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Abstract Neurorobots use accurate biological models of neurons to control the be-
havior of biologically inspired or biorobots. While highly simplified neural models
(e.g. ANN) have been used in robotics, recent innovations in mathematics, science
and technology have made possible the real-time control of robotics by highly com-
plex, biologically realistic neural models. In this chapter we present a self-contained
primer on Neurorobotics which serves to give an integrated view of the possibility of
this nascent trend with important ramification in science and technology. In partic-
ular, we argue that neurorobotics will replace the conventional computer simulation
for many neural-system models. Further, within a relatively short-time it will be
possible to simulate 10'! neurons in real-time, roughly the number of neurons in
the human brain, on a desktop computer. If we can understand how to harness this
power, and productize it, we will be able to create robots of incredible complexity
and behavioral richness.

1 Introduction

I can not believe that the brain computes Jacobians - George A. Bekey circa 1992

Biorobots are artificial devices built to test hypotheses in biology. Examples include
work by Webb [36], Beer [12, 7] Lewis [29, 28, 27] and many others. Biologi-
cally inspired robots, on the other hand, are robots that use biology as metaphors
to solve practical problems in robotics. Examples include work by Brooks [9, 10]
and Arkin [3]. A neurorobot is a special kind of biorobot that explicitly uses models
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Fig. 1 Integration of simulation studies with the scientific processes. Redrawn from [36].

of biologically realistic neurons as its computational substrate. In a neurorobot, al-
gorithms are replaced by extremely high dimensional dynamical systems based on
neural sub-units. These subunits range in complexity from leaky-integrator models
to integrate-and-fire models, Hodgkin-Huxley neurons and the recently discovered
model by Izhikevich [22]. Neurorobots will one day solve real-world problems, thus
filling a dual use as both a biorobot and an biologically inspired robot.

Neurorobots, an outgrowth of biorobots, may find important commercial ap-
plications in biologically inspired robots in the near future. For a comprehensive
overview of biologically inspired robots, see [8].

1.1 Neurorobots and the Scientific Method

Can neurorobotics help us better understand the brain? Webb [36] has proposed
a model for integrating the traditional view of the scientific method with modern
technology, in particular, simulation. Referring to Fig. 1 the process of scientific
investigation begins with the identification of a target system that we are interested
in understanding. The scientist may theorize a mechanism that will explain the ob-
served target behavior. The scientist may use various sources for inspiration for this
mechanism. In biomechanics, it may be a cost function that we presume the human
body optimizes. In the example cited by Webb, the idea of a Fourier transformation
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may be used as a source for a hypothetical mechanism of how the cochlea transforms
sound into neural impulses.

To understand the ramification of this hypothesis, we can create a simulation that
takes similar input and gives similar behavioral output. A simulation can exist solely
in a computer, or, in the case of a biorobot, the system can interact with the world. As
computers are, of course, capable of fantastically faster mathematical computations
than the human brain, one may think of a simulation as cognitive prosthesis that
helps us think more effectively about complex problems that are reducible to a well
defined system of equations.

A biorobot is a simulation paradigm for understanding behavior in animals in
which a computer program is allowed to gather and process raw data from the world
in real-time and produce an effect on the world. A biorobotic simulation is as le-
gitimate a scientific tool as a self-contained computer simulation. Ultimately, the
difference between a simulation that runs in a simulated world and a simulation that
runs in the real-world is that we can compare our physical simulations with the tar-
get system in the same environment as the organism we are investigating. For this
reason, we might say that for understanding the neural basis of behavior, a biorobot
can be a more legitimate and scientifically meaningful simulation, than a computer
simulation.

1.2 21st Century Robotics: Productizing Mythology

The idea of a robot is grounded in biological inspiration. It is a search for what
constitutes the “spark of life” and what distinguishes the living from the non-living.
It raises the question, “how can we create artificial beings?” Automata have been
built for thousands of years to amaze and entertain and make promises of slave-
like machines that will serve human-kind. It was only in the 20th century, with
the advent of the stored program, digital computers that we could begin to realize
practical, commercially viable robotic machines. Stored program digital computers
enable the following capabilities in robots:

1. The ability to create highly complex behavior- Complex behavior is dependent
on the ability to make memories. In the case of computer programs, memories
can be constructed from bistable elements integrated on a massive scale onto in-
expensive chips. Complex behaviors uses a large number of non-linear processes
to make decisions, compute transformation and most importantly to derive per-
cepts. A percept is an element extracted from a sensory stream that captures some
invariant property of that sensory stream [26]. We distinguish this from a linear
transformation of an input stream where the original sensory input can be re-
covered from the transformed elements. Many different sensory configurations
can create the same percept. This processing is easily and reliably simulated on
digital computer.

2. The ability to alter behavior to achieve different tasks (i.e. to be reprogrammed)-
A stored program computer can be altered in its operation by controlling the
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data it operates on, controlling the mode of the code that is executed and so on.
These are properties that are exceedingly difficult to achieve without modern
computers.

