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ABSTRACT

Wireless ad hoc networks realize end-to-end communications in a cooperative man-

ner. In this paradigm, multiple nodes coordinate to form a multi-hop route, when

communication needs to take place between a source and a destination that are not

within communication range. However, this model presupposes that intermediate

nodes are willing to carry traffic other than their own. For ad hoc networks deployed

in hostile environments, a protocol-compliant behavior on behalf of all nodes of the

network cannot be assumed. Selfish and/or malicious users may misconfigure their

devices to refuse forwarding any traffic, in order to conserve energy resources or

degrade the network performance.

In this thesis, we address the problem of identifying and isolating misbehaving

nodes that refuse to forward packets. We develop a comprehensive system called

Audit-based Misbehavior Detection (AMD) that effectively and efficiently isolates

both continuous and selective packet droppers. The AMD system integrates repu-

tation management, trustworthy route discovery, and identification of misbehaving

nodes based on behavioral audits. It consists of three modules: the reputation

module, the route discovery module, and the audit module. All three modules are

tightly integrated to ensure that multi-hop communications take place over paths

free from malicious nodes. Compared to previous methods, our behavior monitor-

ing process allows the evaluation of node behavior on a per-packet basis, without

the need for energy-expensive overhearing techniques or intensive acknowledgment

schemes. The behavior evaluations made by the audit module and processed by the

reputation module, are exploited by the route discovery module in order to establish

trustworthy paths and isolate packet droppers. We show via simulations that AMD

successfully avoids misbehaving nodes, even when a large portion of the network

refuses to forward packets, at the expense of an increased communication overhead

during route discovery.
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CHAPTER 1

Introduction

Wireless ad hoc network provide rapid on-demand network deployment without the

need for the establishment of infrastructure. Nodes spontaneously self-organize into

a network by coordinating network functions in a collaborative manner. Because of

their infrastructure-less and autonomous nature, ad hoc networks find application

on many domains including disaster relief operations, vehicular networks, tactical

communications, environmental monitoring, and others [5].

In the absence of a supporting infrastructure, wireless ad hoc networks realize

end-to-end communications in a cooperative manner. Nodes rely on the establish-

ment of multi-hop routes to overcome the limitations of their finite communication

range. In this paradigm, intermediate nodes are responsible for relaying packets

from the source to the destination. As an example, consider Figure 1.1 depicting

an ad hoc network of 14 nodes. A source S wants to establish communication with

a destination D. S and D are unable to communicate directly due to their limited

communication range. Thus, the source uses a multi-hop path to route data to the

destination.

This communication model presupposes that intermediate nodes are willing to

carry traffic other than their own. When ad hoc networks are deployed in hos-

tile environments (tactical networks), or consist of nodes that belong to multiple

independent entities, a protocol-compliant behavior on behalf of all nodes of the

network cannot be assumed. Unattended devices can become compromised by the

adversary and drop any transit traffic, in order to degrade the network service.

Moreover, selfish users may misconfigure their devices to refuse forwarding traffic

in order to conserve energy resources. This type of behavior is typically termed as

node misbehavior [10, 9, 42].

In this article, we address the problem of detecting and isolating misbehaving
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Figure 1.1: An ad hoc network of 14 nodes. The disk of radius r represents the
communication range of node S. The source S uses a multi-hop route to send
data to the destination D. Node n1 does not comply with the routing protocol
specifications and drops packets destined to D.

nodes in an effective and resource-efficient manner. In particular, we are concerned

with packet droppers that either continuously drop packets routed through them,

or selectively choose the set of packets to be dropped. Such misbehavior has been

shown to have a severe impact on the network throughput [10, 9, 42, 43, 44].

Currently proposed solutions for identifying misbehaving nodes either use some

form of per-packet evaluation of peer behavior [10, 9, 42, 43, 44, 11], or provide

cooperation incentives to stimulate participation to packet forwarding [15, 14, 64,

33]. Incentive-based approaches do not address the case of malicious nodes who aim

at disrupting the overall network operation. Malicious nodes are not interested in

generating any legitimate traffic streams, and hence, they are not incentivized to

collect credit. On the other hand, misbehavior identification approaches based on

per-packet behavior evaluation techniques such as neighbor monitoring [11, 24, 44,

10, 9, 26, 45, 49, 55], or acknowledgment schemes [42, 3, 4, 47, 62], can prove to be too

expensive in terms of communication overhead and/or overall energy expenditure.

Systems that employ packet overhearing techniques, require the operation of a

large number of nodes in promiscuous mode for monitoring the behavior of their

neighbors. Depending on the hardware design, packet reception can be almost

as expensive as transmission [22]. Hence packet overhearing consumes significant

energy resources. Moreover, operation in promiscuous mode contradicts energy con-

servation schemes that rely on sleeping patterns, such as those employed in Wireless
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Sensor Networks (WSNs). Finally, packet overhearing techniques are complex to im-

plement (if possible) in multi-channel networks where nodes are engaged in parallel

transmissions over orthogonal frequency bands.

Acknowledgment-based systems, are based on the verification of packet forward-

ing from the intended receivers via the transmission of acknowledgments. Typically,

every packet must be acknowledged two or several hops upstream, to ensure that

intermediate nodes faithfully forward packets [42, 3, 4, 47, 62]. The use of per-packet

acknowledgements that must travel multiple hops introduces significant communi-

cation and energy overhead in the process of misbehavior detection. To counter this

overhead, we introduce a system called Audit-based Misbehavior Detection (AMD),

which achieves per-packet behavior evaluation without incurring per-packet commu-

nication overhead. AMD is a comprehensive solution to misbehavior that encom-

passes identification of misbehaving nodes, reputation management, and trustworthy

route discovery, in a distributed and resource-efficient manner. In particular, this

thesis makes the following contributions.

1.1 Our Contributions

We develop the AMD system that integrates reputation management, trustworthy

route discovery and identification of misbehaving nodes. AMD consists of three

tightly coupled modules: a distributed reputation module responsible for managing

the reputation of nodes participating in the network; a route discovery module

responsible for discovering paths which exclude misbehaving nodes, according to the

recommendations provided by the reputation module; an audit module responsible

for identifying misbehaving nodes along the path from the source to the destination.

We show that the route discovery module can construct paths with high reputation

values, subject to any desired length constraint. When path contains misbehaving

nodes, these nodes are efficiently located by the audit module. During the audit

process, nodes along a path from a source to a destination are requested to provide

proofs of their behavior. Using the behavioral proofs provided by honest nodes,
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AMD identifies the misbehaving ones via a series of audits. The nature and order of

these audits is dictated by a searching strategy supplemented by the knowledge of

reputation values provided by the reputation module. We emphasize that proofs are

constructed using Bloom filters which are storage-efficient membership structures [6],

thus significantly reducing the communication overhead associated with misbehavior

identification. Contrary to existing methods, our proposed audit scheme allows the

per-packet evaluation of behavior, without incurring the per-packet overhead. Our

extensive simulation results verify that AMD successfully isolates misbehaving nodes

and practically eliminates packet dropping even if a large portion of the network

(e.g., 50%) is misbehaving. This is achieved at significantly lower communication

and energy cost compared to pre-existing methods.

