)

where

Ĉi~r, t ! 5 X 12p E
0

`

dxxJ0~xr!E
0

`

dvf~x, v!

3 exp$2i@A~v/c !2 2 x2#z%exp~ivt !C
z50

.

(2.1b)

Here v is the temporal angular frequency and x is the
transverse spatial spectral variable. For a time-limited
wave field characterized by an initial waist w and a finite
period of excitation equal to 4T, we define the Fourier
spectrum as follows:

f~x, v! 5
T

Ap
$exp 2T2@v 2 v0~x!#2%exp~2x2w2!.

(2.2)

One should note that v0(x) depends on x. Such a connec-
tion allows the spatial–temporal spectra to be coupled to-
gether. The study of the effect of the spatial–temporal
coupling on the depletion of the spectral components of
the LW pulses with distance is the main aim of this work.
Before we can proceed in that direction, we need to reca-
pitulate some aspects of the thoroughly investigated case
of a time-limited pulse that has an effective duration lim-
ited to the interval [24T, 4T] and whose spatial and tem-
poral spectral components are independent of each other.
This independence can be achieved if we choose
v0(x) 5 vc , where vc is a carrier frequency of a constant
value independent of x. Nevertheless, there are two lim-
its for such a choice. Specifically, for vc @ 1/T the gen-
erating aperture is excited for a time interval that is
much larger than the oscillation period of any significant
spectral components contributing to the illumination
wave field. Consequently, the Gaussian v window intro-
duced in Eq. (2.2) has a narrow spectral width in compari-
son with the carrier frequency vc . The field representa-
tion defined in Eq. (2.1) thus depicts a quasi-
monochromatic signal. In the other limit, we choose
vc ; O(1/T). The Gaussian in Eq. (2.2) hence acquires a
spectral width comparable to that of the carrier fre-
quency. Such a limit corresponds to having a broad-band
signal. In both limits we substitute v0(x) 5 vc into Eqs.
(2.1) and (2.2) and carry out the integrations over x and v
to obtain

Ĉi~r, t ! 5
1

4pw2 exp~2r2/4w2!exp~2t2/4T2!

3 exp~1ivct !. (2.3)

The above expression for the illumination wave field con-
firms our previous assertions that w, 4T, and vc repre-
sent the waist, the duration of the excitation, and the car-
rier frequency, respectively. Hence Eq. (2.3) represents a
time-limited pulse characterized by a waist equal to w
and a temporal duration 4T. We assume that such a
field is launched from a flat aperture situated at z50.
The effective radius of the aperture is always equal to w
even if the aperture has a larger physical dimension.
This is the case because the exp(2r2/4w2) term fixes the
radius of the aperture for the whole duration of the source
illumination. Note also that in the extreme limit T → `,
the Gaussian function in Eq. (2.2) becomes a Dirac d func-
tion, and the field in (2.2) reduces to that of a monochro-
matic Gaussian beam.
Now we consider the case in which the temporal and

the spatial spectral components are coupled together:

v0~x! 5 ~x2/4b 1 b!c, (2.4)

where the specific choice of the parameter b and the
shape of v0(x) yield a FWM excitation (see Refs. 11 and
12). The relationship given in Eq. (2.4) indicates that the
center of the Gaussian v window in Eq. (2.2) varies as a
function of the transverse spectral variable x. When the
integration in Eq. (2.1) is performed over x, the v window
sweeps the whole bandwidth of the x spectrum that is
specified by the spatial Gaussian exp(2x 2w2). Further-
more, the time interval T determines the width of the
temporal v window, which decreases as T is increased.
Substituting Eq. (2.4) into Eqs. (2.1) and (2.2) and inte-
grating over x and v, we obtain

Ĉi 5
b

p~a1 2 ict !
exp@2br2/~a1 2 ict !#exp~ibct !

