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Abstract 

The diverging and converging components of localized wave solutions are studied within the framework of both the Whittaker 
and Weyl plane wave expansions. The specific example of the splash pulse is considered because its evanescent components 
could be derived in an explicit closed form. It is shown that, in the Weyl picture, the evanescent fields associated with the 
diverging and converging components of the splash pulse cancel each other identically. The splash pulse is, hence, composed 
solely of backward and forward propagating components of the Whittaker type. 

1. Introduction 

A large number of localized wave solutions have been reported recently [ 1-l 11. It has been demonstrated both 
theoretically and experimentally that such solutions exhibit extended ranges of localization. Experiments [ 12,13 ] 
verifying the propagation of such localized waves utilize independently addressable, finite-sized arrays. The resulting 

fields approximate to a great extent the forward propagating components of the theoretically predicted solutions 

[141. 
It is well known, that the aforementioned localized wave solutions are composed of forward and backward 

propagating components. Such a behavior is reminiscent of the source-free focus wave mode (FWM) solution 
[ 151. The latter has been criticized for being dominated by acausal incoming components [ 16,171. Nonetheless, 
the analysis adopted in such a study of the causality of the FWMs has been restricted to a special case. It can be 
easily demonstrated that under a different condition (not considered by Ref. [ 171) the FWM solution is composed 
predominantly of forward propagating components [ 31. The FWM solution, nevertheless, has infinite energy content 
and can be only generated from an infinite aperture. To be able to utilize an aperture of a finite size, localized wave 
solutions of finite energy had to be deduced. In order to derive such wave solutions, various approaches have been 
suggested [ 1,3]. Most of these lead, however, to finite energy superpositions of the original focus wave modes. It 
has been, also, pointed out [ 181 that the FWM solution does not contain any evanescent wave components. One 
should then wonder if the finite energy solutions composed as a superposition of the FWMs can have evanescent 
waves associated with them. 

The two aforementioned objections to the realizability of the FWM fields have been unjustly extended to criticize 
all other finite energy LW solutions. In most cases there have been no clear efforts to distinguish between the original 
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source-free LW solutions and their counterparts which are generated causally from appropriate apertures [ 141. The 
origin of such a confusion exists primarily because of the bidirectional nature [ 31 of the original source-free LW 

fields. We believe, however, that very good approximations to the source-free solutions can be generated through a 
proper choice of the parameters characterizing the LW fields. Furthermore, it is the aim of this paper to demonstrate 
that there exists a systematic mathematical method to derive the form of the outgoing field generated by a finite 
aperture from the corresponding finite-energy source-free LW solution. 

Traditionally, solutions to the three dimensional wave equation can be derived in two distinct fashions. One is 

due to Whittaker [ 191 in which he uses a superposition of homogeneous plane waves propagating in opposite 

directions. The other has been used by Weyl [ 191 to express the fields outside the source region as a combination 
of propagating homogeneous plane waves, together with the associated inhomogeneous evanescent waves. There 

have been several attempts to further our understanding of the relationship between these two distinct representations 
[ 20-221. It has been claimed that the portion of the field represented as an expansion in terms of the homogeneous 

backward propagating plane waves is equivalent to that expressed as a superposition of the inhomogeneous eva- 

nescent modes [ 21,221. The physical meaning of such equivalence and its temporal and spatial domains of validity 
is not fully comprehended. Working with source-free solutions which are bidirectional [ 31 may complicate any 

implied equivalence between the backward propagating and the evanescent components. In this work, we try to use 

both approaches to derive finite energy FWM-like solutions. In this way, we can further our comprehension of the 
relationship between the Whittaker and the Weyl representations. At the same time, a deeper understanding of the 
inhomogeneous evanescent field content of the FWM-like solutions can be achieved. Even though it is already 

known that for any source-free field there are no evanescent components associated with it, nevertheless, to separate 
the Weyl diverging field provides a rigorous and a systematic method to deduce the physically realizable outgoing 

LW field generated from an aperture. This is of an utmost importance because the performance of such an outgoing 
field is the one that should be investigated and any judgement of the LW solutions should be deduced from the 
behavior of their outgoing Weyl component. In what follows we shall concentrate on a specific finite energy solution; 
namely the splash modes [ 11, Such a wave solution has been chosen because of the ease by which the calculations 

could be performed in both the Whittaker and the Weyl representations. 