To date, the most aggressive uses of the ability to perceive have been seen in au-
tonomous robots and factory automation. However, at the level of consumer robots,
there has been marginal ability to perceive the environment, little ability to be repro-
grammed, and relatively simple behavior. Thus, the consumer robots have not fully
utilized the power of the modern computer. Why?

Productization of highly complex machines is highly problematic. In general, the
Occam’s razor principle of productization is that the simplest device is the one that
will most likely be built. Thus, introducing complexity is contrary to the parsimony
of productization.

From a product perspective the industrialist must answer several question:

1. What advantage does complexity give us? Does it make the product better or
worse?

2. How does one test such a machine to know if it is working?

How can we tell if a learning system is learning?

4. If a system requires thousands of cycles to significantly change behavior, how
can we test such a capability quickly?

O8]

The problem will be complicated even further in the case of a neurorobot. At the
end of the factory line, tests must be done to confirm the behavior of the robot being
built. Suppose that a robot system had the complexity of a human being. Much as the
human mind is "programmed’ by a sequence of experiences, neurally based robots
will be programmed as well by experience. Their resulting behavior will be difficult
to predict. It might take 16 years to determine if the robot would be a juvenile robotic
delinquent or is on track to be a brain surgeon! Debugging, at the system level, will
require new automated tools that can analyze the system using invasive techniques,
or perhaps an entire field or robot psychology.

For these reason neurorobotic technology will be very limited in market accep-
tation, or indeed other highly intelligent machines, until we can solve the practical
problem of testing such systems, anddemonstrating that these systems will yield
clearly superior performance— performance that can be achieved in no other way
more simply. One exception to the rule on market acceptance has been the robots
built by Mark Tilden. Tilden’s first prototype of the "Robosapien’ line of robots was
built at the Neuromorphic engineering workshop in Telluride, Co, in July, 2001, see
Fig. 2. Some 5-10 million Robosapien robots and its derivatives have been sold.
The essence of Tilden’s idea was to use analog oscillators to generate the movement
of bodies. His robots, while remarkably sophisticated as a consumer product also
exhibit a je ne sais quoi quality of life-like movement that has not been duplicated
by others. His prolific experimentation in the 1990’s lead to the development of the
first prototype Robosapien in July of 2001.

Tilden’s robots were acceptable as products but had only limited perceptual ca-
pability due to the sever cost constraints of the toy market (not, indeed, by any
limitation of Tilden’s imagination).
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Fig. 2 The birth of a revolution in biologically inspired robots. (A) The first Robosapien prototype
was created in July 2001 in Telluride Colorado by Dr. Mark Tilden. Tilden successfully incorpo-
rated many principles of biological motion into the a commercially viable product. (B) November,
2005 People’s Republic of China, the second version of RoboSapien, RS-V2 is being assembled,
tested, and readied for shipment. Between 5-10 million robots, based on this design, have been
sold [37].

To date, Tilden’s commercial efforts have been limited to the consumer entertain-
ment market. It is evident that neurorobotics greatest impact will be both in science
and in the service robotics market, or robots that perform useful work.

Productization of a myth is exceeding difficult, but progress is being made.

1.3 Computational Substrate

Neurorobots, by definition, must function in real-time. As a result, computational
speed and I/O bandwidth constrain the level of complexity now achievable in neu-
rorobotic brains. The substrate for computation is important. Computation used in
Neurorobot may be based on computer simulation or may be directly implemented
as Neuromorphic chips.

1.4 Neuromorphic chips

A neuromorphic chip is an analog VLSI device that implements a specific neural-
system computation or class of computations. Historically, these neuromorphic
chips differ from their digital cousins in two essential ways. First, these systems
rely on analog computations that directly implement operations such as integration,
differentiation, multiplication and addition with the purpose of efficiently imple-
menting neuronal networks. Second, digital computers that we are familiar with
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are stored program computers. They are reconfigurable and capable of running an
extremely wide range of computations. Neuromorphic devices have lacked this ca-
pability. Neuromorphic chips trade speed and power efficiency for flexibility and
development ease. Each chip may have only a handful of people in the world that
understand how to use a given device. This limits their dissemination.

1.5 Graphics Processing Units

Another approach to computation in Neurorobots is to use conventional Central Pro-
cessing Units (CPU) and Graphics Processing Units (GPUs) for processing. GPUs
are leading a revolution in computing. GPU chip concentrate most of their real-
estate on computation rather than memory as in traditional CPUs. This allows 16
computational cores to be placed on a single chip. What is more, these chips are in-
expensive. The retail price for a state of the art Pentium CPU with 4 cores is roughly
the same as a GPU card with some 240 cores. GPU processing have doubled in speed
consistently every year [2]. Today, a GPU is the most important computational el-
ement in a high performance computer, well overshadowing the raw computational
power of the CPU. As stated, GPUs are optimized for computation, not memory.
This make GPUs an ideal host for complex biophysical algorithms. GPUs will al-
low the use of models with dynamic synapses, multiple compartments and other
advanced features that, to date, have not been incorporated into neurorobotics due
to real-time requirements. This revolution in GPU technology will have a major
impact in neurorobotics, where computational dense models need to be constructed.

