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It is demonstrated that an approximation to the focus-wave-mode field can be generated from a dynamic
Gaussian aperture. A source of this type is characterized by the time variation of its effective radius. The
performance of such an aperture is studied in detail; it is demonstrated that the dynamic aperture shows a

great enhancement over the corresponding static one.

The types of source investigated provide an efficient

scheme to launch narrow Gaussian pulses from extended apertures.

1. INTRODUCTION

In a recent study' concerning the causality and the
evanescent components of the focus-wave-mode (FWM)
solution to the scalar wave equation,®® it was shown
that, to address correctly the question of the launchabil-
ity of such a wave, one should make a distinction between
the source-free FWM field and a FWM pulse generated
from an aperture. With the proper choice of parame-
ters, it was confirmed that a good approximation of the
exact FWM solution can be generated in a causal fashion
from a dynamic Gaussian aperture.! The term dynamic
aperture is used here in the sense that the effective ra-
dius of the aperture varies with time. It was shown that
the FWM pulse generated from a causal dynamic infi-
nite aperture situated at z = 0 does not spread out as it
propagates into the z > 0 half-space. In contradistinc-
tion to the source-free FWM,? the field generated from
a FWM dynamic Gaussian aperture is completely causal
and does not have any acausality associated with it. For
the source-free FWM pulse, one can select specific val-
ues for the various parameters characterizing the wave
solution in such a way that the forward-going compo-
nents of the pulse become dominant.*5 If a properly
designed FWM solution is used to illuminate a dynamic
aperture causally, its minuscule backward-traveling field
components are turned into causal components that are
still very weak and could be neglected for all practical
purposes. For this reason the field generated by the
dynamic aperture becomes a good approximation to the
source-free FWM solution.
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The generated approximation to the FWM pulse retains
its shape for all times if the dynamic Gaussian aperture is
excited for an infinitely long time.! The generating aper-
ture thus needs an infinite amount of energy to be excited.
However, the power needed to illuminate the aperture is
always finite. Even when the aperture expands to an in-
finite size, the illuminating field becomes infinitesimally
weak and tends to zero at the same rate at which the
radius of the aperture approaches infinity. Within such
a framework the generating aperture consumes an infi-
nite amount of energy simply because it is excited for an
infinitely long time. Thus, as far as we are concerned,
there are no problems per se with the excitation of the
FWM field except for the need of an infinite time to illumi-
nate its aperture. Hence a dynamic Gaussian aperture
excited for a long but finite period of time is expected to
produce a field that is a good approximation to the origi-
nal FWM solution. A detailed analysis of such an idea
is the main purpose of this work.

The FWM belongs to a wider class of solutions®~® that
have come to be called localized waves. Such pulsed
fields exhibit extended ranges of localization and are
characterized by their large bandwidths. Similarly, the
initial illumination of the FWM aperture utilizes a wide-
bandwidth field whose temporal- and spatial- frequency
components are coupled together in a specific fashion.
Such a coupling does not exist for quasi-monochromatic
continuous-wave excitations. This extra freedom is en-
joyed by all localized-wave (LW) solutions, in which a
combination of the time-limited excitation of a specific
LW pulse and the temporal—spatial distribution of the
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various elements constituting an aperture can have a di-
rect effect on the spreading of the generated pulse. One
should recall that a large number of the finite-energy
LW pulses have been derived as a Laplace-type super-
position of the original source-free FWM.>1011  Addition-
ally, certain guidelines for the design and performance of
LW-driven dynamic apertures have been developed.!* It
has been shown that the coupling between the spatial-
and temporal-frequency content of the excitation fields
defined by the LW pulses is the main factor that deter-
mines the range of localization. The generation of such
LW pulses has been verified experimentally with indepen-
dently addressable ultrasonic array elements situated in
a water tank.'®!7 In such experiments it has been con-
firmed that a specific LW solution, the modified-power-
spectrum pulse,!' can travel farther than a Gaussian
pulse having the same transverse extension. Thus it
has been established experimentally that specific pulses
can do better than other ones even though they ini-
tially resemble one another, they are excited from the
same aperture, and their source elements have the same
frequencies.

Instead of using a superposition of FWM pulses to con-
struct wide-band finite-energy LW pulses, we can alterna-
tively excite the aperture with a FWM solution for a finite
period of time. One should emphasize, however, that all
finite-energy LW pulses are excited for a finite period
of time. Nevertheless, such a property becomes quite
evident in the approach that we adopted here by time
windowing the infinite FWM excitation of the aperture.
In this case, the field generated resembles the origi-
nal FWM pulse closely. At the same time, the nature of
the coupling between the spatial- and temporal-frequency
content becomes clear because a dynamic Gaussian aper-
ture at each time step represents a particular, regular,
static Gaussian aperture. The static Gaussian aperture
is a familiar object. Since we are advocating the possible
use of wide-bandwidth time-limited pulses, the notion of
a Rayleigh length separating the far from the near field
becomes a little ambiguous. We do not have a specific
carrier frequency for calculating the diffraction length as
in the case of a continuous-wave quasi-monochromatic
source. We simply claim that by varying the spatial- ver-
sus the temporal-frequency content of the source, one can
generate pulses that can hold themselves better than oth-
ers. To judge how far a pulse can propagate with very
little deformation, we define the range of propagation as
the distance from the aperture over which the ampli-
tude of the centroid of the pulse decreases by a factor
of one half. This is a specific way of determining how
fast a pulse decays; one can then relate such a decay to
the temporal and spatial bandwidths of the pulse. For
the sake of enhancing the precision of our arguments,
the indicated bandwidths will be characterized by their
3-dB points.