3 exp~2t2/4T2!, (2.5)

where, for convenience, we have substituted
w 5 Aa1/4b. This is the FWM illumination wave field
used in previous studies8,11,12 as an excitation of a dy-
namic Gaussian aperture capable of generating a good ap-
proximation to the FWM pulse in the near-to-far-field re-
gion. Notice that the initial illumination has a minimum
radius Rmin 5 2w, and for ct @ a1 the radius varies with
time such that it is effectively equal to ct/Aba1. The in-
terval of excitation [24T, 4T] thus determines the maxi-
mum size of the aperture. In the above-mentioned inves-
tigations, it has also been stressed that the condition
ba1 ! 1 is necessary to ensure that a causal FWM pulse
is efficiently generated by a dynamic aperture.11

Furthermore, in a comparison between the FWM pulse
and a strictly monochromatic Gaussian beam with the
same waist, it has been shown that the FWM pulse holds
out to much larger distances.12 In this comparison the
monochromatic frequency was chosen to be equal to the
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maximum-frequency component of the temporal band-
width vmax 5 4/a1 of the FWM wave field. In this paper
we extend the comparison to time-limited pulses of the
same waist, using the excitation field given in Eq. (2.3).
We demonstrate how the decay of the amplitude of such
pulses as they travel away from the aperture is related to
the depletion of their frequency content. There are fun-
damental differences between the removal of the spectral
components with distance of the LW pulse generated by
the initial wave field [Eq. (2.5)] and the quasi-
monochromatic or broadband signals excited by Eq. (2.3).
The excitation wave fields of the three cases mentioned

above generate pulses that have different propagation
characteristics. Huygen’s construction14 together with
the initial illumination given in Eq. (2.1) may be used11,12

determine the amplitude of the pulsed wave field as it
propagates away from the aperture into the z . 0 half-
space. Furthermore, we can deduce from Eq. (2.1) the
normal derivative on the aperture substituted into the
Huygen’s formula by differentiating with respect to z be-
fore we set z 5 0. It has been previously shown (see
Refs. 11 and 12) that the field radiated from an aperture
located at z 5 0 and illuminated by Ci given in Eq. (2.1)
becomes equal to

C~r, z, t ! 5 Re@Ĉ~r, z, t !#, (2.6a)

where

Ĉ~r, z, t ! 5
1
2p E

0

`

dxxJ0~xr!E
0

`

dvf~x,v!exp~ivt !

3 exp$2i@A~v/c !2 2 x2#z%. (2.6b)

Here we are interested only in the propagating-field com-
ponents. The evanescent modes11 are cut off by the con-
dition (v /c) . x. The FWM field propagating in the
z . 0 half-space can hence be obtained by substituting
Eqs. (2.2) and (2.4) into Eq. (2.6):

C~r, z, t !

5
T

2p3/2 E
0

`

dxxJ0~xr!

3 E
0

`

dv exp$2T2@v 2 v0~x!#2%

3 exp~2x2w2!cos$@A~v/c !2 2 x2# z 2 vt%.

(2.7)

Fig. 1(a) displays the decay pattern of the center of the
FWM pulse at distances z 5 ct that are integer multiples
of p/b. In this figure we have used the parameter values
a1 5 0.00001 m, cT 5 6.25 mm, and b 5 1.25 m21. The
radius of the generated pulse is equal to Rmin 5 2w
5 2.828 mm and vmax 5 4c/a1 5 1.2 3 1014 rad/s. At
this point it is instructive to compare the decay pattern of
the FWM pulse with that of other traditional signals in
order to show that the FWM pulse holdsout better for far-
ther distances. The field associated with the time-
limited signal [Eq. (2.3)] is obtained by substituting Eq.
(2.2), with v0(x) 5 vc , into Eq. (2.6); specifically,
C~r, z, t ! 5
T

2p3/2 E
0

`

dxxJ0~xr!

3 E
0

`

dv exp@2T2~v 2 vc!
2#

3 exp~2x2w2!cos@A~v/c !2 2 x2z 2 vt#.

(2.8)

For vc @ 1/T, we have a quasi-monochromatic signal,
whereas the other limit with vc ; O(1/T) produces a