1.6 Purpose of this Chapter

It is clear that neurorobotics is on the cusp of a revolution due to the aforemen-
tioned technological advances. The dissemination of neurorobotic experimentation
is limited due to the relatively small group of individuals in the world that are cross
trained in robotics and neurocomputation. This article is meant to be a primer in
neurorobotics, bringing together fields of robotics, neurocomputation, and compu-
tational technology.

It is the hope that this chapter provides the first integrated view of Neurorobotics.
This chapter is based on a lecture given at the 2008 Telluride Neuromorphic Engi-
neering Workshop sponsored by NSF.
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2 Classical Robotics

We define classical robotics as the core topics featured in text books by Craig [13],
Paul [31], or Asada and Slotine [4]. The classic topics consists of (1) configuration
space (2) kinematics and inverse kinematics (3) Differential motion (4) Statics (5)
Dynamics and (6) trajectory generation. In recent years Baysian probability has
come to the forefront as well, and might be considered as apart of the core topics in
robotics.

2.1 Configuration space

The starting point of classical robotics is configuration space. A robot is an articulate
system with numerous rotational and prismatic joints. If the position of each joint is
fixed, the system will be in a particular configuration. The set of all possible joint po-
sitions of the robot is the configuration space. Picking a point in configuration space
defines the position of each point on the robot. You might consider a luxo lamp. By
fixing the rotation of the base, the rotation of the light, and the joints in between,
the robot has a well defined position or configuration. The configuration space point
also sets the position of every point on the surface and in the interior of the robot.
The former being important when considering collisions with the environment, and
the latter when considering the mass property of the robotics system.

Often, we wish to know how each of these points correspond to a world frame of
references, i.e. in Cartesian space. Cartesian space is a simple, generic way of spec-
ifying the location of any point on the robot. Cartesian space considers 3 mutually
orthogonal axes that define a coordinate system in space. You might think of the
corner of a room where the vertical seam is the z axis, and the horizontal wall-floor
seams are the X and y axes. Kinematics can help us determine, systematically, the
relationship between configuration space and Cartesian space.

2.2 Kinematics

Refer to the leg in Fig. 3. This leg is composed of two segments of length L; and
L. The position of the foot relative to the hip can be computed if we also know the
angle between the axis of each segment and the ground. These angles are given by
61 and 92.

Thus the hip’s position can be computed as:

Xe =Ly cos(0y)+ Lpcos(6,) (1)

Ye = Ly sin(0;) + Ly sin(62) (2)
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X HIP

Fig. 3 Two degree of freedom leg. We consider the application of basic techniques in classical
robotics to a simple, one legged robot.

The only subtly here is that we have purposefully placed joint angles 6; and 6,
in the frame of reference of the foot. This makes the addition particularly easy. In
the typical case, however, the robot may have a sensor on each joint indicating the
angle of the one link relative to another link. For the current, planar case, we can
make the substitution:

6> = 6, + 6} 3)

where 6 is the angle of the second link as would be measured by a sensor on the
robot. We make the simplifying assumption that the hip is always level.

Cartesian space has three axes and can be augmented with a rotation to create
the pose of a portion of the robot. For any point in configuration space, there is a
unique point in Cartesian space. Further, this map is smooth at almost every point.
By systematic analysis of the geometry of a robot, we can compute this map. This
is the robotics kinematics.

The magic of kinematics is that if we specify the configuration of our robot using
standard notation and apply a standard set of rules, we can turn the metaphorical
crank and determine solutions to forward kinematics, that is the mapping from con-
figuration space to world coordinates.

The main point here is that forward kinematics can be found by a well define
procedures. Inverse kinematics, or going from Cartesian coordinates to configura-
tion space requires some insight. Referring again to Fig. 3, we can image that we
are given a vector P, , , specifying were we would like to place the foot relative to

the hip. The length of this vector is just: p = \/x2 + y2. We now have a triangle with
three sides of known length. Applying the law of cosines we have:



Neurorobotics Primer 9

2 2_ 712
o —cos ) TP LY )
2L1p
L3 +13—p?
-1 1 2
_ e P 5
B=cos\[Z5 5)

o/ = arctan2(y, x) (6)
0, = g - —a (N
0, =n—p (®)

Thus we find that we can define the angles. In general, as more links are added the
inverse kinematics solution becomes exceedingly difficult and requires an increasing
level of skill to find a solution.