1.2 Paper Organization

The remainder of the paper is organized as follows. In Chapter 2, we present related

work. Chapter 3 describes our network and adversary model assumptions and states

the problem addressed by this thesis. Chapter 4 describes the architecture and

internal structure of the AMD system. Specifically, Sections 4.2, 4.3 and 4.4 present

the reputation, route discovery and audit modules, respectively. In Chapter 5, we

study the performance of AMD via extensive simulations and compare AMD with

representative schemes from the different classes of misbehavior detection schemes.

In Chapter 6, we summarize our findings.
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CHAPTER 2

Misbehavior in Wireless Ad Hoc Networks

Ad hoc networks are based on the assumption that all nodes collaborate to realize

network services. However, this implicit trust placed on the willingness of network

nodes to collaborate is often breached. Nodes can act in a selfish manner, in order

to conserve their own resources (such as energy), by refusing to relay traffic of other

nodes. Moreover, malicious nodes can attempt to degrade network performance by

dropping all packets routed through them. Regardless of motive, such misbehaving

nodes violate the core ad hoc network principle of collaboration. Node misbehavior

in the routing function has been shown to have a severe impact on the network

throughput [9, 33, 42, 43, 44].

Several attacks have been demonstrated against routing protocols in ad hoc

networks [9, 33, 18, 27, 30, 40, 42, 44, 46, 52, 53]. We first provide a brief description

of those attacks. In a sinkhole attack, a misbehaving node attempts to attract traffic

by falsely advertising a shortest route to multiple destinations [18, 46, 52]. Thus,

neighboring nodes route their traffic through the misbehaving node, allowing it

to drop/modify/analyze a large volume of packets. Networks in which all nodes

periodically transmit data to a sink, such as a monitoring network, are particularly

vulnerable to the sinkhole attack since data packets have a single destination.

In a blackhole attack [39, 61], the misbehaving node advertises the shortest path

to a particular destination node whose traffic it wants to intercept. Once a route

request is received by the misbehaving node, it immediately replies to the source.

Since most route discovery processes accept the first route discovered, the traffic is

routed through the misbehaving node.

In a wormhole attack [27, 40, 53], two (or more) nodes establish a low-latency

link between distant parts of the network. Messages received at one end of the worm-

hole are transmitted back on the other end. Since the wormhole is a low-latency
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link, nodes on either side of the wormhole will appear as neighbors, and eventu-

ally all packets destined from one side of the network to the other will traverse the

wormhole. Notice that in this attack, the misbehaving nodes are not required to

broadcast messages advertising the low-latency link. This occurs naturally during

route discovery since all received packets are rebroadcasted through the wormhole.

Once established, the misbehaving nodes can launch additional attacks on the net-

work based on the large volume of traffic traversing the wormhole. Preventative

measures against the wormhole attack are based on topological consistency checks

[27, 29, 40].

On-demand routing protocols for ad hoc networks have been shown vulnerable

to the rushing attack [30]. In this attack, a misbehaving node tampers with the

route request packet and modifies the routing path. Once modified, the node rushes

the packet to the next hop. Since under most protocols only the first copy of the

route request is accepted (all subsequent ones are dropped), the misbehaving node

attempts to forward the modified route request before any others are transmitted,

thus causing the modified packet to be used for the duration of the route discovery

and establish a false routing path.

The most common form of misbehavior is packet dropping [9, 33, 42, 44]. In

this attack, the misbehaving node participates in the routing path establishment

process. Once the routing path is established, the misbehaving node simply refuses

to forward packets to the next hop. The source and destination can recognize that a

performance drop has occurred on the routing path, but are unable to determine the

problematic link. This thesis focuses on this last type of misbehavior in which the

source and destination attempt to determine the node(s) that drop packets along

the routing path. We now describe related work with respect to the misbehavior

identification problem.
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2.1 Related Work on Packet Dropping

Previously proposed methods for addressing packet droppers can be classified into,

(a) credit-based systems [13, 15, 17, 58, 64], (b) reputation-based systems [9, 33, 14,

12, 23, 26, 36, 44, 45, 49, 55, 59], and (c) acknowledgment-based systems [3, 4, 42,

47, 62].

2.1.1 Credit-Based Systems

Credit-based systems [13, 15, 17, 58, 64] are designed to provide incentives for for-

warding packets. Buttyan and Hubaux [13, 15] proposed a system in which nodes

receive credit for each packet they forward, and spend their accumulated credit to

transmit their own packets. This is accomplished through the use of a counter called

the nuglet counter. The nuglet counter is incremented each time the node forwards

a packet, and decremented each time the node transmits its own packet. The nuglet

counter cannot take on a negative value and cannot be arbitrarily changed by the

node. To enforce this rule, the nuglet counter is implemented in a tamper-proof

hardware module, called the security module. The security module is assumed to

provide universal protection from both software and physical attacks.

Zhong et al. [64] proposed Sprite, in which nodes collect receipts for the packets

that they forward to other nodes. For a packet sent from a source to a destination,

each node along the path records a hash of the packet as the receipt, and forwards

the packet to its next hop. When the node has a high-speed link to a Credit

Clearance Service (CCS), it uploads its receipts. The CCS determines the value of

the receipts and provides credit in exchange. Credit is only granted if the destination

reports a receipt verifying reception of the packet and if the node was on the routing

path. Once verified, credit is removed from the sources account and given to each

node who participated in packet forwarding. Thus nodes that transmit their own

packets but do not cooperate in packet forwarding will incur a debt at the CSS.

Debt accumulation beyond a certain threshold is interpreted as misbehavior.

Crowcroft et al. [17] proposed a scheme which not only rewards nodes for par-
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ticipating in packet forwarding with credit, but takes into account congestion and

traffic flow. When sending a packet, the source computes a congestion price, which

is a metric defined by the required power for transmission and the available band-

width. It then compares this price to its personal willingness-to-pay parameter,

which the source continually adjusts based on its personal observations. By taking

into consideration bandwidth in computing the cost (credit) required to send a mes-

sage to the destination, the scheme avoids overwhelming low cost routes, as they

would increase in costs as they become saturated. Power and bandwidth metrics

are dynamically updated based on shared information among nodes.

Salem et al. [58] proposed a scheme to provide incentives to nodes in multihop

cellular networks. The scheme relies on the fact that all network traffic must travel

through the base stations (i.e. cell towers), and that all base stations are owned by a

single trusted operator. When the source sends a packet, it appends a keyed hash of

the entire packet. Each intermediate node re-hashes the entire packet, including the

previously appended hash. The previous node’s hash is then replaced with the new

intermediate hash. Once at the base station, the hash is verified and the packet is

transmitted over the backbone network, where it is re-transmitted to the destination

from a nearby base station. The source is charged immediately by the base station

upon receipt of a packet, while the destination is charged a small amount when the

packet is re-transmitted. This amount is refunded once the destination acknowledges

the reception of the packet, thus preventing the destination from cheating the system

by claiming packets were never received.