As indicated above, the FWM dynamic aperture has
an effective radius that varies with time. For the spe-
cific case considered in this paper, the FWM aperture
shrinks from its maximum radius at ¢ = —T to its small-
est radius at ¢ = 0 and then expands back to its initial
size when t = +7T. The power of the excitation field is
always constant. The amplitude of the field illuminat-
ing the aperture becomes smallest (largest) when the ra-
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dius of the aperture acquires its maximum (minimum)
value. The focused portion of the generated pulse has a
Gaussian profile whose radius equals the smallest radius
of the aperture. As the aperture shrinks, it concentrates
the power distributed on its largest area onto a spot char-
acterized by its minimum radius. This concentration of
the total power of the source onto a small spot can be
perceived as a process of temporal focusing because it de-
pends on how the size of the aperture varies with time.
The range of such a highly focused central pulse also de-
pends on the spatial—temporal distribution of the various
elements constituting the source. Thus one can control
the range and the power of the focus by temporally vary-
ing the sequence of the excitation of the various elements
in a flat aperture. This approach should be contrasted
with spatial focusing, which requires the construction of a
curved aperture. In the spatial focusing case, the power
is concentrated on a point far away from the source, and
the range of the focal point can be altered only by vary-
ing the curvature of the elements of the aperture. The
choice between a temporal and a spatial focusing scheme
depends on the application of interest. A combination of
the two focusing schemes could be quite advantageous;
however, such a consideration is out of the scope of the
present study.

In Section 2 we begin with the Fourier spectral con-
tent of the initial illumination of the FWM aperture.
This will allow us to explain the nature of the coupling
between the spatial- and the temporal-frequency compo-
nents. The FWM initial field is then used in Section 3
to excite causally a flat aperture situated at the z = 0
plane for an infinitely long time. It will be shown that
the field propagating in the z > 0 half-space closely
resembles the original source-free FWM pulse, even
though it is free from any acausal components. The
generated FWM pulse travels for all times without
spreading out. Since the generating aperture eventu-
ally becomes infinite in size, the Rayleigh limit is situ-
ated at an infinitely far distance from the aperture.
However, when one studies the spectral content of the
pulse it becomes clear that a delicate balance between
the temporal-frequency components and the transverse
spatial-frequency ones is responsible for holding the pulse
together for all times. It is the aim of this study to in-
vestigate what happens to such a balance when the FWM
aperture is excited for a finite period of time. It will
be shown that the pulse starts to spread out at finite
distances, the range of propagation depending on the pe-
riod of excitation, the smallest radius of the aperture,
and the 3-dB cutoff of the temporal-frequency spectrum.
Such a result agrees with the diffraction limit pre-
dicted by Hafizi and Sprangle.!® The Hafizi—Sprangle
limit beats by far the Rayleigh length of a narrow
Gaussian excited from a large static aperture. The
finite-time dynamic FWM aperture thus provides an in-
teresting scheme for propagating narrow Gaussian-like
pulses from extended apertures of much larger dimen-
sions. The Gaussian pulses generated from a finite-
time FWM aperture travel with little dispersion for
distances several orders of magnitude larger than simi-
lar narrow Gaussians launched from static apertures
of the same size and utilizing the same maximum
frequency.
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2. SPECTRAL CONTENT OF THE
EXCITATION OF THE INFINITE
FWM APERTURE

It has been shown previously® that a Huygens construc-
tion of a Bessel beam!® generated from an infinite aper-
ture cancels out all acausal incoming components, and
the Bessel beam is propagated invariantly away from the
aperture. Since the FWM can be considered a super-
position of Bessel beams,* the same approach ensures
that no acausal incoming fields are contributing to the
FWM-generated field. We start by defining the initial
FWM field illuminating an aperture situated at the z = 0
plane. The field is the real part of the azimuthally sym-
metric complex FWM pulse; specifically,

1

Yi(p, t) =Re (@ — ict)

X exp[—Bp?/(a1 — ict)]exp(iBct) - (2.1

Because of the first exponential term on the right-hand
side of Eq. (2.1), the field exists mainly inside the radius:

et

vBai

It is clear that such a time-varying radius becomes infinite
when ct = *w. It decreases from an infinite value to
a radius R(¢) ~ \/a1/B when ¢t approaches the value of
zero, and henceforth it expands toward an infinite size.
Furthermore, it can be deduced from Eq. (2.1) that the
field amplitude varies as 1/ct for ct — ©. Subsequently
the power density decreases as (1/ct)? and becomes equal
to zero at t = *o. This means that as ¢t — » the total
power of the field illuminating the aperture (the intensity
of the field X the area of the aperture) remains constant.
This behavior should be compared with the illumination
of infinite apertures by plane waves or Bessel beams. In
these two cases we need infinite power to illuminate the
corresponding apertures. From Eq. (2.2) it can be seen
that the parameter Ba; controls the speed v,, of the
shrinking and expanding of the aperture, where

R(t) = for ct > a;. (2.2)