Fig. 1. Decay of the centroid of time-limited pulses: (a) FWM
pulse, (b) quasi-monochromatic (top) and broadband (bottom) sig-
nals.
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broadband signal. The amplitude given in Eq. (2.8) is
plotted in Fig. 1(b) at z 5 ct, for vc 5 4c/a1 5 1.2 3 1014

rad/s, w 5 Aa1/4b 5 1.414 mm and, cT 5 6.25 mm.
These values correspond to the quasi-monochromatic
case. Note that the carrier frequency is equal to the 1/e4

point of the temporal spectrum of the FWM pulse. For
the broadband excitation we change cT to a value of
5 3 1023 mm. Hence these two signals have the same
waist as that of the FWM pulse. The quasi-
monochromatic signal, however, has a longitudinal exten-
sion equal to that of the total radiated FWM field. On
the other hand, the broadband signal has a length that
equals a1; this parameter characterizes the longitudinal
extension of the highly focused central portion of the
FWM pulse. It is clear from Fig. 1(b) that the decay pat-
terns of the quasi-monochromatic and the broadband sig-
nals are almost identical. It is obvious from Fig. 1(a)
that the amplitude of the FWM pulse drops to half its
value at z 5 245 m, while the half-amplitude distance
corresponding to the two other time-limited signals is 1.6
m. The FWM dynamic aperture thus is capable of send-
ing focused LW pulses with very little dispersion over dis-
tances several orders of magnitude larger than the dis-
tances traveled by other time-limited pulses with the
same waist.
A flat expanding aperture, hence, is an efficient con-

traption that may be used to send pulses of narrow waists
to far distances, at the expense of the source acquiring
larger sizes. For such a dynamic source, the generated
pulse makes full use of the size of its source. In contrast,
a quasi-monochromatic excitation of a similar narrow
Gaussian from a static aperture that is equal in size to
the FWM maximum radius makes no use whatever of the
extra extent of its source; it utilizes only the portion of the
aperture with r , Rmin52w. A comparison with the
performance of pulses that have larger Gaussian waists
generated from larger static apertures is thus futile, be-
cause we would be comparing two wave fields of different
focused radii.

Fig. 2. The depletion of the FWM spatial spectrum with dis-
tance.
Before proceeding to the next section, we would like to
comment on the fact that the FWM wave field has the
same longitudinal extension cT as the quasi-mono-
chromatic pulse. Nevertheless, the generated FWM
pulse is carrier free, and its total bandwidth is not deter-
mined solely by the pulse interval T. Instead, its overall
temporal bandwidth is a cumulative product of the juxta-
position of the individual v windows as they sweep the
whole x spectrum. The resulting temporal bandwidth Dv
> O(c/a1) is much larger than the spectral width of the
Gaussian window associated with the quasi-monochro-
matic pulse, namely, d (v) ; O(1/T). For this reason the
excitation of the FWM field is usually referred to as hav-
ing an ultrawide bandwidth, even though the whole FWM
wave field is not very short. Nevertheless, the focused
central portion of the FWM pulse is ultrashort, and its
length is of the order of magnitude of a1 . One should
note also that a1 is inversely proportional to the total
temporal frequency bandwidth of the FWM pulse.12

3. DEPLETION OF THE SPATIAL SPECTRA
OF THE TIME-LIMITED WAVE FIELDS
To understand the decay of the amplitude of the afore-
mentioned time-limited signals as they propagate away
from their sources, one should look at the associated spa-
tial spectra and their depletion with distance. We define
the spatial spectrum at any distance z from the aperture
as

fs~x, z, t ! 5
1
2p E

0

`

dvf~x,v!cos$@A~v/c !2 2 x2#z 2 vt%.

(3.1)

Fig. 3. Oscillations that affect different sections of the FWM
spatial spectrum at z 5 ct 5 525.27 m. Solid curve,
xfs(x, z 5 ct 5 0); dotted curve, xfs(x, z 5 ct 5 525.27 m).
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Fig. 4. Depletion of the spatial spectrum of the quasi-monochromatic CW signal with distance.
With Eqs. (3.1) and (2.6) the field propagating in the
z . 0 half-space can be rewritten as

C~r, z, t ! 5 E
0

`

fs~x,z,t !xJ0~xr!dx. (3.2)

The spatial spectrum of the FWM pulse is obtained by
substituting Eqs. (2.2) and (2.4) into Eq. (3.1), which
yields
fs~x, z, t !