While credit-based systems motivate selfish nodes to cooperate in packet for-

warding, they provide no incentive to malicious nodes that target the network

throughput. Such nodes have no incentive to collect credit and receive no pun-

ishment for non-cooperation. Furthermore, tamper-proof hardware [25] is currently

too expensive to integrate in every network device, while providing an unverifiable

level of security [2]. Sprite removes this requirement, at the expense of requiring the

presence of a CCS. Lastly, credit-based systems lack a mechanism for identifying

the misbehaving node(s), allowing them to remain within the network indefinitely.
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Huang et al. [31] even go so far as to question whether or not there exists

a need for credit-based schemes. Some of the issues they bring to light is that

all network nodes are not treated fairly. Nodes located on the outskirts of the

network will encounter less traffic to be forwarded, thus accumulating less credit

compared to nodes located in the center of the network. Thus there exists an

inherent disadvantage to a subset of nodes. They also claim that to be effective, a

credit-based system must be uniquely designed for a given network, which conflicts

with it idea of ad hoc networks and their corresponding technologies.

2.1.2 Reputation-Based Systems

Reputation-based systems [9, 33, 11, 12, 23, 26, 36, 44, 45, 49, 55, 59] use neigh-

borhood monitoring techniques to identify misbehaving nodes. Marti et al. [44]

proposed a scheme which relies on two modules, the watchdog and the pathrater.

The watchdog module monitors the behavior of their next hop node by operating

their radio in promiscuous mode. Once a node forwards a packet to the next hop,

the node overhears to verify that the next hop node faithfully forwarded the packet.

The scheme is based on the assumption that links between nodes are bi-directional

and nodes utilize omni-directional antennas. A cache is used to store packets that

wait for verification. If packets remain in the cache longer than a threshold period,

the watchdog makes an accusation of misbehavior. The pathrater module uses the

accusations generated to chose a path that will most likely avoid misbehaving nodes.

Buchegger and Le Boudec [9, 33, 11] proposed a scheme called CONFIDANT,

which is built upon the watchdog/pathrater model. Nodes perform neighborhood

monitoring using their radios in promiscuous mode while selecting paths that at-

tempt to avoid misbehaving nodes. Whereas Marti et al. proposed using only the

previous hop for monitoring, CONFIDANT requires all neighboring nodes to oper-

ate in promiscuous mode for monitoring, thus replying on a neighborhood watch. In

addition, monitoring nodes notify other nodes of detected misbehavior through the

broadcast of alarm messages. Instead of including a proof of the misbehavior in the

alarm message, a scheme based on Pretty Good Privacy (PGP) [65] is implemented
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to determine the trust level of the alarm message.

Soltanali et al. [59] propose a reputation-based scheme consisting of four

modules: a Monitor, a Opinion Manager, a Reputation Manager, and a Rout-

ing/Forwarding Manager. The Monitor module monitors the nodes neighbors via

the watchdog model, verifying that neighboring nodes faithfully participate in packet

forwarding. Based on observations from the Monitor, the Opinion Manager formu-

lates opinions of the nodes behavior and periodically advertises them to neighboring

nodes. The Reputation Manager accepts these opinions and processes them to arrive

at a trust metric for a specific node. When establishing a routing path to a destina-

tion, the Routing/Forwarding Manager uses these trust metrics to avoid including

untrustworthy (misbehaving) nodes.

Ganeriwal and Srivastava [23] use a Bayesian model to map binary ratings to

reputation metrics, using a beta probability density function. Each sensor computes

a reputation ranking for its neighbors, defining them as cooperative or noncoopera-

tive. The ranking is based on multiple factors, including but not limited to routing

consistency and packet integrity. Nodes can also share information regarding their

classification of neighbors as cooperative/noncooperative. Jøsang and Ismail [36]

presents similar work on how to derive reputation rankings using beta probability

functions based on feedback of neighboring node behavior. Likewise, Buchegger and

Le Boudec [12] investigate the effects of rumor spreading in ad hoc networks and

propose a reputation-based scheme based on a Bayesian model. They also attempt

to identify lies and exclude them as input to their reputation model.

He et al. [26] proposed SORI, which monitors neighboring nodes using a watch-

dog mechanism and propagates this information to nearby nodes, thus relying on

both first- and second-hand information. Each node monitors all neighboring nodes,

while maintaining a neighborhood list. The neighborhood list contains the number

of packets each neighbor received and the number forwarded. Periodically, neighbor-

ing nodes exchange reputation information. This second-hand information is added

to the nodes observations to compute an overall evaluation record for a node. SORI

takes the additional step of punishing nodes deemed to be misbehaving. Neighbors
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of a misbehaving node will probabilistically drop its packets, thus encouraging co-

operation among nodes. SORI includes a mechanism to prevent retaliation attacks

in which nodes continually increase the probability of dropping each others packets.

The authors address security issues such as node impersonation by requiring the use

of an authentication mechanism based on one-way hash chains.

Rebahi et al. [55] proposed a reputation-based scheme which also relies on first-

and second-hand information. However the authors propose two different methods

for nodes to acquire the second-hand information, i.e., the reputation information

originating from neighboring nodes. In the first method, as soon as a node wit-

nesses misbehavior, defined according to a threshold number of packet drops, the

node immediately broadcasts the accusation. Thus the proactive transmitting of

reputation information allows all nodes in the network to have up-to-date behav-

ioral information about their neighbors. However, since the proactive broadcasting

of information may require unacceptable bandwidth requirements, thus diminish-

ing the networks functionality, nodes can also acquire second-hand information in

an on demand manner. In much the same way that on demand routing protocols

request route information, a node transmits a packet to the network requesting rep-

utation information from other nodes. Thus network resources are only consumed

to transfer reputation information that is requested.

Michiardi and Molva [45] proposed CORE, in which nodes create a composite

reputation rating for a given node by combining the nodes subjective reputation,

its indirect reputation and its functional reputation. The subjective reputation is

calculated from direct observation of the nodes behavior, using a weighted average

of both current and past observations. The indirect reputation is a value calculated

based on second-hand observations made by other nodes in the network. A node’s

functional reputation is based on task-specific behavior. Thus it is computed based

on its reputation in packet forwarding, routing, etc. Denial-of-service attacks based

on misbehaving nodes broadcasting negative ratings for honest nodes are prevented

by preventing nodes from broadcasting negative behavior. Thus when sharing rep-

utation metrics, node are restricted to sharing only positive ratings.
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Paul and Westhoff [49] proposed a scheme which can identify different types of

misbehavior through routing message verification and packet comparisons. In par-

ticular, they focus on securing DSR to attacks, in which a misbehaving node either

(a) refuse to forward route request packets, (b) forwards route requests without

adding itself to the routing path, or (c) adds unrelated nodes to the route request.