_ c

var VBai

It has been previously shown*% that the quantity Sa;
determines whether the field of the source-free FWM is
dominated by forward- or backward-traveling field com-
ponents. The case of Ba; > 1 has been considered by
Heyman? and Felsen (see Ref. 21), who proved that un-
der such a condition the FWM field is dominated by its
acausal components. The other limit, for which Ba; <<
1, has been considered by the present authors. We have
shown that the forward-traveling field components of the
source-free FWM are dominant when Ba; << 1 (Refs. 1
and 4) and that one can neglect the minuscule backward-
propagating components without effectively altering the
shape of the FWM pulse. We are interested primarily
in the latter case, in which the causal (forward-traveling)
components are the major contributors to the FWM field
generated from a dynamic Gaussian aperture. Accord-
ing to Eq. (2.3) the FWM aperture expands effectively at

for ct > a;. (2.3)
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a speed v,, > ¢ when Ba; < 1. One achieves this practi-
cally by composing the aperture from separately excitable
elements. This was the case for the arrays used in ex-
periments performed to establish the launchability of
other LW solutions.6:17

The Fourier spectrum of the illumination of the FWM
aperture is calculated from the Fourier transform of
Eq. (2.1), viz.,

. | .
oo = [ at [ appditxpexs(-ion s

X exp[—Bp?/(a; — ict)]exp(iBct). (2.4)

0

The integrations over ¢ and p when carried out yield

Dy, 0) = % 8{w — [(x%/4B) + Blc}exp[—( x2/4B)ai].
(2.5)

The temporal- and spectral-frequency contents can now
be calculated from the inverse Fourier transform of the
spectrum given in Eq. (2.5) with respect to y and w, re-
spectively. Starting with the temporal-frequency compo-
nents, one obtains

Dlp,0)= % [ dyxdo(xp)dte — [(X*/48) + Blc)
0
X exp[—(x?/4B)ail, (2.6)

which gives

Di(p, w) =27Jo{2p/Bl(w/c) — B]}

X exp[—(w/c)ailexp(Ba)H[(w/c) — B], (2.7)

where H[(w/c) — B] is the Heaviside unit-step function.
Notice that the factor exp(Ba;) determines how large
the contribution of the spectral-frequency components is.
For Ba; << 1, the factor exp(Bai) ~ 1 does not affect
the shape of the temporal spectrum. On the other hand,
when Ba; > 1, the factor exp(Ba;) becomes significant be-
cause it balances out the exponential decay exp[—(w/c)a]
in the temporal-frequency spectrum. Even though the
3-dB point seems to lie at (w/c) ~ 1/a1, there could still
be significant components contributing to the spectrum
because of the factor exp(Ba;) >=> 1. Hence we have to
extend the maximum radial frequency to

Wmax ~ (4/(11 + B)C . (28)

The above expression sheds more light on the significance
of the two conditions Ba; << 1 and Ba; > 1. The first
condition corresponds to the case in which wyax ~ 4wsap =
4c¢/ay, and most of our bandwidth is supplied by the tem-
poral components. With Ba; > 1, the maximum angu-
lar frequency is given by wmax ~ [(4/a1) + Blc > 4wsap.
Such an increase in the significant temporal-frequency
components arises because of the increase in the contri-
butions of the spatial-frequency spectrum. As indicated
above, such an increase is expressed by the existence
of the factor exp(Ba;) >> 1. Recalling that in Eq. (2.7)
®min = B¢ > c¢/a;, we see that the temporal-frequency
bandwidth becomes very narrow and exists mainly in the
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Fig. 1. Temporal and spatial spectral content for FWM aperture
illumination when Ba; > 1.

tail of the exponential exp[—(w/c)a;]. Such a narrow-
ing of the temporal-frequency content could be perceived
as a depletion of the temporal frequencies on behalf of
the spatial ones, which supply most of the power to the
generating field.

In the same vein, the spatial-frequency components
can be calculated from the inverse Fourier transform of
Eq. (2.5) with respect to w, where

1 [~ T
0,00 0= 5o [ do T slo~ [0/48) + B}

X exp[—(x2/4B)ailexp(iwt) 2.9)

gives
®,(x, ) = i exp[—(x%/4B)ar)explil(x*/4B) + Blet}.
(2.10)

The bandwidth of the spatial spectrum is controlled by
the quantity /B/ai1, which is the inverse of the small-
est radius of the aperture or, equivalently, the radius
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of the highly focused central Gaussian launched by the
FWM aperture. For Ba; > 1 we have \/8/a; > 1/ay; this
indicates that spatial bandwidth is greater than the tem-
poral one, as shown in Fig. 1. Similarly, the condition
Ba; << 1 indicates that \/8/a; << 1/a;. Consequently,
the main contributions to the excitation field come from
the temporal spectral components in that limit. This be-
havior is illustrated in Fig. 2. In Figs. 1 and 2 we have
plotted examples of the normalized spatial- and temporal-
frequency spectra in the two limits Ba; > 1 and Ba; << 1,
respectively. The parameters 8 and a; in Fig. 1 have
been chosen to equal 100 and 0.1, respectively. In Fig. 2
we have chosen 8 = 10 and a; = 0.01. The choice of
the values of the parameters is a matter of convenience;
we picked the indicated values to ensure that the spatial
spectrum would have the same bandwidth in both cases.
For Ba; = 10, Fig. 1 shows that the temporal-frequency
content becomes thin and exists only at the tail of the spa-
tial spectrum. Notice that in Eq. (2.8), (4/a;) = 40 < 8,
which is equal to the low-frequency cutoff point of the
temporal components as indicated by the Heaviside
unit-step function in Eq. (2.7). The temporal-frequency
components are thus depleted, and the temporal- and
spatial-frequency components become decoupled from
each other. In contrast, when Ba; = 0.1, the temporal
spectrum becomes much broader and overlaps most of
the spatial components. Finally, we note that the mark-
ers placed at 28 in the two figures will be helpful below
when we discuss the similarity between the causal field
generated from a dynamic Gaussian aperture and that
generated from the source-free FWM.