5
T exp~2x2w2!

2p3/2 E
0

`

dv exp$2T2@v 2 v0~x!#2%

3 cos$@A~v/c !2 2 x2#z 2 vt%. (3.3)

The integrand in Eq. (3.3) embodies a Gaussian v window
centered at v0(x) and effectively extending between
v0(x) 2 4/T and v0(x) 1 4/T. For the FWM excitation
this v-window acts as an envelope of the cosine term in
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the integrand. The envelope sweeps the whole x spec-
trum when the integration over x in Eq. (3.2) is per-
formed. The oscillations of the cosine term depend on
both x and z. For a given value of z the number of oscil-
lations incorporated within a specific window is inversely
proportional to x. Figures 2 and 3 clarify this issue.
The spatial spectrum given in Eq. (3.3) is plotted in Fig. 2
at various values of z 5 ct. It is clear from the figure
that the low x components are depleted faster than the
higher ones. As the pulse travels to farther distances,
the depletion of the low-frequency spatial components is
increased. To understand the nature of such depletion of
the spatial spectrum, one can refer to Fig. 3. In this fig-
ure we display the changes in [xfs(x, z 5 ct)] as the pulse
propagates away from the aperture. Note that the area
under the xfs(x, z 5 ct) curve [see Eq. (3.2)] gives the
amplitude of the centroid of the propagating FWM pulse.
The solid curve represents [xfs(x, z 5 ct 5 0)], and the
dotted curve gives [xfs(x, z 5 ct 5 525 m)]. The insets
shown at the top of the figure display the oscillations in-
side the Gaussian v windows at different sampled values
of x evaluated at z 5 525 m. Note that the amplitudes of
these Gaussians are plotted to scale. However, for the
sake of illustration, their horizontal dimensions are dis-
played on a scale that differs from that of the spatial spec-
trum. The width of the v Gaussians is d(v/c) > 8/cT
5 1280 m21, while xmax 5 1415 m21. At low x values,
higher oscillations are introduced into the associated v
windows. The integration over v in Eq. (3.3) produces
negligible contributions from these v windows centered
around such low x values. This results in a rapid deple-
tion of the corresponding spectral components of the asso-
ciated spatial sections. From Fig. 3 one can also note

Fig. 5. Oscillations that affect different sections of the spatial
spectrum of the quasi-monochromatic CW signal at z 5 ct
5 6 m. Solid curve, xfs(x, z 5 ct 5 0); dotted curve,
xfs(x, z 5 ct 5 6 m).
that as x increases the oscillations are noticeably de-
creased. Hence the higher components of the spatial
spectrum hold out for farther distances than the lower
ones. Since the area under the [xfs(x, z 5 ct)] curve
represents the amplitude of the centroid of the pulse as it
propagates away from the aperture, then the above analy-
sis explains the behavior of the pulse as it is launched
into the z . 0 half-space. As the pulse propagates away
from its source, the oscillations introduced into the lower
v windows progressively cut off the contributions of the
smaller x spectral components, causing the area under
[xfs(x, z 5 ct)] to decrease. Consequently, the ampli-
tude of the centroid of the FWM pulse decays as the dis-
tance z is increased.
The situation for both the quasi-monochromatic and

the broadband signals is quite different from that of the
FWM pulse. This can be demonstrated if we study the
behavior of the spatial spectrum of those two cases. Sub-
stituting Eq. (2.2), with v0(x) 5 vc , into Eq. (3.1) gives
the spatial spectrum of the quasi-monochromatic signal
at any distance z from the aperture, which is explicitly
given as

fs~x, z, t !

5
T exp~2x2w2!

2p3/2 E
0

`

dv exp@2T2~v 2 vc!
2#

3 cos$@A~v/c !2 2 x2#z 2 vt%, (3.4)

with 1/T ! vc . The parameter controlling the pulse du-
ration T is chosen to have the same value as that of the
FWM case. The behavior of the spatial spectrum [Eq.
(3.4)] is slightly different from that of the FWM pulse.
For the quasi-monochromatic pulse the v window is cen-
tered around a fixed value equal to 4/a1 @ 4Ab/a1. The
excitation v window does not sweep the x spectrum as in
the case of the FWM; instead, it supplies the significant
temporal spectral components from those surrounding
the constant vc frequency. This carrier frequency is
much larger than the maximum x components as long as
ba1 ! 1. Consequently, the Gaussian v window can be
approximated by the Dirac delta function d (v 2 vc).
Thus, for all practical purposes, we may consider that the
spatial spectrum varies sinusoidally with x. The fre-
quency of the oscillations introduced over the whole x
spectrum is controlled mainly by z. Figure 4 illustrates
this point, where Eq. (3.4) is displayed at various values
of z. From the figure it is clear that at z 5 3 m there are
nearly two complete cycles inside the whole spatial spec-
trum. The two cases of z 5 12 m and z 5 48 m clarify
the effect of increasing z on the oscillations introduced
over the spatial spectrum. The farther the pulse travels,
the larger is the number of cycles embodied by the spatial
spectrum. Consequently, the integration given in Eq.
(3.2), results in a progressively decaying field amplitude
as the pulse propagates away from its source.
The effects of the v window in the integrand of Eq. (3.4)