The scheme verifies routing messages through the use of an un-keyed hash chain,

while nodes compare RREQ headers to a local cache consisting of headers from

overheard packets to identify misbehavior. Each intermediate node along the path

thus monitors its neighboring nodes, and send any accusations of misbehavior to the

source, along with the type of misbehavior they witnessed. The source analyzes all

accusations received, and takes action based on the type of misbehavior witnessed.

The process of node monitoring becomes complex in the case of multi-channel

networks or nodes equipped with directional antennas. Neighboring nodes may be

engaged in parallel transmissions in orthogonal channels or different sectors thus

being unable to monitor their peers. Moreover, operating in promiscuous mode

requires up to 0.5 times the amount of energy for transmitting a message [22], thus

making message overhearing an energy expensive operation. Finally, reputation-

based systems are proactive in nature, requiring the constant monitoring of nearby

nodes. Hence, overhead is incurred on all nodes regardless of whether a misbehaving

node exists in a neighborhood.

2.1.3 Acknowledgment-Based Systems

Acknowledgment-based systems [3, 4, 42, 47, 62] rely on the reception of acknowl-

edgments to verify that a message was forwarded to the next hop. Balakrishnan

et al. [4] proposed a scheme called TWOACK, where nodes explicitly send 2-hop

acknowledgment messages (TWOACK) to verify cooperation. For every packet a

node receives, it sends a TWOACK along the reverse path, verifying to the node

2-hops upstream that the intermediate node faithfully cooperated in packet forward-

ing. Packets that have not yet been verified remain in a cache until they expire.

A value is assigned to the quantity/frequency of un-verified packets to determine
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misbehavior.

Liu et al. [42] improved on TWOACK by proposing 2ACK. Similar to

TWOACK, nodes explicitly send 2-hop acknowledgments (2ACK) to verify cooper-

ation. To reduce overhead, 2ACK allows for only a percentage of packets received

to be acknowledged. Additionally, 2ACK uses a one-way hash chain to allow nodes

in the routing path to verify the origin of packets they are acknowledging, thus pre-

venting attacks in which a misbehaving node drops the original packet and forwards

a spoofed packet.

Padmanabhan and Simon [47] proposed a method called secure traceroute to

identify the link on which misbehavior is occurring. Instead of the standard tracer-

oute operation, which relies on nodes responding to expired packets, secure tracer-

oute verifies the origin of responses and uses traceroute packets that are indistin-

guishable from data packets. Secure traceroute proceeds hop by hop, although

instead of responding to expired packets, the source establishes a shared key with

the node. By encrypting the packets, secure traceroute packets are indistinguishable

from data packets and cannot be selectively dropped. A Message Authentication

Code (MAC) is utilized for authenticating the packets origin. Although traceroute

is considered a reactive approach, secure traceroute is proactive, requiring connected

nodes to transmit “keep-alive” packets when they have data to send.

Xue and Nahrstedt [62] proposed the Best-effort Fault-Tolerant Routing (BFTR)

scheme, which relies on end-to-end acknowledgment messages to monitor packet de-

livery ratio and select routing paths which avoid misbehaving nodes. Similar to the

DSR routing protocol, the source floods RREQ messages to discover a routing path

to a destination. However, RREP packets must be sent along the reverse path and

must be signed with a shared secret key between the source and destination. Also,

the destination responds to multiple RREQ, thus providing the source with multiple

paths to choose from. The source selects the shortest path for packet routing. Dur-

ing transmission to the destination, the source monitors the feasibility of the routing

path, based on the end-to-end acknowledgments sent by the destination. Using a

proposed heuristic, the source varies the routing path to maintain feasibility. Thus,
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the goal of BFTR is to avoid misbehaving nodes.

Awerbuch et al. [3] proposed an on demand routing protocol that probes the

path to identify the faulty link. Once misbehavior is identified as occurring, the

source begins probing nodes on the routing path by asking nodes to acknowledge

all packets received. Probing is performed according to a binary search, in which

the binary response of probed nodes are {failed, successful}. Once the faulty link

has been identified, a weight metric is utilized to increase the value of the faulty

link, thus avoiding including it in future routing paths. To avoid a misbehaving

node from dropping the acknowledgments of probed nodes, the acknowledgment are

attached to packets from previous nodes such that the misbehaving node cannot

drop only a subset of acknowledgment messages. The source makes no attempt to

identify the individual node(s) causing the misbehavior.

Acknowledgment-based systems are proactive, and hence incur message overhead

regardless of the presence of misbehavior. 2ACK provides a method to reduce mes-

sage overhead by acknowledging only a fraction of the packets, with the tradeoff of

increased delay in misbehavior detection. Awerbuch et al. further reduces overhead

through its on demand characteristic, however it only identifies the faulty link, thus

failing to identify the node causing the misbehavior.

2.2 Related Work on Route Discovery

When a source node wants to communicate with a destination, it must search the

network until either the destination is found or another node has a route to the desti-

nation. Due to the lack of infrastructure, and/or possible mobility, ad hoc networks

rely on on-demand routing protocols [35, 50] to discover routes. Most on-demand

routing protocols implement route discovery using a controlled network flooding

mechanism. Examples include the Dynamic Source Routing (DSR) [35] and the

Ad hoc On-Demand Distance Vector (AODV) [50] protocols. The route discovery

module of AMD is based on such controlled-flooding techniques, but accounts for

the reputation of individual nodes. In this section, we give a brief description of
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Figure 2.1: The route discovery process of DSR/AODV. (a) Controlled flooding of
RREQ messages. (b) Unicasting of RREP messages.

DSR and AODV.

2.2.1 Route Discovery in DSR

When a source S has packets for a destination D, it checks whether a route exists in

its cache. If a route does not exist, S broadcasts a Route Request (RREQ) message.

This message contains the source ID, destination ID, and the time-to-live (TTL) for

this request. Any intermediate node that receives the RREQ, appends its identity to

the RREQ message and rebroadcasts the RREQ while decreasing TTL field by one.

If a receiving node is the destination (or has a route to the destination), D responds

to S with a route reply (RREP) message containing the entire path PSD between S

and D. The RREP follows the reverse path from the one indicated in the received

RREQ. Note that because of the flooding nature of the route discovery process,

the destination can receive RREQs indicating multiple paths from the source. It

can then choose the path that satisfies the selection metric, which is typically the

smallest number of hops (indicated by the smallest number of intermediate nodes in

the RREQ). In Figure 2.1(a), source node S broadcasts RREQ to its neighbors n1

and n3. If destination D is not found, n1 and n3 will further broadcast this RREP

to their neighbors, until D is found or another node ni has a route to D. During the

process of RREQ forwarding, each intermediate node adds its identification number

to the RREQ. Each RREQ is broadcasted only once by each node, and hence, any

other RREQ that arrives later from other directions will be discarded. Once RREQ

arrives at D, it replies with a RREP, which traverses the reverse path indicated by



28

the RREQ. This path is typically the shortest. In Figure 2.1(b), the reverse path is

D → n2 → n1 → S. Upon reception of the RREP, PSD is established.