3. PROPAGATION OF THE FWM
FIELD IN THE z > 0 HALF-SPACE

The initial field defined on the aperture [see Eq. (2.1)]
is a superposition of Bessel beams'® at the plane z = 0;
specifically,

1 -1
0.3 o8
E
E 6,00 | 4
g
@' 06 + 08
- $,0,0)
g X0,01,0)
s 04 e -1 0.4
z
0.2 02
0 - I ‘1 [ 119
0 100 200 300 400 500

Frequency

Fig. 2. Temporal and spatial spectral content for FWM aperture
illumination when Ba; < 1.
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wi<p,t>=|$ | e [ dodix, o)

X exp[—i/(w/c)? — x2 z]exp(iwt)} - (3.1

z=0

The normal derivative of this field on the aperture is
evaluated before we set z = 0. Consequently, we restrict
the quantity /(w/c)?2 — x2 to positive values only, to en-
sure the forward illumination of the aperture. Notice
also that w is restricted to positive values if B is posi-
tive. This follows from the roots of the § function in the
spectrum given in Eq. (2.5).

In order to calculate the outgoing field propagating into
the z > 0 half-space, we utilize Huygens’s construction.??
Accordingly, the field at a point R and time ¢ inside
a wave-front surface having a zero field outside such a
surface is given by the integration over the area of the
infinite aperture. Such a construction is expressed in the
following mathematical form?2:

1 21 © /
Vi o= [ ag [ ap Bl a2 =0,0)
47 Jo 0 R
+ 25 W(pl, 2 =0, 1)
z
v 20, W(p!, 2 =0, t’)} . (3.2)
CR t'=t—R/c

The primed coordinates refer to source points on the aper-
ture, and the unprimed ones refer to the observation
points in the z > 0 half-space. Substituting for the ini-
tial excitation given in Eq. (3.1) and making use of the
identity®

—iwR . :
az[%f”/")} _ _(% +i %)exp(—mR/c%

we get
1 2 © pl o
Y(p, z, t)=4—f d¢’f dp’—f dxxJo(xp")
T Jo 0 2m 0

X [w do®(y, w)exp(iowt)
0
% {i (@] = 2 %@/C)

B 82|: exp(fligwR/c) “ ] 3.3)

Here R = (p'2 + p%2 — 2p’p cos ¢’ + 22)V2. Since the
square root /(w/c)? — x2 is always positive, it forces the
bracketed term in Eq. (3.3) to pick up only outgoing waves
and to cancel out any waves converging on the aperture.
To justify such a claim one can start with the identity

exp(—iwR/c) 1 /m fm "
— r . dA B dr,Ado(Ap ™)

exp(—ik,z)

X — (/e — A7)

(3.4)

to evaluate the bracketed term in Eq. (3.3). Here p* =
(p'2 + p2 — 2p'p cos ¢')V2, and the contour of integra-
tion I' in the complex «, plane is shown in Fig. 3. For
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(w/c) > A the contour of integration is closed in the lower
half-plane to ensure the integrability of Eq. (3.4) for z > 0.
For (w/c) < A the analysis becomes more complicated be-
cause the 6 function in the spectrum given in Eq. (2.5)
forces w to become complex. Such a situation was dealt
with in detail in another study! that was concerned pri-
marily with the evanescent-field components on an in-
finite FWM aperture. In that study it was shown that
there are no evanescent fields associated with an infinite
FWM aperture. On carrying out the contour integration
over the «, variable and taking the partial derivative with
respect to z, we get

az|: M} - — [ d)t/\Jo()\p*)
R 0
X exp[—i/(w/c)? — A2 z]
- f dArdo(Ap™)
0
X exp[+i/(w/c)? — A2z]. (3.5)
From the a priori knowledge of the appearance of (A —

x) [see Eq. (3.7) below], the bracketed term in Eq. (3.3)
becomes

=2 fw dAATo(Ap ¥ )exp[—iv/(w/c)2 — A22]. (3.6)
0

Thus the acausal components converging on the aperture
are filtered out. This is a direct consequence of the for-
ward illumination of the FWM aperture, viz., the restric-

tion of \/(w/c)? — x% in Eq. (3.3) to positive values only.
Following the same procedure as in App. B of Ref. 5, we

Complex x, Plane

Fig. 3. Contour of integration I' in the complex «, plane used
for evaluation of the integration in Eq. (3.4).
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can use the addition theorem of the Bessel function?? to-
gether with Eq. (3.6) to rewrite Eq. (3.3) as follows:

1 [ .
Y(p, z, t)=§f0 dp’p’fo dxxJo(xp")
Xf do®(y, w)exp(iwt)
0

x f AN (Ap)To(Ap)
0

X exp[—iv/(w/c)?2 — A2 z]. 3.7

One can evaluate the integration over p’ by using the
orthogonality of the Bessel function, which gives a §(A —
x) term. Thus the integration over p’ and A reduces
Eq. (3.7) to

V(p, 2, t>=$f0 dyxdo(xp)

X foc dwd{w — [(x%/48) + Blc}
0
X exp[—(x2/4B)a1]

X exp(iwt)exp[—i/(w/c)?2 — x2z]. (3.8)

For (w/c) =[(x%/48) + B], the square root \/(w/c)?2 — x2
would acquire the value of either [(x2/48) — B] or
—[(x2/B) — B], depending on whether y > 28 or y < 28,
respectively. This is the case because only positive val-
ues of the square root give nonzero contributions, as we
have shown in Eq. (3.6). One can then easily carry the
integration over o to obtain