2.3 Differential Motion

The mapping from configuration space to Cartesian space is continuous and it is
also differentiable. Thus may wish to calculate:

dx = f(d0) ©)

This relates small changes in 0 to small changes in x. The two are related by a
Jacobian Matrix:

dfy dfx
dx| _ dgl dg do, (10)
dy dfy dfy do,
a6, d6,
This can be summarized as :
dx=J(0)d6 (11)

Using equations (1) and (2), we can compute as:

{dx] _ [—(Ll sin(91)+L2sin(91+62)) —(Lgsin(61+92))} [d91:| (12)
dy (L1cos(61)+Lycos(01 +6,)) (Lpcos(61+6,)) | | d6,

What is the relationship between small changes in Cartesian coordinates and
small changes in configuration space? It is simple:

J(0) 'dx=de (13)

Well, it is simple if it exists. We can find the Jacobian inverse as long as the
determinant of J(8) is nonzero, i.e. det|J(6| # 0. That is, we are checking for the
condition:
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0=LiL(sin(6; + 6,) cos(60;) — cos(6; + 6,)sin(6)) (14)
This happens when the robot’s leg is held straight out, i.e.: 6, =0 and :

0= LLy(sin(0;)cos(0;) — cos(0;)sin(6;)) (15)

which is always true. Intuitively, when the leg is stretched out, we cannot make a
small movement, d6; or d6, that will result in the end of the leg moving away from
the hip radially.

2.4 Statics

Suppose we wish to find a relationship between the force produced at the foot of the
robot, and the torques exerted around the knees and hip.
This relationship is given as:

JT(O)F =1 (16)

where F is a vector of forces at the robot foot, in our example, and 7 is a vector
of torques placed at the knee and hip. We omit the proof here, but the reader is
referred to [4]. This equation might be useful for determining the expected torque
on actuators given that the leg is in different configurations. Torque, 7 is just:

T=rxF 17
Of course we can find the inverse relationship as well:

F=U"H)"10)r (18)

As noted above, the Jacobian will not have an inverse when the leg is straight
out. The reader can verify that in this case we will not be able find a torque that
will cause the leg to produce a force straight out from the hip. Intuitively, the reader
knows this is true. Try standing on your heels with legs fully extended, and then try
to jump! Your heel is supporting your weight, but that weight does not cause torques
on hips or knees in this example.

2.5 Redundancy

The most often case in biologically systems is that there are a large number of
ways of reaching the same point. As the reader can readily verify, for the simple
case of two links, there are two possible configuration for knee and hip for the
foot to reach a given point (even if one might represent a painful hyperextension of
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Fig. 4 Tllustration of redun-
dancy. In biological systems,
redundancy is the norm. An-
chor your feet and grab a door
handle. You should be able
to move your wrist, elbows,
torsos in many different ways
while keeping your feet an-
chored and still holding the
door handle. Make sure no
one else is around when you
try this experiment.

Fig. 5 Model of dynamic
system. Here we assume that
the mass are concentrated
as point masses (illustrated
as spheres). Note that when
computing Jacobian, we are
interested in the distance to
and velocity of these masses,
not the endpoint of the robot.

the knee). Figure 4 gives an example of a simple, redundant system where infinite
configuration correspond to a given target point.

Humans take advantage of redundancy when they control they posture during
movement. Depending on the task, a person might change the configuration of
his/her body to be able to exert more force, or remain balanced etc.
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2.6 Dynamics

Real systems have mass and evolve through time, that is, they have dynamics. While
the dynamics are simple, only in the case of a 1 or perhaps 2 link system, the method-
ology that is used to write down closed form dynamics is common to both a 1 link
as well as a Nth order system. Referring to Fig. 5, first we form the Lagrangian. The
Lagrangian summarized the dynamics of a system.

L= KETOTAL _ PETOTAL (19)

That is, the total kinetic energy minus the potential energy.
The potential energy of a particle is:

PE = mgh 20)

If you lift an object in a constant gravitational field, with magnitude g, one can use
eqn (20) to compute the potential energy of this object.

If you have many objects, or in our case, more than one link, you can sum the
potential energy. For a mass, we consider the height of the center of gravity (mass).
The total potential energy is thus:

PE =g heightm; ©3))
i

We may with to use some of the machinary developed above to help us compute
the height of the mass above the ground, which we can do using forward kinemat-
ics, and the velocity of these point masses, which we can do by knowing the joint
velocities and using the Jacobian to find the point mass velocities. Eqn. (11) implies:

x=J(6)8 (22)

Let us assume that the mass of each link of the leg can be considered as a single,
point mass, then the kinetic energy is:

1
KE = Em& (23)
where m is the mass of the particle, and v is its velocity. One way of looking at the
kinetic energy is that it summarizes the net work done on the particle up until that
point.
The kinetic energy of the leg is given as:

1
KE = 5y';TMi; (24)

which, using eqn (22) we can re-write as:

KE = %QTJ(O)TMJ(G)Q (25)
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here M is a matrix with diagonal elements equal to the mass of each link. In our
case, M is to dimensional.
We can now compute the dynamics using a formula:

dJdL JL
T=———=— (26)
dtdg dq
This formula relates the torques at each joint to accelerations, and gravity’s pull
on each link. At low velocities, gravity is the dominate contributor to torque, far

outweighing any other dynamic effects.