2. Fourier composition of the splash pulse 

In this section, we shall deal with the specific example of the splash pulse. We do so because of the simplicity by 

which the mathematics could be handled. It will be shown in the next section that the diverging, converging and 
evanescent components of such a solution can all be derived explicitly in closed form. The splash modes were 
originally [ 1 ] deduced as a superposition over the FWM solutions. Similarly, they could be synthesized from a 
bidirectional representation [ 31 that provides the most suitable basis for these kinds of waves. A simple transfor- 
mation links the bidirectional representation to the Fourier one. In the Fourier picture, the Fourier superposition 
leading to the splash pulse solution [ 31 can be written as 

WP, z, t) = $&jd~ j- dk;(; exp{-aI[(~/c)+kl/2) exp(-~s[(~~~)-kl/2) 
0 0 -cc 

Xexp( -ikZz) exp( +iwt) @(W/C)*-kz -x2) . (2.1) 

The above integration may be carried out in two distinct fashions, each leading to a different representation. In 
particular, one can integrate over w first, thus, ending up with a Whittaker type of expansion. In contradistinction, 
an integration over k, first leads to the Weyl superposition over homogeneous and inhomogeneous plane waves. 

Using the former approach, we integrate over w first to obtain 
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exp[ -k,(a, -u2)/23 

XexP] -~+(ai +Q~)/~cI ,yJdxp> exp( -ik,z) exp( +iw+t) . 

Here o, = c\lkz + x2. The integration over k, can be divided into two components. One traveling in the positive z- 
direction, while the other is propagating in the negative z-direction; specifically, 

?J+, t) = q(+)(, 7 t) + W’-‘(r r) 7 . 

The positive and negative components are given explicitly by the following integrals 

(2.2) 

cc m 

qx+)(, t)= A_ 
8v dx I I dk ~exp[-k,(a, -ad/21 

0 0 

XexP[-@+(al +ad/2cl xJ,(xp) exp(-ik,z)exp(+iw+t), (2.3a) 

and 

T”-‘(r, t)= -& dk,&exp[ +k,(u, -a,)/21 
0 0 

Xexp[ -~+(a, +u,)/2c] xJ,(xp) exp( +ik,z) exp( +iw+t) . (2.3b) 

The above two integrals can be easily evaluated by reversing the order of integration, introducing the change of 
variables (kz + x’) I’* = s, and using formula (6616.2) in Gradshteyn and Ryzhik [ 231 to obtain 

W(‘)(r, t) = 8rr(p2-1q*+p’) (1r &J- (2.4) 

Here p = [ ( (a, + u2) /2) - ict] and q = [ ( (a, -al) /2) + iz] . It can be deduced, from the above expression, that 

the forward propagating component V”’ +) (r, t) is larger than the backward propagating one @ - ) (r, r) when q is 
negative. Recalling that q = [ ( (a, - uz) /2) + iz] , then a necessary condition for the predominance of @ + )(r, t) 

over q(-)(r, t) is that u2 Z+ a,. This is the same result that has been obtained earlier [ 31 from comparing the 
Fourier spectral content of the two components. Since the total field of the splash mode in Eq. (2.2) is the sum of 
the forward and backward propagating wave components, then Fq. (2.4) yields 

T(r, t) = 
1 

47r(p*-q*+p*) ’ (2.5) 

which is the known splash mode solution [ 11. The procedure followed above is akin to that of the Whittaker 
representation. The final solution is an expansion in terms of positive and negative going plane waves. 

To arrive at the Weyl picture we have to start by integrating Eq. (2.1) over the k, variable. Since k, can have both 
positive and negative values, the integration may be split into two parts, viz., 

F(r, t) = ?V’(r, t> + ?f+)(,, t) ( (2.6) 

where qCd) (r, t) and W(‘) (r, t) correspond to waves diverging and converging on an aperture situated at z = 0. In 
what follows, we shall be only interested in the Weyl expansion associated with the positive z half space. The two 
components in Eq. (2.6) can be written explicitly as 
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-c Tz 

Pd’(r, t) = kr 
I 

dX xJ&p) 
I 

d( w/c) 
exp] -p(wlc) 1 

Jm 
exp[ -qdGiF71 , 

0 0 
and 

z e 

V(‘)(r, r> = &- I dxxJo(xp) I d( w/c) 
exp[ -P( w/c) 1 

dm 
exp[ +qJm] . 