1 (%

Vo2 0)= 55 fo dxxJolxp)expl—(x*/4B)ar]
X expli( x2/4B)(z + ct)]exp[—iB(z — ct)]
+ i [Z | duexp)exsl—(x*/4B)a]

X exp[—i(x2/4B)(z — ct)]exp[iB(z + ct)].
(3.9)

For Ba; << 1 we have an aperture that apparently
shrinks and expands at speeds greater than that of light.
As shown in Fig. 2, the 3-dB point of the y spectrum
2./B/a; >=>2B. Thus we can rewrite Eq. (3.9) as

i (2%
Vipoz )= o [ dyxJoxp)expl—(x*/4B)ar]
0
% sinf{(x2/4B) — Ble}explil(x*/48) + Blet}
+ ifo dxxJo(xp)exp[—(x?/4pB)a1l

X exp[—i(x2/4B)(z — ct)]exp[iB(z + ct)].
(3.10)

The integration of the second term on the right-hand
side of Eq. (3.10) yields the source-free FWM pulse. The
first integral, however, is carried out over a narrow por-
tion of the total bandwidth of the y spectrum. In fact,
the ratio between the area 27 [ ydy ~ 0(wx?) with the
proper limits of integration taken into consideration re-
sults in an estimate of the relative magnitude of the
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first term in Eq. (3.10) in comparison with the second.
Specifically, the amplitude of the first term is of order
(2B)%/(2/B/a1)?> = 0(Ba;) relative to that of the center
of the FWM pulse. Thus the first term is algebraically
small in comparison with the second; and, for all practi-
cal purposes, the field generated by the aperture would
closely resemble the source-free FWM pulse. The same
result could be deduced directly from Fig. 2, in which
the first integration gives the area of the shaded tri-
angle under the y®,(y) curve. The second integration
is the area under the whole y®,(x) curve. The ratio of
the two areas is 0(8a1).

A time sequence of the generation of the FWM pulse
from an infinite-time dynamic aperture is shown in Fig. 4.
For negative times the aperture generates a precursor
field of low intensity, which is not focused at all. The
focused waist of the pulse is formed at ¢ = 0 when the
aperture shrinks to its smallest radius. As the aperture
starts expanding, the amplitude of the focused centroid
is sustained as long as the aperture is allowed to expand
to an infinite size. In Fig. 4 the contours of the gener-
ated field have intensities that are 0.6, 0.4, 0.2, and 0.02
relative to the intensities at the central line of propa-
gation. For positive times the highest intensity exists
at the focused centroid, which has the highest density of
lines. As we move along the central line away from the
centroid, the contour lines open up and their densities de-
crease, indicating that we have broader Gaussians with
smaller amplitudes.

4. FINITE-TIME EXCITATION OF THE
DYNAMIC FWM APERTURE

In this section we investigate the consequences of cutting
off the expansion time of the FWM aperture at a finite
value. We can do this by introducing a Gaussian time
window of width 2T'; specifically, the spectrum content of
the excitation field can be calculated as

D(y, o) = fxdtfo dppdo(xplexp(—iwt)

X rlict) exp[—Bp®/(a1 — ict)]
X exp(iBct)exp(—t2/4T?). 4.1)

Here the Gaussian window allows the aperture to expand
effectively only from ¢ = =T — +T. The spectrum of the
field illuminating the aperture becomes

Dy, 0) = % ${(w/e) — [(x*/4B) + B; cT}

X exp[—(x*/4B)ai], (4.2)
where
8llw/c) — [(x*/4B) + B; cT}
= T exp(- (TP(w/e) ~ [(*/46) + F17). (43)

In the limit T — «, the Gaussian & function goes to
the Dirac 6 function that characterizes the spectrum of
the infinite-time excitation [see Eq. (2.5)]. When T is
large, the Gaussian in spectrum (4.2) reduces to a nar-
row distribution with a very small bandwidth for which
(w/c) ~ [(x%/4B) + B] provides most of the significant
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Fig. 4. Time sequence of the generation of
z (m) z (m) the FWM Gaussian field from a dynamic
(d) (e) aperture.

contributions to the spectrum. Thus we have a narrow
Gaussian centered around (w/c) = [(x2/48) + B] that
sweeps across the whole y spectrum as y is varied from
0 to 4,/B/a;. We demonstrated in Section 2 that, for
Ba; << 1, the portion of the spectrum for which y < 28
is negligible for all practical purposes. The same applies
for the case of a narrow Gaussian spectrum such as that
given in Eq. (4.2). If we follow the same procedure as
that described in Section 3, the field generated in the
z > 0 half-space can be calculated as

Y(p, z, t)=%/; dxxJo(xp)

X [ ddlx — [(x2/4B) + B, cT}
0

X exp[—(x?/4B)a1lexp(ixct)

X exp(—i k2 — x%22),

(4.4)

where k = w/c. The square root \/k2 — x2 acquires only
positive values to ensure that all the field components
are diverging from the aperture. To study the decay pat-
tern of the field given in Eq. (4.4), we shall concentrate
on the centroid of the pulse at z = c¢ for ¢ > 0. For the
field generated from an infinite aperture [see the second
term in Eq. (3.10)] the Dirac § function in the spectrum
forces the phase [(w/c) — /(w/c)? — 2]z = 2Bz to be in-
dependent of y. Hence the centroid propagates to infi-
nite distances from the aperture without any decay and
varies sinusoidally only over distances that are integer
multiples of 7/B8. Now, for the finite aperture such a
delicate balance does not exist. Even though the phase
(k — /kZ — %)z ~ 2Bz, the Gaussian 6 function never-
theless introduces small deviations that are dependent
on both y and z. For large values of z the exponential
term becomes highly oscillatory over large portions of the
x spectrum. On integration, such high oscillations pro-
gressively remove significant portions of the y spectrum
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as z is increased. Consequently, the amplitude of the
centroid of the generated pulse decreases as it propagates
away from the aperture.