2.2.2 Route Discovery in AODV

In AODV [50], when a source S has data for a destination D, it first checks if a route

exists in its cache (similar to DSR). If a route does not exist, S broadcasts a RREQ

for D. A receiving node will rebroadcast the RREQ if it is not D, it does not have

a cached route to D, it is the first time that this RREQ is received, and the TTL

field is not equal to zero. It will also record the identity of the one-hop neighbor

that broadcasted the RREQ. Once the RREQ reaches the destination, D replies

with a RREP message. This message is unicasted to the one-hop neighbor of D

that transmitted the RREQ. In the same manner, the RREP will be unicasted back

to the source, using the recorded one-hop neighbors that originated the RREQ. In

Figure 2.1(a), the RREQ forwarding process of AODV is similar to that of DSR. The

only difference is that RREQ does not contain any path information. Intermediate

nodes record the identify of the upstream neighbor during the RREQ phase and

downstream neighbor during the RREP phase. Each RREQ is also broadcasted

only once, and hence, any other RREQ that arrives later from other directions will

be discarded. Once D is found, a RREP will be unicasted to S, with each node

forwarding the RREP to the recorded upstream neighbor. Similarly to DSR, AODV

also typically finds the shortest path.

Note that both DSR and AODV adopt the ring expansion technique for control-

ling the level of flooding. In this technique, multiple RREQ with incrementing TTL

values are broadcasted, until the destination is discovered.
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CHAPTER 3

System Model and Problem Statement

In this chapter, we state our assumptions in regards to the network and adversarial

models. We also state the problem addressed.

3.1 Network Model

We assume a multi-hop ad hoc network where nodes collaboratively relay traffic

according to an underlying routing protocol such as DSR [35] or AODV [50]. The

network consists of a set of N nodes. Any path PSD used to route traffic from a

source S to a destination D is assumed to be known to S. This is true for source

routing protocols such as DSR. If DSR is not used, PSD can be identified through a

traceroute operation, or becomes known once the route is established. For simplicity,

we number nodes in PSD in ascending order, i.e., ni is upstream of nj if i < j.

We assume that the source and destination collaboratively monitor the perfor-

mance of PSD. The destination periodically reports to the source critical metrics

such as throughput or delay. If a misbehaving node drops the periodic updates as

part of its misbehavior pattern, the source interprets the lack of updates as occur-

rence of misbehavior. Likewise, the destination explicitly alerts the source in case

the performance in PSD is restored. These alerts are used to pause the misbehavior

identification process and account for: (a) temporal variations of performance due

to traffic or intermittent connectivity, and (b) random behavioral patterns of the

misbehaving nodes. Note that the source can implicitly measure the throughput of

an end-to-end connection if TCP is used at the tranport layer. Reception of end-

to-end acknowledgements give accurate estimate of the ”instantaneous” throughput

and of the round trip delay. If TCP is employed, explicit alerting of the source is

not necessary.
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We assume that the integrity, authenticity, and freshness of critical control mes-

sages can be verified using cryptographic methods. For example, a public key cryp-

tosystem can be used to verify the authenticity and integrity of messages while

providing confidentiality [41]. Note that such cryptosystems require the existence

of a trusted certificate authority (CA) for initialization (issuance of keys and certifi-

cates) as well as revocation of users via a certificate revocation list (CRL). Several

methods have been proposed for the distributed implementation of a CA [20, 54, 63].

Because, our system isolates malicious nodes during the route selection process, a

cryptographic revocation is not necessary. In this case, the CA can be eliminated

after the network is initialized. Every node ni in the network is assumed to be

in possession of a private/public key pair denoted as (ski, pki). The public key is

assumed to be known to all participating nodes. This is achieved either at initial-

ization, or via the use of a certificate signed by the certificate authority. While any

public key cryptosystem can be used in terms of security, in our work, we adopt

a system that satisfies the homomorphic multiplicative property [56, 21]. This is

because AMD performs multiplication operations on the ciphertext domain.

3.2 Adversarial Model

A fraction of the nodes deployed in the network is assumed to be misbehaving.

This misbehavior is manifested by the dropping of transit traffic from a source to a

destination. Misbehaving nodes can be continuous droppers, or adopt any selective

dropping strategy. For a given path PSD of length k, we assume that a set of M
misbehaving nodes, with |M| ≤ k, exist along this path. These nodes can be located

anywhere along PSD.

In our model, we do not consider other types of misbehavior against the routing

process such as advertisement of false routing information, creation of sinkholes,

blackholes, wormholes, etc. [19, 18, 46, 52, 39, 61, 27, 40, 53]. Moreover, we do not

attempt to detect misbehaving nodes that are unwilling to participate to routing

paths. Such nodes already isolate themselves from the network and do not further
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degrade the network performance.

3.3 Problem Statement

The problem addressed in this thesis is shown in Figure 3.1. A set of nodes N is

organized in an ad hoc networks. A subset of N is acting maliciously by dropping

packets either continuously or selectively. Our goals are: (a) to identify the subset of

misbehaving nodes, and (b) to construct routes that avoid the use of the misbehaving

nodes. In addressing these two goals, we are concerned with the resource-efficiency

of the misbehavior identification and route discovery methods.

Figure 3.1: Node S is sending traffic to D along PSD. Node n5 drops all packets.
Our goal is to identify n5, provide evidence of its misbehavior, and construct routes
that avoid n5.
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CHAPTER 4

The AMD System

4.1 The AMD System Architecture

In this section, we describe the architecture of the AMD system. AMD consists

of three modules: the reputation module, the route discovery module, and the

audit module. These modules are implemented in each node of the network and

do not need any sort of centralized control. They closely interact to coordinate the

functions of misbehavior detection, discovery of trustworthy routes, and evaluation

of the reputation of peers. A diagram of the relationship between the three modules

of the AMD system is shown in Figure 4.1.

Reputation 
module

Route discovery 
module

Audit
module

AMD

Figure 4.1: The AMD system architecture.

The reputation module is responsible for managing reputation information. Ev-

ery node of the network collects first-hand and second-hand reputation information

for its peers. The reputation module combines both types of information in order to

compute and maintain reputation values for the rest of the nodes. The route discov-

ery module establishes a route between a source S and a destination D, using the
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reputation values computed by the reputation module. The route discovery process

is based on well-known route discovery protocols for ad hoc networks such as DSR

[34] and AODV [50], modified to take into account the reputation recommendations

of the reputation module, in an efficient and distributed manner. The audit module

is responsible for detecting misbehaving nodes along entire paths from a source to

a destination. Contrary to previously proposed misbehavior detection mechanisms,

the audit module operates on an end-to-end basis, thus allowing the concurrent

behavior evaluation of all nodes along a particular path. Moreover, this module

is designed to operate in a resource-efficient manner, by eliminating the need for

energy-expensive overhearing techniques. Instead of monitoring neighboring nodes

on a per-packet basis, behavioral evaluations are performed per flow. To accelerate

the identification of misbehaving nodes, the audit module biases its search process

according to input received from the reputation module. Once the audit module

converges to the misbehaving node(s), it provides input to the reputation module

for updating the reputation values.