2.7 Trajectory Generation

We must move the limb from point A to point B. If we suddenly accelerate the limb
as quickly as possible to the goal position, we will run into problems. First, the exact
trajectory of the limb will be ill-defined. We may collide with the environment, or
the robot may even colide with itself. Second, we induce a lot of wear and tear on
the robot’s joints and gears. It is better to choose a smooth trajectory that will allow
us to avoid obstacles, and gently accelerate.

The basic idea is to generate a spline from a series of knot points. See Fig. 6. The
spline has additional constraints placed on it including the position, velocity and
acceleration of beginning and end points. The knot points can be positions to avoid
obstacles. In classical robotics, the robot control system ensures that trajectories are
tracked well.

Note that in classical robotics, we were concerned with controlling the movement
of a manipulator. For tasks such as welding is critical that we can achieve good
trajectory tracking.

To do this, certain design features are incorporated into the robots. First, we might
use high gear reduction motors, perhaps 1:100 or more. This means the robot’s joint
might revolve 1 times per 100 revolution of the motor. High gear reduction has cer-
tain benefits. These benefits include good disturbance rejection: dynamic force per-
turbations are reduced dramatically as they are reflected back to the motor. Second,
we can run the robot at high RPM. In general, electric motor achieve their greatest
power output at high RPM. Finally, we would include a stiff feedback control loop.
Feedback is the process of comparing the actual position of the a joint to the desired
position of the joint and adding or subtracting torque to achieve a reduced error in
the next control cycle. In general, disturbances of the environment are repressed.

In a walking machine, if a leg strikes an obstacle while it is in swing phase, two
thing can happen: (1) The leg moves out of the way, around the obstacle or (2) the
induced torque caused by the strike destabilizes the robot and causes it to stumble.

Nature uses two methods to keep from stumbling. First, in swing phase the leg is
very complaint. That is, its feedback gain is very low. Thus, when it strikes, the strike
causes a motion of the leg, not the entire robot. Second, animals have reflexes. These
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Fig. 6 Trajectory Generation. Trajectories can be specified by a series of "knot points.” Trajec-
tory generation is the process of finding a smooth path, a spline, through these knot points, while
satisfying some endpoint criteria such as position, velocity and acceleration.

reflexes cause the leg to move back, up and over the obstacle. This is an automated
response.

In classical robotics we do not consider reflexes except in the case of careful,
slow movements,i.e. guarded moves. We do not alter the stiffness of the control
loop during trajectory execution.

The next thing to notice about the classical approach to trajectory generation is
that knot points are selected by task criteria and not by energy criteria. We have
shown that a leg can generate its own trajectory by allowing passive movement of
the leg during swing phase [28]. Thus the inherent dynamics of the system selects
the best trajectory and takes a minimum energy path.

The final thing to notice is that trajectories generation by knot point do not ex-
plicitly take into account the cyclic nature of locomotion. Locomotion is highly
periodic. We touch on Central Pattern Generator Theory below as an alternative to
the classic robot knot-point paradigm.

2.8 A pause to reflect

The power of analytical methods are illustrated here by the ability to determine the
overall endpoint of the robot given configuration of subcomponents, i.e. the links.
We take can take advantage of some simple properties of vector spaces to allow the
addition of subcomponents to find the overall forward kinematics, for example. For
inverse kinematic mapping we cannot do this and it is therefore a more difficult in
practice.

We note that the Jacobian is a particularly handy transformation. It allows us to
tell when the system is capable of generating force at the foot by applying torques
at the ankle. It can tell us if the arm has reached a singularity and is therefore not
capable of motion in a certain direction.

We note that nowhere in the classical method did we explicitly represent time
and synchronization between robot and the environment and the robot and itself.
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This mapping problem is non-trivial when we consider tasks such as interaction
of any point on the skin of the robot and the world. Here, the kinematic-inverse
kinematic computations are so numerous that they cannot be calculated by hand.
We must resort to massive computer computations. We note that much of what we
uncovered are ways of creating mappings from one space to another. This can easily
be learned using even traditional neural networks.

While the purest may argue that the geometric approach is sufficient, its appeal
wanes as the complexity of problems grown. Learning methods, including those
based on neural building blocks, will become indispensable tools in the roboticists
toolbox. CPG methods offer an approach to the time synchronization problem. As
CPGs become better understood, they to will become important, indispensable tools.

Artificial Neural Networks have been shown to be universal function approxi-
mators. [21]. The Universal function approximator is a powerful property that can
allow us to subsume much of conventional, geometric based robotics. In the next
section we discuss more complex models that allow us to go beyond just simple
mapping to create system of reach temporal behavior.

3 Basic Neurocomputation

Cells are the basic building block of multi-cellular organisms. Special cells exist
that are electrically excitable. These cells include muscles cells and in neural cells
(Neurons).

The cell membrane (Fig. 7) can be thought of as a bag containing the cellular
machinery that allows an imbalance in ion concentration to occur inside versus out-
side the cells. Computationally we do not care about the cells DNA, mitochondria,
cell nuclei etc. We do care about this ion imbalance. The cell membrane itself has a
very high resistance. On either side of the cell membrane is a conductive solution,
thus the cell membrane forms the dielectric of a capacitor. Ion channels penetrate
the cell bilipid (composed of two layers of fat molecules) membrane layer and are
highly selective to specific ion species.