We evaluate the integration in Eq. (4.4), for which
z = ct and p = 0, numerically to determine how fast
the amplitude of the centroid decays in the positive z di-
rection as the pulse propagates away from the aperture.
Because the integrand in Eq. (4.4) can become highly
oscillatory, especially for large values of z, a double in-
tegration over y and « might be quite tedious. Never-
theless, the Gaussian 8{x — [(x%/48) + B]; ¢T} becomes
very narrow for BcT >> 1. Therefore, instead of having
an infinite range of integration over « from 0 to ©, we ef-
fectively have a finite range that we have chosen to vary
from [(x*/4B8) + B — (4/cT)] to [(x*/4B) + B + (4/cT)].
All significant contributions to the « integration comes
from this finite x window. Subsequently, the computa-
tion of the double integration is greatly simplified. This
«x window sweeps the y spectrum as y is varied over the
whole bandwidth. One should note, however, that the
deviation of (k — /k? — x?) from 28 is larger for smaller
values of y. As a consequence, the integrand in Eq. (4.4)
becomes highly oscillatory inside the x windows cover-
ing the lower portions of the y spectrum. As z is in-
creased, the oscillations of the integrand progressively
remove larger portions of the y-frequency components.
Hence the integration in Eq. (4.4) results in a Gaussian
pulse, the centroid of which decreases in amplitude as it
travels forward in the positive z direction.

The numerical evaluation of Eq. (4.4) is shown in
Figs. 5 and 6, in which the normalized amplitudes of the
centroid are plotted at various distances z = ¢t = 0. The
amplitude is normalized relative to that of the centroid of
the pulse as it goes through the aperture at z = ¢t = 0.
The parameters used in the numerical integration have
been chosen to comply with the conditions required for
the generated pulse to resemble the source-free FWM;
specifically, we need Ba; << 1 and BcT >> 1. Toward
this end in Fig. 5 we have chosen 8 = 400 m~' and
a1 =4 X 107" m. This choice of parameters produces a
Gaussian of radius wy = \/a;/8 = 3.162 X 1075 m, which
is approximately the smallest radius acquired by the
aperture. In Fig. 5 the amplitude of the centroid, cal-
culated from the real part of integration (4.4), has been
plotted for various z = ¢t > 0 points. Three curves are
shown in the figure, each one characterized by a specific
cT value. From Eq. (2.2) it can be seen that the value
of ¢T' determines the largest radius acquired by the aper-
ture, namely, Ryax = c¢T/+/Ba;:. In Fig. 5 the smallest
aperture radius wy is kept constant, while one varies Ryax
by choosing ¢T = 0.13, 0.26, and 0.52 m. Thus when the
dynamic FWM aperture is allowed to expand for longer
times, it acquires larger radii. Keeping 8 and a; con-
stant for the three plotted curves means that the band-
widths of the spatial and the temporal spectra (see Fig. 2)
are the same for all three cases. A comparison of the de-
cay patterns of the centroid for each ¢T value indicates
that the amplitude of the centroid falls off at a slower rate
as Ry is increased. Notice that the amplitude reaches
half its aperture value at distances that double as the
maximum radius is increased to twice its original value.
This shows that the range of the pulse varies linearly with
the largest radius of the aperture. Such behavior has
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been alluded to by Hafizi and Sprangle!® in their attempt
to define a diffraction length of the LW fields as they
propagate away from their generating apertures. The
same results agree with the guidelines deduced in Ref. 24
for the design of LW’s. At this point one should note
that the amplitude of the centroid is calculated at mul-
tiples of z = 507 m. Such an amplitude varies sinusoi-
dally along the z direction with its maxima occurring
when 2Bz is an integer multiple of 277. This is typi-
cal behavior of a field propagating within the Rayleigh
diffraction length characterizing its source. Thus one
should bear in mind that in Fig. 5 there are 20,000 cycles
between any two displayed points. Each of these points
is the maximum of its own cycle.

The value of the minimum radius wy is varied in Fig. 6,
while the maximum radius R, is kept unchanged. To
keep the same maximum frequency of the source for all
three cases, we assigned the parameter a; the constant
value 4 X 1077 m. Furthermore, we chose the following
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Fig. 5. Decay in the centroid of the Gaussian pulse as a function
of distance z from the aperture as ¢T is varied.
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parameter values for the three cases considered in Fig. 6:
B = 400, 1600, and 6400 m~! and ¢T = 0.13, 0.26, and
0.52 m, respectively. For these parameter values Ry.x =
10.277 m, and wy = 3.162 X 107%, 1.581 X 1075, and 7.9 X
1078 m. It is straightforward to deduce from Fig. 6 that
when a; is kept constant (i.e., the maximum frequency is
kept the same in all three cases) the centroid decays at a
faster rate as wy is decreased. Again one can assert that
the range of the pulse decreases linearly with wy, which
is another property predicted by the analysis in Ref. 24
and agrees nicely with the diffraction limit estimated by
Hafizi and Sprangle.!®