is illustrated in Fig. 5, which is plotted at z 5 6 m. It
can be inferred from the figure that there are hardly any
oscillations inside the v windows, and their amplitude is
scaled by the respective values of the cosine term. Hence
the depletion of the spectral components does not result
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from the oscillations incorporated into the v window.
This is the case because the window is centered around a
very high frequency and has a relatively narrow band-
width. The decay of the amplitude of the pulse results
mainly from the oscillations introduced over the whole x
spectrum. One should contrast such behavior with the
depletion of the spectral content of the FWM pulse that is
due to the oscillations introduced into the excitation v
window. In the FWM case the lower spatial spectral
components are removed first, while the higher spectral
amplitudes are retained with very little changes. In con-
tradistinction, the spatial spectrum of a quasi-mono-
chromatic pulse traveling away from its source experi-
ences progressively increasing oscillations over the whole
spectral width. As such, the introduced oscillations re-
sult in substantial losses of the net area under the curve
representing the spatial spectrum. This in turn causes
the amplitude of the quasi-monochromatic pulse to fall off
at a fast rate [see Figs. 1(a) and 1(b)].
One should note that in Figs. 1(b), 4, and 5 we have
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limited our discussion to the z 5 ct point. This point
corresponds to the maximum amplitude of the pulse in
the near field. In the far-field region the maximum am-
plitude occurs at a different point. We have confined our
analysis, however, to the point z 5 ct because it suffices
to illustrate the introduction of the oscillations over the
whole x spectrum, as in Fig. 4. The maximum amplitude
point in the far field would introduce the same oscillations
with an extra phase shift. As for Fig. 1(b), the displayed
decay of the z 5 ct point is indistinguishable from the de-
cay of the maximum; we need a logarithmic plot to ob-
serve any difference in the amplitudes at these two field
points.
Next we consider the effect of increasing the width of

the v window in order to move to the range of broadband
signals. The spatial spectrum of such a signal may be ob-
tained by substituting Eqs. (2.2) and (2.3) into Eq. (3.1) to
give the same expression as that given in Eq. (3.4) but
with 1/T ; O(vc). If we choose cT 5 5 3 1023 mm, the
broadband pulse has a longitudinal extension of the same
order as a1 , the length of the central portion of the FWM
pulse. The spatial spectrum given in Eq. (3.4) is evalu-
ated numerically and is displayed in Fig. 6 at various
z 5 ct points. It seems that the depletion of the spatial
spectrum in this case combines some of the features of
both the FWM and the quasi-monochromatic signals.
The oscillations are introduced over the whole x spec-
trum, similarly to the quasi-monochromatic case. The
higher components of the spatial spectrum, however, are
depleted faster than the lower ones. This is the inverse
of the FWM case. Figure 7 displays the oscillations that
affect different sections of the spatial spectrum at z 5 6
m. It is clear that oscillations inside the v windows are
directly proportional to x. The oscillations in-

Fig. 7. Oscillations that affect different sections of the spatial
spectrum of a broadband pulse at z 5 ct 5 6 m. Solid curve,
xfs(x, z 5 ct 5 0); dotted curve, xfs(x, z 5 ct 5 6 m).
troduced at high x values result in the depletion of those
spatial components faster than the ones at lower x values.

4. EFFECT OF A DERIVATIVE DETECTOR
It is clear from Fig. 3 that the lower-frequency compo-
nents of the FWM pulse are depleted at a faster rate.
Consequently, following the analysis of Ziolkowski and
Judkins13 for detecting time-limited pulses having ultra-
wide bandwidths, one can design a differentiating re-
ceiver that is capable of accessing the higher-frequency
portions of the spectrum of the FWM pulse. For practical
realization of such derivative antennas, one should refer
to the discussion in Ref. 13. Our aim here is to illustrate
how such an enhancement in detecting the differentiated
signal is achieved. Actually, the result follows system-
atically from our analysis of the depletion of the spectral
content of the FWM pulse. In particular, when the field
in Eq. (2.7) is differentiated with respect to t, we obtain

C
•

~r, z, t ! 5
T

2p3/2 E
0

`

dxxJ0~xr!