0 0 

(2.7a) 

(2.7b) 

These two equations differ from Eqs. (2.3a) and (2.3b) by the possibility that the square roots in the integrands 
can become imaginary if x> (w/c). Thus, with a proper choice of the sign of the imaginary square root, the 
corresponding portions of the above integrations become superpositions of exponentially decaying evanescent 

components in the positive z half space. For x< (w/c), the integration in Eq. (2.7a) is comprised of plane waves 
moving in the positive z direction. Such wave components can be viewed as outgoing from an aperture situated at 

z = 0. In a similar fashion, Eq. (2.7b) represents a superposition of incoming plane waves converging on the same 

aperture. To separate the evanescent portions of the fields represented in Eqs. (2.7) from their propagating com- 

ponents, it is preferable to transform the integrals into the corresponding angular spectral superpositions [ 241. 

3. The angular spectrum of the splash pulse 

The angular spectral content is usually expressed as a superposition over the spherical angles (Y and p of the 

propagation vector k [ 241. The Fourier spectrum of the splash pulse is azimuthally symmetric [cf. Eq. (2.1) 1, 
hence, the corresponding angular spectrum is independent of p. In fact, the angular superposition of the splash pulse 

can be directly obtained from Eqs. (2.3) and (2.7) by simple changes of variables. In what follows, we rederive 

the expression given in Eq. (2.4) using the angular spectrum superposition. This would be beneficial when we 
attempt to deduce equivalent expressions for the diverging and converging components of the Weyl representation 

given in Eqs. (2.6) and (2.7). Starting with Eqs. (2.3), we introduce the new variables 

x= K sin Ly and k,- = K cos a. 

Such a change of variables transforms the integrals in Eqs. (2.3a) and (2.3b) into the following form 

(3.1) 

VI2 x 

dK~SinaJ~(tCpSina) 

0 0 

xexpi-~[(4 +a,)+(~, -4) cos(~l/2] exp[ -iK(Zcosa--cCt)] , (3.2a) 

and 

77 x 

F(-‘(r, t) = l_ I I da 
87r 

dK K Sin LY Jo( Kp Sin a) 

lr/2 0 

Xexp(-~[(u,+u~)+(u,-u~)cos~]/2)exp(-i~(zcos~-cCt)}. (3.2b) 

The integrands in the two Eqs. (3.2a) and (3.2b) are identical. The only difference between the positive traveling 
component ?P(+ )(r, t) and the negative traveling one Zy ( ~ )(r, t) is in the limits of the integration over CL Notice 

that cos cr takes positive (negative) values for 0 I (Y < 5-/2 ( 7r/2 < cy < rr) , thus, resulting in a superposition over 
plane waves traveling in the positive (negative) z-direction. Using Eq. (6.623.2) in Gradshteyn and Ryzhik [ 231, 
the integrations over K can be evaluated. Subsequently, the change of variables A = cos LY reduces the integration 
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Fig, 1. The D + contour in the complex a-plane 

over cx into an algebraic expression that could be integrated using formulae (2.264.5) and (2.264.6) in Gradshtyn 

and Ryzhik, to give the positive and negative going components of the Whittaker representation as in Eq. (2.4). 

Next, we return to the integrations given in Eqs. (2.7a) and (2.7b), which correspond to the wave components 
of the Weyl representation. Since w can be either greater or less than xc, the quantity [ ( w/c)~ - ,y’] “’ might 

become imaginary. Thus, the resulting integrations have to be carried out in the complex a-plane. We start with the 

diverging component given in Eq. (2.7a). The transformations 

x= K sin (Y, and W/C=K with ~~=KCOS(Y 

reduce Eq. (2.7a) to the following form 

(3.3) 

cc 

Wd’(r, t> = &- 1 I da dK K sin cr Jo( KP sin cr) 

D+ 0 

Xexp{ -~[(a, +~,)+(a, -a,) cosa]/2) exp[ -iK(zcosa-cCt)] (3.4) 