At this stage we need to further our understanding
of the behavior of dynamic apertures in relation to the
diffraction length estimated by Hafizi and Sprangle.!®
In an effort to define a diffraction length for LW fields,
they estimated the angular spread of the radiation rela-
tive to the normal to the aperture as Ay/x. For the
dynamic aperture under consideration, the transverse
wave-number spread Ay can be taken equal to 2\/8/a1,
and £ = w/c is equal to 1/a;. Notice that such values
are well above the corresponding 3-dB points of the y
and the o spectra. From the above definition of the
angular spread of the radiation as it emerges from the
aperture, Hafizi and Sprangle deduced the following
diffraction length!®:

Rk
Ax

2us = (4.5)

where R is the radius of the aperture (for a dynamic
aperture one should take R = R,.:) and HS stands for
Hafizi and Sprangle. Hafizi and Sprangle have made the
correct observation that the diffraction length associated
with a specific LW field depends linearly on the radius
of the central pulse wyg. The modified-power-spectrum
pulse (which has been extensively studied in Ref. 11)
resembles the FWM closely; hence it can also be gen-
erated by an aperture that effectively changes its size.
Consequently, the behavior of a pulse launched from a
finite-time FWM aperture (similarly to the modified-
power-spectrum pulse) relies heavily on its dynamic
character. We already know that the FWM spectral
spread Ay is related directly to the radius of the cen-
tral Gaussian pulse wo = Rnin = +/a1/8. Therefore the
Hafizi—Sprangle diffraction limit can be rewritten as

Rmamein .

24, (4.6)

ZHS =

Thus the diffraction length of a dynamic aperture depends
on its largest and smallest radii and on the bandwidth of
its signal generator. The latter is characterized by the
quantity 1/a;. For the FWM aperture we can substitute
for Rya.x and Ry, in terms of the parameters 8 and a;
to obtain zys = ¢T/2Ba;. If we substitute for the values
of the parameters c¢T', 8, and a; used in Fig. 5, we obtain
zus = 406, 812, and 1624 m, respectively. Such values
agree nicely with the computed half-amplitude ranges as
illustrated in Fig. 5.

One should emphasize, however, that the cyclic behav-
ior of the amplitude as a function of z persists even for dis-
tances larger than zgg. This is the case because we are
in the near-field region of a static aperture of radius Ry
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whose Rayleigh length zz = mR2_ /) is greater than zgg

defined above. On the other hand, the ranges deduced
from Fig. 5 are well inside the far-field region of an aper-
ture whose effective radius is that of the Gaussian pulse
wo, for which zgr = 7wy%/A. The way in which a pulse be-
haves between those two diffraction-length scales depends
primarily on the temporal- and spatial-frequency content
of the generating aperture. In fact, the main advantage
of the scheme advocated in this paper is that it allows us
to send narrow pulses generated from large apertures to
far distances with very little spreading. A static aper-
ture of a fixed radius R generating a narrow Gaussian
pulse having a waist wy < R would behave as if it had
an effective radius equal to the waist of the Gaussian.
In this case, the diffraction length of the field generated
by that static aperture is zz = wwy?/A, independent of
how large R is. A narrow Gaussian pulse would not go
very far before it started to spread out. By contrast, a
dynamic aperture is able to send a Gaussian pulse of a
very narrow waist to a much larger distance before its
amplitude starts to fall off. In fact, we expect the dy-
namic aperture to extend the half-amplitude range by a
factor of Ryax/wo. A similar enhancement factor for the
range of LW pulses has been deduced in Ref. 24.

To make our arguments more precise, we consider the
case of a Gaussian field generated from an aperture
having a fixed radius R greater than the waist of the
Gaussian wy. We choose the spectrum of the initial ex-
citation to give wy = \/ai1/B, as in the case of our dy-
namic aperture. The illuminating field is chosen to carry
a single frequency wo/c = 1/a1, which is comparable with
the bandwidth of our excitation of the FWM aperture.
Specifically, we choose

Dy, ) = % 8(w — wolexp[—(x*/4B)ar], (4.7

and the generated field becomes

V(p, 2, 1) = i fo dyxJolxp)expl—(x*/4B)ar]

X exp(iwot)exp[—i/(wo/c)® — x2z]. (4.8)

To be able to compare the performance of such an aperture
with that of the dynamic one, we choose the parameters 8
and a; to have the same values, such that Ba; << 1. In
integration (4.8) we have y2../(@o/c)? = (B/a1)/(1/a1)? =
Ba; << 1; thus the paraxial approximation could be intro-
duced into the integrand of Eq. (4.8) such that

exp[—iy/(wo/c)> — x?z = exp[—i(wo/c)z]
X exp[+i( x2c/2w0)z].

Using such an approximation together with the substitu-
tion (wo/c) = 1/a; reduces the integration in Eq. (4.8) to

Vo 20 = 52 [ dociumesp-xlar/4p)
~ iear/D T expl—i(z — ct)/ar]
= G izga xRl Bo(an ~ i2Ba2)]
X exp[—i(z — ct)/a1]. 4.9)

The above expression indicates that the centroid of W,
for which p = 0 and z = c¢, reaches half its initial
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value when z = 1/28. Such a range should be com-
pared with the cases considered in Fig. 5, where the dy-
namic aperture has been characterized by the parameters
a1 =4xX10"7"m and 8 = 400 m~'. For these param-
eter values, the centroid of a Gaussian generated by a
static aperture decays to half its initial amplitude at a
distance z = 2.5 X 1072 m, independent of Rp,.. In con-
trast, the half-amplitude range of the equivalent dynamic
aperture depends on Rp.;. « ¢T/\/Ba;. Such a depen-
dence extends the half-amplitude ranges to distances of
the order of several hundred meters. Furthermore, the
amplitude of the Gaussian launched from a static aper-
ture decays to almost one millionth of its initial value
when it reaches a distance of z = 500 m. At the same
position in front of a dynamic aperture the amplitude of
the centroid falls off only by a factor of one half.