3.1 Information Flows into dendrites and out of axons

Neural cells have two types of processes that are attached to the cell body. The axon
is a long process that can transmit action potentials, discussed below, from the cell
body to other neurons throughout the brain. These axons synapse on the dendrites of
other neurons. These dendrites collect information from thousands of neurons. Each
synapse contributes a bit of current to the cell and results in the alteration of the cell
membrane voltage. Each synapse may have a different coupling strength. A given
cell can either make it more likely or less likely that a cell will generate an action
potential, fire, depending on if it is an excitatory synapse or an inhibitory synapse.



16 M. Anthony Lewis and Theresa J. Klein

Extracellular Space

QOO?QO C‘)(‘:)O?Q‘OO?OC?O QQ‘OOOQ
606004) 1066484644440 Wadadd

™~ 7

lon Channel

Cytoplasm

Fig. 7 The Cell membrane is composed of a bilipid insulating layer and isolate conductive elec-
trolytes inside and outside the cell. Certain ion species, such as potassiam, calcium and sodium are
particularly important to electrical activity in neurons. The cell membrane contains ion channels
that are highly selective to specific ions and can be turned on and off by changes in voltage or
by a special protein (ligand). The cell membrane also contains ion pumps that maintain a specific
ion imbalance between the inside and outside of the cells. Opening ion channels take advantage of
this imbalance to create current flows and hence alter membrane potential. Highly dynamic events
called action potential encode voltage events and propagate this information to thousands of other
cells.

3.2 The Neuron Cell is a Capacitor with a Decision Making
Capability

The membrane/electrolyte system forms a capacitor. The electrical model of an ideal
capacitor is:
e
dt
where C is the capacitance, i is a current flow, and V is the voltage potential mea-
sured relative to the inside of the neuron.

Ions flow is dirven by diffusion and voltage driving force. Ion pumps in the cell
membrane maintain a concentration gradient for various ions. lon Channels allow
charged ions to flow across the cell membrane in a highly selective way. Given a
ion gradient between the inside and outside cell, a diffusion gradient is set up that
causes a net flow of ions from the higher to the lower gradient. As each ion particle
is charged, this causes a current flow. If a voltage potential is maintained across the
membrane, positive ions will be attracted to the negative side of the cell membrane.
This leads to the build up of a concentration gradient.

The Nernst potential specifies the relationship between concentration gradients
and the voltage potential across the membrane:

i 27)
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RT | |outside]

E=-"n2
F [inside]

(28)

where E is the potential, T is the absolute temperature, and R the gas constant,
F is the Faraday constant. For real cells the E;, = [—70.. — 90mv|, Ey, = [50mv],
Ecp+ = [150my].

3.3 Neural Models capture the basic dynamics of the cell body and
throw away some details

The difference in neural models comes down the to the equations specifying [ in
eqn (27). The trade off is between the complexity of the dynamics, the ability to
analyze the systems and the ability to simulate a given model efficiently. The most
well known model is the Hodgkin-Huxley model. Hodkin-Huxley empirically de-
termined their equations [20, 19]:

im=gL(V —Er) +gin*(V — Ex) + gnam*h(V — Eng) + 1 (29)

h,n,m evolve according to complex equations, /; are synaptic currents coming from
other neurons. The equation can be understood in the following way: the values in
parentheses (V — E,) are driving forces that will tend to drive the potential of the
neuron to the Nerst reversal potential E,. In front of each of these driving forces
are weighting factors. These weighting factors determine which driving force will
dominate the equation, and hence the equilibrium value for the cell membrane. If
only g; is active, the cell membrane will relax toward V — > E;. When the cell begins
to fire, after the cell membrane has increased in potential, the Na part of the equation
dominates and the membrane potential shoots up toward Ey,. Next the potassium
term turns on and resets the neuron.

In general the integration of this equation is difficult, and the analysis is extraordi-
narily difficult, so researchers have turned to simplified models which capture some
of the features of this system. Here we focus on computationally efficient models.

3.3.1 Leaky Integrator

One of the simplest models is the so called leaky integrator. This model avoids the
complex dynamics of firing altogether:

dv;
cmdftl =—gVi+l (30)
ui = f(vi) €29

N
I,' = Zwijuj (32)
i=1
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where the V is the membrane potential, u is the average firing rate of the neuron
over a small time window. f(v) is a function that transforms membrane voltage into
firing rate.

In steady state % = 0. This implies that g;V; = I;. We can often assume that
g1 = 1. This equation is an integrator because absent the —V; term, it is a perfect
integrator. This equation is leaky because absent the input /;, the voltage V; “leaks”
back to zero.

This model does not capture the essential spiking characteristic of neurons. All
precise timing information is eliminated. The next step up in complexity is an inte-
grate and fire model.