The contour D +, shown in Fig. 1, is chosen in the complex o-plane for z > 0. From the transformation relationships 
(3.3), it is clear that cr is real as long as XI K. Hence, as (Y takes real values between 0 and n/2, the value of cos CY 

ranges from 1 to 0. The integration in Eq. (3.4) is, thus, a superposition over plane waves propagating away from 
the aperture into the positive z, half space. In general, the angle (Y is complex with sin( crR + icr,) =X/K. For XI K, 

the first portion of D + has CY = (~a and (Y, = 0, where 0 I CY,~ < rrl2. The second portion of the contour D + corre- 
sponding to x 2 K has cyR = n/2, for which sin (Y = sin( ( 7r/2) + icu,) = cash (pi and cos cr = - i sinh cri. The imaginary 
part cri has been chosen to take only positive values between 0 and ~0, such that sinh cyi stays positive. Consequently, 

the exponential dependence in the integrand exp( - ia cos a) = exp( - KZ sinh (Y,) decays to 0 as z -+ CD. These 

exponential functions do not represent propagating wave components, but inhomogeneous evanescent modes. The 
integration in Eq. (3.4) can now be split into two parts, one represented by a superposition of outgoing waves and 
the other is an expansion in terms of the associated evanescent modes. Specifically, we have 

Pd’(r, t) = Vd’(r t) + Pd)(r t) 1 7 2 > > 

where 

(3Sa) 

d2 cz 

T’jd’(r, t) = -& dK K sin c+ Jo( KP Sin (Ye) 

0 0 

(3Sb) 
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and 

x -L 

‘Pid)(r, t) = -& 
I I 

da, dK K cash cyr &( K/3 cash ar) 

0 I) 

Xexp] -~[(a, +a,) -i(a, -az> sinha,]/ exp( -K sinhcurz,) exp(iKct) . (3%) 

The first integral is identically equal to the forward going component of the Whittaker representation given in Eq. 
(3.2a), therefore, we have 

?Pid’(r, r) = !?(+‘(r, 1) = wp2-:2+p2) il- &J (3.6) 

As for the second portion of the integration over the contour D +, Eq. (3%) can be integrated over K by making 

use of formula (6.623.2) in Gradshteyn and Ryzhik [ 231 to obtain 

?Pidl (r, t) = kT dcu, 
cash cw,(p - iq sinh a,) 

0 
[ (p - iq sinh (Y,)’ + (p cash ar)2] 3’2. 

(3.7) 

With the new variable, A = sinh (Y, the integration in Eq. (3.7) may be evaluated by using the identities (2.264.5) 

and (2.264.6) in Gradshteyn and Ryzhik. After substituting for the appropriate limits, we get 

Pid) (r, t) = 
1 P 4 

8r(p2-q2+p2) ,/n + dpv ’ 
(3.8) 

which is not equal to ‘P( _ ’ (r, f) given in Eq. (2.4). Thus, the homogeneous backward propagating component of 
the Whittaker representation is not equivalent to the inhomogeneous evanescent field associated with the radiation 
diverging from an aperture in the Weyl picture. Summing up the components in Eqs. (3.6) and (3.8) one obtains 

the total field 

VJCd)(r, f) = 
1 

8r(p2-q’+p2) 
(3.9) 

diverging from an aperture situated at z = 0 into the half space z > 0. Such a wave function differs from the splash 
pulse solution written in Eq. (2.5) by an amount which should be equal to qcC)(r, t), the Weyl field component 
converging on the aperture placed at z = 0. To verify such a claim, we should go back and evaluate the integration 

(2.7b). The change of variables 

x=~sinc~, and w/c= K, with (w/c) -x =-KCOS~ 7 

transforms Eq. (2.7b) to the following form 

(3.10) 

I I dcu dK K Sin (Y Jo( Kp Sin Ly) 

C+ 0 

XeXp{ -K[(U, +$)+(U, -U2) COS(Y]/2) eXp[ -iK(ZCOSLY-Ct)] (3.11) 