4.2 The Reputation Module

The reputation module is responsible for computing and managing the reputation

of nodes that participate in the ad hoc network. We adopt a decentralized approach

in which each node maintains its own view of the reputation of other nodes. Such

implementation alleviates the communication overhead for transmitting information

to a centralized location, and readily translates to the distributed nature of ad hoc

networks. Because reputation information does not propagate to the entire network

(we avoid expensive reputation flooding operations [10, 11, 45, 26]), various nodes

are likely to assign different reputation values to the same node, depending on

their interaction with that node. The individual evaluation of one’s reputation can

detect selective misbehaviors in which malicious nodes selectively drop traffic that

originates from specific sources. This method also mitigates the normalization of the

reputation value, when multiple reputation values are combined via an averaging
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operation.

4.2.1 Computation of the Reputation Value

The reputation module running on a node ni maintains a reputation vector

Ri(t) = {r1i (t), r2i (t), . . . , rNi (t)} that contains the reputation values rji (t) for all

nodes nj ∈ N\{ni}. Here, parameter t denotes the current time epoch over which

the reputation values are computed. Each epoch has a time duration of T units.

The time component is added for ensuring the freshness of the reputation values.

To compute and update the reputation value of a node nj, node ni considers two

types of information; first-hand and second-hand. A reputation evaluation is con-

sidered to be first-hand if it originates from the audit module running on ni, and

is considered to be second-hand if it is computed based on information provided by

other nodes. Second-hand information is only used if first-hand information is not

available, or if the latter is considered to be stale (based on the number of epochs

that have passed since the evaluation was made).

Reputation values rji (t) are restricted to range (0, 1] and are initialized to some

value c (e.g, c = 0.5). To update the reputation values, we adopt an additive

increase/multiplicative decrease (AIMD) algorithm [16, 44], with a multiplicative

factor 0 < α < 1 and an additive factor 0 < β < 1. The AIMD algorithm is

preferred to ensure that reputation of a malicious node will quickly converge to

very low values when it continuously drops packets, even if it has been initially

faithfully relaying packets in order to increase its reputation. The reputation value

is updated either when new information becomes available (first-hand or second

hand), or at the end of an epoch according to the following rules.

First-hand information: If during epoch t, the audit module of node ni provided

a first-hand evaluation of node nj, the reputation value rji (t) is computed as,

rji (t) =

 α× rji (t− 1), if δ(t) < γ0,

min{rji (t− 1) + β, 1.0}, otherwise.
(4.1)
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In (4.1), δ(t) denotes a weighted fraction of packets which originated from ni

and forwarded by nj. Parameter γ0 denotes a threshold value below which nj is

assumed to be malicious. Parameter δ(t) becomes available from the audit module.

In specific, consider that packets sent from node ni to a destination via nj can

be classified into K categories. Moreover, X1, X2, . . . , XK denotes the number of

packets sent by ni corresponding to each of the K packet categories, Y1, Y2, . . . , YK

denotes the number of packets forwarded by nj, and w1, w2, . . . , wK denotes the

weights assigned to each packet category, with 0 ≤ wi ≤ 1 and
∑

iwi = 1. Then,

δ(t) =

∑K
i=1wiYi∑K
i=1wiXi

. (4.2)

The classification of packets into different categories is employed to detect nodes

that selectively misbehave by dropping packets of high importance, while forward-

ing other packets. The case where all packets are considered to be of the same

importance can be derived as special case of (4.2), by setting K = 1 and w1 = 1.

In order to identify the misbehaving nodes, we need to properly determine the

values of w1, w2, . . . , wK and γ0. The value of γ0 is determined by the characteristics

of the communication channel. That is, γ0 depends on the physical layer properties

of the communication channel. Taking into account the channel model (AWGN,

Raleigh, etc.), the modulation type (BPSK, QPSK, QAM, etc.), the channel coding

technique and the application of any error correction, an expected value of the

packet error rate (PER) of a benign node is derived. Assuming that packets of all

types P1, P2, . . . , PK are uniformly dropped due to pool channel conditions for any

distribution of weights w1, w2, . . . , wK , one can compute the threshold γ0 as,

γ0 =

∑K
i=1wiPERiXi∑K

i=1wiXi

= PER. (4.3)

Formula 4.3 can be adjusted to take into account different PER values for dif-

ferent packet types. Such differences can occur due to the varying packet sizes and

the use of different transmission rates. As an example, in 802.11 networks, control

packets are always transmitted at the lowest data rate for reliability purposes while
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data packets can be transmitted at a higher rate, and therefore, experience a higher

PER.

The values of w1, w2, . . . , wK are application dependent. The source can assign

large values to packet types that are deemed to be highly important for the appli-

cations at hand. For instance, control packets are typically of higher importance.

One method for determining w1, w2, . . . , wK is by setting a condition under which

misbehavior is always detected. For instance consider only two types of packets P1

and P2 (e.g., control packets and data packets). Assume that we want to always

detect a misbehaving node that drops a fraction Y1

X1
> f0 packets. Then w1 and w2

are determined as a feasible solution region derived from the following inequalities,

δ(t) < γ0 (4.4)∑
i

wi = 1 (4.5)

Y1
X1

> f0 (4.6)

In the case of two packet types,

w1Y1 + w2Y2
w1X1 + w2X2

< γ0 (4.7)

w1 + w2 = 1 (4.8)

Y1
X1

> f0 (4.9)

Solving (4.7), (4.8) and (4.9) for w1 and w2 yields the desired weight distribution.

Second-hand information: Second-hand information is used only if first-hand

information becomes stale. The latter occurs when no first hand information is

obtained for t0 epochs. In this case, a node ni averages all second-hand information

reported by other nodes within the last t0 epochs. Let Ii(t) denote the set of nodes

that have provided second-hand information to node ni within the last t0 epochs.

The reputation value is computed as,
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rji (t) =

∑
m∈Ii(t) r

j
m(t)

|Ii(t)|
. (4.10)

The reputation value in (4.10), is updated at every epoch by discarding all

second-hand information older than t0 epochs and admitting all new second-hand

information. If no second-hand information is available for the last t0 epochs, the

reputation value is restored to the last known first-hand information. Also, if first-

hand information becomes available, it replaces the second-hand information.

To simplify our notations, we eliminate the parameter t from the reputation ex-

pressions when unnecessary. Current reputation values are assumed unless otherwise

specified.