3 E
0

`

dvv exp$2T2@v 2 v0~x!#2%

3 exp~2x2w2!

3 sin$@A~v/c !2 2 x2#z 2 vt%. (4.1)

The dot indicates partial differentiation with respect to
time. The differentiated signal contains all the ingredi-
ents discussed in the preceding sections. Specifically, we
have the temporal v window, the spatial Gaussian waist
function, and the oscillatory sinusoidal term. The only
difference is having an extra v factor in the integrand.
Such a multiplicative quantity may be perceived as a

Fig. 8. Effect of a derivative detector on improving the decay
pattern of the received FWM signal. Solid curve, amplitude mea-
sured by a derivative detector, dotted curve, amplitude detected
by a regular receiver.
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weighting function that emphasizes the contributions of
the higher-frequency v windows; the depletion of the
lower spectral components results in a relatively slower
decay, as illustrated in Fig. 8. The amplitude of the dif-
ferentiated centroid of the FWM wave field is normalized
relative to that at the aperture. The measured differen-
tiated signal amplitude is plotted as a function of the dis-
tance z. The solid curve represents the FWM amplitude
measured by a derivative detector, and the dotted curve
shows the relative decay of the amplitude detected by a
regular receiver. In Fig. 9 we demonstrate how the spa-
tial spectrum corresponding to the differentiated wave
field is depleted. The insets show the same oscillations
as in Fig. 3; however the higher-frequency v windows are
weighted by a larger v factor. This leads to a spatial
spectrum showing less deterioration than that depicted in
Fig. 3. It is important to point out that for wave fields
incorporating a carrier frequency, the differentiating re-
ceiver makes very little difference even for the broadband
case. For the latter excitation the depletion of the spec-
tral components starts with the higher frequencies.
Thus not all broadband time-limited signals can benefit
from the use of a derivative detector. Only pulses whose
low-frequency components are depleted at a faster rate
may show the desired enhancement.

5. CONCLUDING REMARKS
In this paper, we have attempted to emphasize the differ-
ence between the depletion of the spectral components of
the FWM pulse and those of other transient wave fields.

Fig. 9. Effect of a derivative detector on the oscillations that
affect different sections of the FWM spatial spectrum at
z 5 ct 5 525.27 m. Solid curve, xfs(x, z 5 ct 5 0); dotted
curve, xfs(x, z 5 ct 5 525.27 m).
It has been shown that dynamic apertures provide an ef-
ficient scheme for launching narrow-waisted Gaussian
pulses from sources with larger dimensions. A tradi-
tional flat, static aperture of the same size fails to send
equally narrow pulses to the same extended ranges in the
near-to-far-field region. We have demonstrated that the
extended ranges of localization of the FWM pulses follow
from the spatial–temporal coupling of the pulses spectral
components. Such a spectral correlation leads to a radi-
cally different process for the depletion of the pulse’s spa-
tial spectrum with distance. At the same time, the cou-
pling of the FWM spatial and temporal spectral contents
leads to an aperture that varies in size with time. Other
excitation procedures may lead to different depletion ef-
fects. It is clear from our analysis that the LW pulses
generated exhibit slower decay patterns if cT is in-
creased. This yields a narrow v window spectral distri-
bution. It should be of great interest to extend the v–x
coupling procedure such that the width of the v window is
reduced without an increase in the size of the aperture or
the bandwidth of the generating source.
The study of the depletion of the spectral components of

the FWM pulse has revealed the interesting property that
the lower-frequency components are removed first. This
behavior is not manifested by the quasi-monochromatic
and the broadband pulsed wave fields. Consequently,
the FWM signal measured by a differentiating receiver
exhibits a slower decay rate than the signal received by a
regular detector. Such an improvement in the decay rate
of the measurement of the differentiated signal can be
easily explained by our analysis of the pulse’s spectral
depletion with distance.
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