Here, the contour C + shown in Fig. 2 corresponds to a superposition of incoming or converging waves from the 
z > 0 half space on an aperture situated at z = 0. It should be noted that the integration in Eq. (3.11) resembles that 
in Eq. (3.4) except for being negative and having the contour C + instead of D +. The choice of the former contour 

is dictated by the need that cos LY be negative when K > ,y. So, as x changes from 0 to K, the real part of the angle (Y 
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I 
I 
I 

Complex 

i 
aplane 

Fig. 2. The C+ contour in the complex a-plane. 

goes between 7~ and 7~12. The value of sin a! stays positive, while cos (Y becomes negative with values ranging from 
- 1 to 0. The integration in Eq. (3.11) is, thus, a superposition over plane waves propagating towards the aperture 
from the positive z half space. When x> K, the angle (Y becomes complex with sin( (Ye + iaI) =X/K. For the second 

portion of the contour C + one has (Ye = rrl2, hence, sin (Y = sin( ( 7rf 2) + ia,) = cash cu, and cos (Y = - i sinh (Y[. The 
imaginary part CQ has been chosen to take only positive values between 0 and 03, such that sinh (Y, stays positive. As 
in the case of the Weyl diverging components, the preceding choice of the contour ensures that the exponential 

dependence in the integrand exp( - iKz cos (Y) = exp( - KZ sinh aI) decays to 0 as z + CQ. Furthermore, the integration 
in Eq. (3.11) can now be split into two parts, one representing a superposition of incoming wave components and 
the other is an expansion in terms of the exponentially decaying evanescent modes. Specifically, we have 

P(‘)(r, t) = !Pj”)(r, t) + ?P:C)(r, t) , (3.12) 

where the Sic’ (r, t) and !Pp’ (r, t) correspond to the propagating and evanescent components, respectively. The 
analysis that follows is identical to the case of the diverging Weyl component to arrive at the final expressions: 

?Pi’)(r, t) = !P)(r, t) = 

!Pp’(r, t) = - 91d’(r, r) = 

Summing up the components in Eqs. (3.13) and (3.14) one obtains the total Weyl converging field 

V’)(r, t) = 8a(p2-lq2fp’) (l- &GJ. 

(3.13) 

(3.14) 

(3.15) 

The splash pulse solution in Eq. (2.5) may now be derived by summing up the diverging and converging 
components given in Eqs. (3.9) and (3.15). The same result could have been obtained by simply adding up the 
Weyl propagating components !Pid) (r, t) and !Pjc) (r, t) expressed in Eqs. (3.6) and (3.13). This is the case 
because the inhomogeneous evanescent components cancel out identically as can be seen from summing up Eqs. 

(3.8) and (3.14). This means that the total evanescent field associated with the splash pulse is equal to zero. So it 
is not only the FWM solution that does not have evanescent modes associated with it, but even a superposition of 
the FWM solutions leading to a finite energy wave function might not have any evanescent fields. This point can 
be better understood if we refer back to contours D + and C + in the complex a-plane. Such contours have been 
used to evaluate Pcd) (r, t) and ?P(‘)(r, t) given in Eqs. (3.4) and (3.11). The integrands in the aforementioned 
integrations differ only by a negative sign. The difference in the sign can be accommodated into the reversal of the 
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Fig. 3. The D + contour together with the reversed C + contour in the complex cY-plane. 

sense of the contour integration over C +. If the two contours are plotted together, it can be seen from Fig. 3 that 
the contour integrations contributing to the evanescent components cancel each other. The integrations over (pi, 
thus, subtract from each other and we are left with the integrations over on ranging from 0 --) 7r. This leads to the 

Whittaker superposition of forward and backward propagating components. 
One can perceive the splash pulse or any other FWM-like solution as source free fields which are built from 

diverging and converging components. However, the associated evanescent modes cancel out identically. Similar 

results have been obtained in Ref. [ 221 in connection to spherical waves and their representations in the Whittaker 
and the Weyl expansions. This does not rule out the possibility of exciting approximations to the LW solutions from 

finite apertures. In the case of the splash pulse, the propagating field excited from an aperture placed at z = 0 is given 

by ‘Pid’ (r, r) = ‘P ( + ) (r, t) while the associated evanescent field is *id’ld’ (t, t) . lt has been demonstrated that for 

localized wave solutions an appropriate choice of parameters [2,14] can ensure that most of the field energy is 

propagating away from the aperture. Such conclusions have, also, been confirmed by experiment [ 12,131. 
The diverging splash pulse field *cd) (r, t) given in Eq. (3.9) exhibits some interesting properties. If we look at 

the center of the pulse at p = 0 and z = ct. we find that 

9(d’(p=O, z=d) = 
1 

45-(a,-i2z)[(a, -a2)+Qzl ’ 
(3.16) 