3.3.2 Integrate and Fire

dv;
Cm o = —gr(Vi—EL) +1; (33)
lf(v > Vthres)_ >V = Vresel (34)
N
=Y wijs(u;) (35)
i=1

In the integrate and fire model, as the membrane approaches a fixed threshold, the
cell *fires” and generates a spike. It then resets the membrane voltage. This model is
not sophisticated enough to build interesting models of networks controlling motors
systems. We must introduce spike frequency adaptation:

dv;
cm—r = —8L(Vi = EL) + rgyra(V = Ei) +1i (36)
d

Tsra (Zstra = —8&sra (37)
lf(V > Vthres)_ >V = Vieser» 8sra— > 8sra T Asra (38)

N
I[ = ZW,’jS(Hj) (39)

i=1

Here we have an adaptation terms. The variable g, functions much like a spike av-
erager, averaging spikes over an exponential time window. As the number of recent
spike increases, the (V — Ej) term begins to dominate. This driving force is trying
to shut the neuron off. Hence with more spikes, the neurons spikes less frequently.

3.3.3 Matsuoka Oscillator

The Matsuoka Oscillator [30] another popular oscillator which seems almost like a
continuous time version of the integrate and fire model with adaptation and is given
as:
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Ti%:fu,‘fﬁf(vi)+2w,-jf(uj)+uo 40)
J#i

T"E = —vi— f(u;) 41)

f(u) = max(0,u),(i=1,2) (42)

As can be seen, as the neuron fires more, the value v; accumulates (almost like
averaging spikes, only this neuron does not spike). As v; increases, it introduces an
inhibitory term suppressing the “firing rate” of the neuron.

3.3.4 Izhikevich Model

The Hodgkin-Huxley model is capable of a rich range of behavior, but is difficult to
integrate. The leaky integrator, integrate and fire with adaptation, and the Matsuoka
oscillator are easy to integrate by have less richness than the HH.

The best of all-possible-world model was discovered by Izhikevich[22] :

dv

= 0.05? +5v+140 —u+1 (43)
d

d—i‘ = a(bv—u) (44)

if(v>30mv)v—>c,u—>u+d (45)

See Fig. 8 for the range of firing behaviors that can be obtained from this model.
These behaviors are controlled by parameters a,b,c, and d.

3.4 Numerical Integration

Next we turn to the practical matter of computing our equations. We can do so by
numerically integrating the equations on a digital computer.
The equations for neurons that we have discussed so far are of the form:

dx
o f(x) (46)
we can write:
dx = f(x)dt 47

Ax~ f(x)At (48)
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Fig. 8 Range of behavior available with the Izhikevich neural model. Electronic version of the
figure and reproduction permissions are freely available at www.izhikevich.com

F‘

E
E

Xn+1 = Xn +f(x)At (49)

xp = x(0) (50)

The use of eqns (49) and (50) is called Eulers Integration. Derivation and use
of Euler Integration is straightforward, and they are completely adequate for most
equations. However equations such as the Hodgkin-Huxely equation may benefit
from a better integrator such as Runge-Kutta 4th order. The iterative equations are
given as:
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xn+1:xn—|—%(a+2b+2c+d) 51
a= f(ty,xn) (52)
b:f(tn+gaxn+ga) (53)
e = flint 2 xut 2b) (54)

d = f(ty+h,x, + he) (55)

Runge-Kutta is more efficient than Euler Integration. While Runge-Kutta requires
more evaluations per time-step than Euler Integration, we can accurately take much
larger time steps using Runge-Kutta.

However, Euler is often fast enough for small networks and has the advantage
that it implementation is trivial.

3.5 Building Neural Oscillators: Natures coordination and
trajectory generation mechanism

Here we turn to the basic unit of movement generation in vertebrates: the oscillator.
Oscillator circuits can be seen at the core of virtually all models of rhythmic mo-
tion generation. They are the basic building blocks of the so-called Central Pattern
Generators, or CPG circuits. These circuits are groups of neurons (in vertebrates
they are in the spinal cord) seen in animals capable of periodic movement including
walking, running, swimming, flying etc.

Fig. 9 The basic element of the central pattern generator is the Brown half-centered oscillators.
Two neurons are coupled with mutual inhibition. As one neuron fires, it suppresses the other.
Eventually, the firing rate wanes and the other neurons becomes active and the cycle repeats.

The basic neural unit is a network oscillator composed of two neuron in mu-
tual inhibition, see Fig. 9. The basic idea of the half-centered oscillator was first
proposed by Brown [11] and was the key element in a theory of central pattern gen-
eration, that is, the generation of rhythmic movement by spinal circuits without the
need for a sensory trigger, or a detailed signal from the brain. While this idea was
successfully repressed for period of time, in recent years it has become accepted
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Fig. 10 A Brown half centered oscillator constructed using an integrate and fire neurons with
adaptation implemented with discrete components (i.e. real resistors, capacitor etc., according to
the equations given above).