4.2.2 Collection of Reputation Information

We now describe the process of collecting first-hand and second-hand reputation

information. This process is facilitated by the audit module. When a source node S

establishes a traffic flow1 with a destination D, the audit module running on S makes

evaluations on the behavior of each node along the path PSD. These evaluations are

considered as first-hand information for S. Moreover, the source is responsible

for sending the evaluations to all nodes along PSD, thus providing second-hand

information.

More formally, consider a path PSD = {S, n1, n2, . . . , nk, D}. Using the traffic

flow from S to D, the audit module of S computes rjS, (j = 1 . . . k) and updates

its own reputation values using (4.1). The details of the evaluation process are

described in Section 4.4. It then distributes rjS to all nodes in {n1, . . . , nk}\{nj}.
For instance, node n1 will receive all the updated reputation values rjS, (j = 2 . . . k),

but its own value r1S.

We note that the reputation distribution operation implements a tradeoff be-

tween the communication cost of updating reputation values to the entire network

1We define a traffic flow as a stream of packets related to a communication session between a

source and a destination.
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and obtaining a current view of the reputation of other nodes. Most prior methods

are either limited to first-hand information (reputation is only computed within one

hop) (e.g, [1]), thus not effectively choosing trusted paths, or employ some form of

(controlled) flooding thus being communication costly (e.g, [10]). We adopt a path

oriented technique that achieves a desirable tradeoff between the two approaches.

By limiting the propagation of second-hand information to the nodes along the rel-

evant path of a traffic flow, the communication cost is kept low. At the same time

second-hand information is provided to nodes that are likely to participate in the

same paths. Nodes located at disparate parts of the network do not often share

reputation information. On the other hand, nodes within the same vicinity (not

necessarily one hop), receive up-to-date information. Also, the reputation of critical

nodes that participate on many routes (such as the ones located in the center of the

network) is frequently distributed to all nodes that use them.

Note that malicious nodes acting as sources may distribute low reputation values

for nodes participating in a routing path, in order to exclude them from the network.

However, this attack is mitigated in our approach. First, second-hand reputation is

only used if first-hand reputation is not available. Second, the second-hand repu-

tation value is computed by averaging all values provided by other nodes. A single

false evaluation may not be sufficient to make significant difference. Third, even

if a node is excluded from one path due to lies, this node may still be included in

paths from other directions. Recall that only nodes along a path receive second-

hand information. Assuming that the accused node is benign, the sources in other

paths provide positive feedback for the falsely accused node. This positive feedback

will prevail during the averaging operation, assuming a large number of behaving

sources.

The integrity of the reputation values during distribution is protected using

standard cryptographic methods [60]. For instance, if symmetric keys have been

established in the ad hoc network using one of the key establishment methods [28,

48, 51], a message carrying reputation values from S to a node ni can be encrypted

with symmetric key KSi and accompanied with a keyed message authentication
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code (MAC), using KSi. Alternatively, if a public key cryptosystem is established,

the source signs the message containing the reputation values with its private key

and encrypts it with the public key of the corresponding node.

4.3 The Route Discovery Module

The route discovery module is responsible for the discovery of trustworthy paths

from a source to a destination. This module is invoked by the source, whenever

there is no cached path to the destination. To ensure uninterrupted traffic flow,

the discovered paths not only have to be efficient (e.g., in number of hops), but

also have to be composed by nodes with high reputation values. To quantify the

trustworthiness of a path, we define the following path reputation metric.

Definition 1. Path reputation value: The reputation of a path PSD =

{S, n1, n2, . . . , nk, D} is defined as:

rS→D = k+1

√√√√ k∏
i=1

(riS · riD ·
k∏

j=1,j 6=i

rji ). (4.11)

The path reputation value is inline with the in-series nature of the routing op-

eration. Specifically, a path PSD can be seen as an in-series system of independent

components. The failure of one component (a node dropping packets) results in

the failure of the entire system (path). Therefore, the system (path) is deemed as

reliable (trustworthy) as the weakest component (node). The reliability of in-series

systems with independent components is typically defined as the product of the

reliability values of the individual components. Similarly, in (4.11), the trustworthi-

ness of a path is defined as the product of the reputation values of the nodes that

participate in that path. A subtlety in our definition is the fact that there is no

universal reputation value for each node, but the reputation values are individual

perceptions of trustworthiness of one node in regards to another. Hence, to com-

pute the path reputation value, we multiply the reputation values rji of intermediate

nodes as perceived by the nodes participating in PSD. Here, we emphasize that none
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Figure 4.2: An example of computing the path reputation of our DSR-based route
discovery process.

of the nodes in PSD is providing an evaluation of itself. The calculation of rS→D on

a sample path is shown in Figure 4.2.

Note that according to Definition 1, a malicious node with low reputation value

cannot manipulate the reputation of a path that includes it to appear attractive.

That is, it cannot increase the path reputation to a value higher to its own rep-

utation. Hence, it cannot influence the route discovery process to attract routes

and then drop packets. A malicious node can, however, lower the reputation value

of a path by lying about the reputation values of other nodes. We consider this

particular strategy to be of no use to the adversary, since its main goal is to drop

packets routed through it. Decreasing the reputation of a path that includes the

malicious node can only lead to the exclusion of that node from active paths.

To discover trustworthy paths, we adapt the discovery mechanisms of the two

dominant on-demand routing protocols, DSR [34] and AODV [50], to take into

account path reputation values.
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4.3.1 DSR-based Route Discovery

In DSR, when a source S has packets for a destination D, it checks whether a route

exists in its cache. If a route does not exist, S broadcasts a Route Request (RREQ)

message. This message contains the source ID, destination ID, and the time-to-live

(TTL) for this request2. Any intermediate node that receives the RREQ, appends

its identity to the RREQ message and rebroadcasts the RREQ while decreasing TTL

field by one. If a receiving node is the destination (or has a route to the destination),

D responds to S with a route reply (RREP) message containing the entire PSD. The

RREP follows the reverse path from the one indicated in the received RREQ. Note

that because of the flooding nature of the route discovery process, the destination

can receive RREQs indicating multiple paths from the source. It can then choose

the path that satisfies the selection metric of interest, which is typically the smallest

number of hops (indicated by the smallest number of intermediate nodes in the

RREQ).

We modify the DSR discovery phase, in order to account for the reputation values

of the intermediate nodes. RREQ and RREP messages are extended to include

information used for the computation of the reputation of the paths discovered by

DSR. We call this additional field that holds the path reputation as the accumulated

path reputation (APR) field. This field is initialized by the source to a random

value r0 ∈ (0, 1]. Intermediate nodes receiving a RREQ, multiply the APR field

with the reputations of all the nodes indicated in the RREQ (nodes upstream to

the destination) and rebroadcast the message. Similarly, nodes receiving a RREP,

multiply the APR field with all reputation values of all nodes located downstream

towards the destination. Formally, the route discovery is executed as follows (for

simplicity, we denote nodes along a path PSD in ascending order).