The difference in the performance of the two aper-
tures reflects the importance of the efficiency by which a
Gaussian utilizes the generating capabilities of a specific
source. A narrow pulse generated from a static aper-
ture of a much larger radius is completely inefficient. It
makes no use whatsoever of the extension of its source,
which for all practical purposes performs with an effective
radius equal to that of the Gaussian. In contrast, a nar-
row central Gaussian that is allowed to expand with time
such that it fills up the whole extension of its expanding
dynamic aperture makes much better use of the size of its
source; hence its half-amplitude range depends on Ry.x,
and it travels to much larger distances with very little de-
cay. One should emphasize, however, that the case of the
dynamic FWM aperture considered here is not the only
possible way in which a narrow central pulse is allowed
to expand and to fill the extension of its source for all
times. One can investigate other possible schemes sim-
ply by varying the transverse y spectral content. This
will change the manner by which the illuminating field
fills up the aperture as the latter varies its size. One can
also study the effect of the rate of expansion of the radius
of the source. The FWM aperture considered in this pa-
per has an effective radius that varies linearly with time.
It is of interest to study various expansion patterns; for
example, a quadratic or a cubic dependence on time is a
straightforward extension of the present scheme.

5. CONCLUSIONS

In this paper we have studied the possibility of launch-
ing approximations to the FWM pulse from a dynamic
Gaussian aperture. The type of aperture investigated
varies its effective radius with time. We started by in-
troducing the infinite FWM aperture, which is allowed
to shrink from an infinite radius at ¢ = — to its small-
est dimension at ¢ = 0, and then it expands back to its
original infinite size. The excitation of such an aperture
utilizes finite power for all times. However, it consumes
an infinite amount of energy because it needs to be ex-
cited for an infinitely long time. The causal field gener-
ated by such an aperture has been calculated by means
of Huygen’s construction. It has been shown that such a
field does not contain any acausal components. The gen-
erated field resembles the source-free FWM pulse, which
has a highly focused central Gaussian that propagates
without any decay. This infinite FWM aperture is an in-
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teresting construction in its own right; nevertheless, it is
an abstract device that cannot be implemented in reality.
On the other hand, a firm comprehension of the different
properties of such an ideal source helps us to understand
the effects of the various design parameters involved in
its finite-time counterpart, which is physically realizable.

The finite-time FWM aperture is excited for a period of
time equal to 27". It shrinks from its maximum radius at
t = —T toits smallest size at ¢ = 0 and then expands back
to its original size at t = +7. We have demonstrated
that the narrow central Gaussian generated by such an
aperture efficiently utilizes the capabilities of its source.
This is the case because the energy of the illumination of
the Gaussian aperture is always spread over its entire ex-
tension as it expands with time. Notice that for all times
other than ¢ = 0, the radius of the aperture is much larger
than the waist wy. This scheme was compared with the
generation of a Gaussian field from a static aperture.
The latter is characterized by a diffraction length that
depends only on the waist of the beam w, and is indepen-
dent of the radius R of the aperture, as long as R > wy.
We have demonstrated that such a field makes no use
whatsoever of the size of its source, and increasing the
aperture size does not improve the decay behavior of the
generated field. We have also shown that a comparison
between the performance of a Gaussian generated from a
dynamic aperture and that of a Gaussian launched from a
static aperture greatly favors the former case even when
both sources use signal generators of comparable frequen-
cies. The dynamic aperture is capable of extending the
half-amplitude range up to several orders of magnitude
in comparison with the Gaussian beam; thus it provides
a unique scheme to send very narrow Gaussians over ex-
tended distances of localization. The enhancement over
the static case depends primarily on the ratio of Ry.x to
wo, 1.e., the ratio of the maximum aperture radius to the
minimum one. It might not be so easy to physically re-
alize an aperture that shrinks from a very large radius
to a minuscule one. At the same time, one should re-
call that in order to generate the central Gaussian pulse
we have to choose the 8 and the a; parameters in such
a way that the aperture varies its radius at a superlu-
minal speed. This forces us to utilize independently ad-
dressable source elements that use signal generators of
very large bandwidths in the terahertz range. Such con-
straints are the reason behind our exaggerated choice of
parameter values in Section 4. We resorted to such an
excessive selection in order to highlight the possible po-
tential of dynamic Gaussian apertures. Fortunately, the
advancement in ultrafast switching optical devices?® can
now provide the needed signal generators that might con-
stitute the independently addressable elements of the ad-
vocated dynamic aperture.

Finally, we point out that the present scheme fits to-
gether with other procedures that have been proposed to
launch approximations to the FWM field.112627 Tt has
been realized for a while® that the FWM field could be
generated from a moving complex point source. This
fact asserts the dynamic nature of any source adopted
to generate approximations to the FWM field. Some ap-
proaches resorted to moving physical sources situated on
the characteristic of the generated Gaussian beam.?6 In
our case the needed dynamic ingredient follows only from
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the time variation of the radius of the aperture. We have
shown that such an approach provides a systematic way
to relate the behavior of the propagating FWM Gaussian
field to familiar antenna design factors such as the band-
width of the source generators, the size of the aperture,
and the possible coupling between the temporal and the
spectral components of the illumination field. No doubt
the last factor opens the way for more studies that can
achieve further enhancements in the rates of decay and
spread of analogous pulsed fields, but much of this effort
is beyond the scope of this paper and will be the subject
of future research.
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