Fig. 11 Basic circuitry controlling locomotion in lamprey, an eel like animal. Adapted from [16].
The C neurons are coupled across the midline with mutual inhibition. They form the basis of the
left-right bending of the lamprey.

since Grillner’s seminal work [18, 15]. In Fig. 11 we see an illustration of the spinal
circuits for locomotion in lamprey. The lamprey is a animal that first evolved some
550 million years ago and has been relatively undifferentiated since that time. It
thus gives us insight into the earliest solutions of biology. Such circuits, especially
with inhibition across the mid-line to enforce a 180 degree phase shift between the
left and right half body has been highly conserved. Whenever you walk, you take
advantage of the lamprey solution in the left and right alternation of your legs.
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3.6 Reflexes and High Level Control

The CPG circuits are modulated by sensory stimuli to adapt the CPG to the animal
and to its immediate environment. Thus, the CPG is not a rigorous general given
orders to a low level control system. Rather it cooperates dynamically with the en-
vironment via reflexes, for short term adaptation, and descending control from the
brain, for long range anticipatory control and to achieve high level goals.

For details on the biophysics of neurons, the reader is referred to [19]. For more
details on neural models the reader is referred to [14]

4 Notable systems

Here we highlight some notable models in neurobotics/biorobotics by others

1. Case Western group— Beer and colleages have created neural models of locomo-
tion. Starting from simulation, this group has built a robot controlled by CPG
based on the cockroach. This work is highly instructive. See [12, 7, 17, 6, 5] for
details on their work.

2. Neuromechanical model of swimming— Ekeberg has created a series of neu-
romechanical models of swimming in lamprey. What is interesting here is the
integration of neurons, muscles, body and environment to achieve a complex be-
havior, swimming [16].

3. TAGA— Through simulation, Taga and colleagues have explored the relation-
ship between dynamics, neural networks, and the environment. [35, 33, 32, 34]

4. Tekken— Tekken is a quadrupedal robot driven by Matsuoka oscillators. It is
capable of rapid walking, and features highly innovative reflex integration with
CPGs, see [25, 24].

S5 GPUs

Central Processing Units have doubled in speed about every 18 months for the
past 40 years [1]. Graphics Processing Units have doubled in speed about every
12 months over the past 8 years [2]. The result has been that graphics units are
arguably the most important computational element in the modern computer.
NIVIDIA has opened their architecture to allow other to use their highly parallel
architecture for general purpose simulation. GPUs are distinguished by devoting a
great deal of chip real-estate to computation, instead of memory. They have a rela-
tively small amount of high speed memory and also a large pool of They are there-
fore best suited for compute-bound processes. As an example, the Hodgkin-Huxley
model is estimated to require 1200 flops per 1 ms of computation [23] while using
only a handful of state variables. Further, neuronal models are inherently paralleliz-
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able as they rely on very similar computation applied to different state variables. On
the other, hand there are some elements of the neuron elements that high dimen-
sional and require a relatively small amount of computation for 1 ms of simulation.
An example of that is the simulation of axonal delay, which can be implemented as
an individual delay for each connection between an axon and a dendrites. Given the
small amount of high speed memory, it is not practical to port a large and complex
delay line onto GPU processors. The inhomogeneity of computational versus state
space dimension for different aspects of neural simulation seems to prescribe a cer-
tain mapping of the neuronal network simulation onto a combination of GPU and
CPU elements.

A neural simulation for neurons, the network connectivity, input and output pro-
visions, and learning rules. The neuron simulation is composed of a (1) Simulation
of the decision to fire, (2) Simulation of axonal delays (3) simulation of synapses (4)
dendrite simulation. The learning rule is typically confined to the synapse weight.
However, there is in principle no reason why axonal delays might not also be
changed or altered as they might play an important role in storage of activity pat-
terns.

The raw processing power of a GPU is staggering. The NVIDIA Telsa card with
128 core of processors is capable of nearly 500 GigaFlops of computation. A new
version, to be released in late 2008 will have double that power.

Recent experiments in our lab have achieved rates of 10 million Izhikevich neu-
rons in real-time. Currently this preliminary figure does not include long range
synapses. The results are promising. Within a year, we anticipate that a computer
with 4 NVIDIA GPU cards will be capable of integrating about 80 million neurons
in real time, or nearly 10% neurons in a single desktop computer. If GPU maintain
their rate of speed increase, doubling each eary, (which is not guaranteed), within a
little more than a decade it may be possible to simulate as many neurons as their are
in a human brain in real-time and to control a robot.

Problems still exist for the GPU paradigm including the problem of getting infor-
mation to the computational cores in an efficient manner. Yet even more insurmount-
able problem exist in taking advantage of the processing power we have today.

It is clear that one of the key innovations in neurorobotics will lie in harnessing
GPU processing power for real-time neural computation

6 Conclusion

Neurorobotics is a paradigm which has evolved out of the desire to understand com-
putation in the human brain. Due to advances in the theory of neural computation,
and the dramatic increase in processing power, Neurorobotics may prove to be ca-
pable of creating highly complex behaviors in life-like machines. The market ac-
ceptance of such machines is complicated and remains uncertain, but promising.
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