For forward propagation, the condition a2 > a, is emphasized. Thus, the center of the pulse starts to decay at 

zH - (aJ2). This defines the Rayleigh distance separating the near and far field regions. Notice that the decay of 
the center of the diverging field ?Ptd’(r, t) goes as ( 1 /z’) instead of the ( 1 /z) characterizing the source free splash 
pulse, As such, the decay of Fcd)(r, t) beyond the Rayleigh distance is very rapid; a property required in several 

medical applications. On the other hand, within the Rayleigh distance z < a2, the amplitude of the center does not 

depend on z. At z=ct inside the near field region, we have (p2-q2) -u,u2, p-(~~12) and q- (a,/2). The 

diverging field becomes 

T$’ (p, z = cr) = 
1 

4n(a, a2 +p2) ( I+&?+ 1 
(3.17) 

For az B p, while keeping a, z=- a,, the expression in Eq. (3.17) reduces to 

*p(p, z=cr) = 
1 

47r(a,u, +p?) . 
(3.18) 

Now, if we choose a2 = 100 cm and a, = 0.01 cm, we start having a ( 1 /p2) roll off from the axis for p> 1 cm. This 
means that we have a fairly localized field of constant amplitude over most of the near field region. The intensity of 
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such a pulse rolls off the axis as ( 1 /p4). Once we approach the near-far field limit, such a field decays very rapidly. 
This kind of behavior is desirable for several medical applications, like ultrasound imaging and designing hyper- 
thermia applicators. 

4. Conclusions 

In this work, we have shown that the Whittaker and the Weyl representations of the splash pulse are equivalent. 

The former uses a superposition of outgoing and incoming plane waves, while the latter is composed of plane waves 
diverging and converging from an aperture together with the associated evanescent components. It also has been 

demonstrated that the Whittaker negative propagating waves are not equivalent to the evanescent fields associated 

with its Weyl diverging component. Subsequently, in order that the two representations arrive at the same source- 
free splash pulse solution, we need to take into consideration the converging Weyl propagating and evanescent 

components. The latter add up to the Weyl diverging fields in such a way that the evanescent modes cancel out 

identically. Thus, it is established that finite energy solutions which are a weighted superposition of the focus wave 
modes might not have evanescent fields associated with them. This property is shared by the original FWM solution. 

Because FWM-like solutions are composed of forward and backward propagating components, it has been argued 
[ 171 that this results in “grave” problems with causality and the possibility of exciting such pulses from real 
sources. The analysis carried out in this paper has separated the components diverging out of an aperture from waves 
converging on it. It has, also, been shown that with a proper choice of parameters (viz. a2 >> a,), most of the 

energy of the splash pulse is contributed to the forward propagating component. The field ?I?“” (r, r) then will be a 
good approximation to the original splash pulse !P(r, t). Similar results have been obtained in association with other 
localized wave solutions, where it has been demonstrated that with an appropriate adjustment of parameters, the 
acausal components can be negligible for all practical purposes. 

Finally, it should be emphasized that using the procedure presented in this paper, we can always identify the 

Weyl diverging and evanescent field components of any other localized wave solution. Such field components are 

the ones that could be realized by physical apertures. In most cases, it is difficult to derive a closed-form expression 
for the Weyl diverging field. Nevertheless, under specific choice of parameters !PCd’(r, t) can be made almost equal 
to the source-free solution ‘!P( r, t) . The field excited from a physical aperture should then resemble the source-free 
LW solution for all ranges of interest. In such cases, it is not apparent what “grave” problems could be associated 
with the causal excitation of the LW fields. Extracting the Weyl diverging field components from the source-free 
LW solutions, thus, provides a rigorous avenue for deriving the launchable portion of the original FWM-like 

solutions. This provides a solid basis for any future debates on the launchibility of the various LW solutions. 
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