Step 1: Source S initializes APR to a random value r0 ∈ (0, 1]. It encrypts APR

2To avoid flooding the entire network with RREQs, DSR adopts the ring expansion technique

[34]. Initially, the destination is searched among the immediate neighbors by setting TTL=1. If

D is not found, the search is expanded to two hops by setting the TTL=2. This expansion is

continued until the destination is found.
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with D’s public key, and computes a signature on the APR field. The broad-

casted RREQ is as follows (where || represents concatenation.),

RREQ: S ||D || TTL || EpkD(r0) || EpkD(r0) || sigskS(r0)

Step 2: An intermediate node ni receiving a RREQ, multiplies all of its own rep-

utation values rji , j = 1 . . . , (i − 1), for the nodes nj included in the path

so far (upstream nodes). It encrypts
∏i−1

j=1 r
j
i with D’s public key (pkD) and

multiplies the result with the APR field. It then adds its ID on the RREQ, de-

creases the TTL field, and rebroadcasts the RREQ. The RREQ broadcasted

by intermediate node ni is as follows, (Here, APRi denotes the APR value

computed by ni.)

RREQ: S ||D || TTL || n1, . . . , ni || EpkD(APRi−1)EpkD(
∏i−1

j=1 r
j
i )

|| EpkD(r0) || sigskS(r0)

Step 3: For every RREQ indicating a unique path to the source, the destination

decrypts the APR field using its private key skD. It also recovers the initial

random value r0 and verifies the signature sigskS(r0) using S’s public key. D

rejects the route if APRk ≥ r0. (nk is the last node before D.) Otherwise, it

obtains the actual APR value by dividing APR with r0, multiplies the result

with rjD, j = 1, . . . , k, and computes the [(k + 1)/2]th root of the APR. The

latter serves as an estimate of rS→D.

Step 4: For all paths longer than the shortest path by a factor λ ≥ 1 (route se-

lection factor), with an rS→D estimate greater than the threshold value γ1,

the destination issues a RREP message. The RREP contains the APR value

multiplies by r0 and encrypted with pkS. It also contains a second copy of

EpkS(APRD) and a signature sigskD(APRD). The broadcasted RREP is as

follows,

RREP: S ||D || TTL || n1, . . . , nk || EpkS(APRD) || EpkS(r0) || sigskD(r0)

Step 5: An intermediate node ni receiving a RREP, multiplies all of its own repu-
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Figure 4.3: Potential attack on the APR field. Node n3 resets the APR field to 1
by replacing it with EpkD(1) in the forward direction.

tation values rji , j = i + 1 . . . k, for the nodes included in the reverse path so

far. It encrypts
∏k

j=i+1 r
j
i with S’s public key (pkS) and multiplies the result

with the APR field. The broadcasted RREP is as follows,

RREP: S ||D || TTL || n1, . . . , nk || EpkS(APRi+1)EpkS(
∏k

j=i+1 r
j
i )

|| EpkS(APRD) || sigskD(APRD)

Step 6: For any received RREP, the source decrypts the APR field using its private

key skS and recovers APR1. (Node n1 is the first node in the path to D.) It

also decrypts the APR value computed by D and verifies D’s signature. Upon

successful verification, S accepts a route only if APR1 ≤ APRD. It then

multiplies APR1 with all reputation values rjS, j = 1, . . . , k, and divides it by

r0. At this point, the path reputation is obtained by taking the (k+ 1)th root.

Finally, the source selects the route with the highest path reputation.

We now explain all steps in detail. In Step 1, S encrypts the APR field using

D’s public key. Therefore, only D can decrypt the APR field using its private

key skD. Moreover, S encrypts the initial APR value r0 and signs it. This value

is used by the destination to recover the actual APR value. It is also used to

detect a possible manipulation of the APR field by any intermediate nodes. Such

manipulation is possible because APR field can be changed by any intermediate

node without violating any cryptographic conditioin. Hence, a malicious node may

attempt to increase its value in order to make a route appear more attractive. For
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instance, consider the path, shown in Figure 4.3, consisting of four intermediate

nodes. Assume that n3 is malicious. Node n3 may reset the APR field to 1 by

replacing it with EpkD(1) in the forward (backward) direction. Such a replacement

will eliminate the opinions of all upstream (downstream) nodes in regards to PSD. To

mitigate this attack without employing expensive signature aggregation techniques

[7], we initialize APR to a random value r0 ∈ (0, 1]. Without knowledge of r0,

the malicious node n3 does not know how to properly replace the APR field. The

destination will reject the route if it receives an APR value that is higher than

r0. Random guessing of r0 can either lead to path rejection or a route with small

reputation.

In Step 2, intermediate nodes first compute the reputation of the path upstream

to the source. Then, they encrypt this value with D’s public key and multiply

the result with the old APR value. Here, we employ an encryption method that

implements multiplicative homomorphism such as RSA [56] or Elgamal encryption

[21]. An encryption method is said to be multiplicatively homomorphic if for two

plaintext values a, b, it holds that,

Epki(a) · Epki(b) = Epki(ab). (4.12)

This property is exploited so that the APR value can be computed by performing

multiplication on the ciphertext domain rather than the plaintext domain. Hence,

intermediate nodes receiving RREQ or RREP messages do not get to know the

current path reputation value, and the individual evaluations of intermediate nodes

with respect to their peers remain secret.

Note that for the RREQ, we use D’s public key, allowing the destination to

read the current APR values of all paths from S to D. This is preferred so that the

destination can reject all paths with a current path reputation estimate less than a

threshold γ1 (Step 4). Because of the multiplication operation applied on the APR

field, these paths cannot have a final path reputation value rS→D ≥ γ1 (recall that

all reputation values are within the range (0,1]). Hence, such paths are rejected by

D, in order to reduce the communication overhead of route discovery. Here, γ1 can
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be determined as the value of γ1 = (γ0)
H (H is the number of the shortest hops from

source to destination). In addition, the destination rejects all paths that are longer

than the shortest path by a factor of λ. We call this factor as the route selection

factor because it determines the space of paths over which the most trustworthy

path is selected. Here, λ controls the tradeoff between path reputation and route

efficiency.

In Step 5, RREP travels on multiple reverse paths, which are determined by λ

and γ1. Intermediate nodes receiving a RREP, multiply the APR value with the

reputations of all the nodes located downstream towards the destination, as indi-

cated by the RREP message. Similarly to the RREQ operation, this multiplication

occurs on the ciphertext domain using S’s public key, thus hiding the APR value

from the intermediate nodes.

On the final step, S decrypts the APR value using its own private key. It also

decrypts APRD and verifies D’s signature. It then checks that APR1 ≤ APRD

to verify that intermediate nodes have not manipulated the APR field. Finally,

it multiplies the APR value with its own reputation values, divides with r0 and

computes the (k+ 1)th root. It is straightforward to verify that the final APR value

is the path reputation value, as defined in Definition 1.

The source then selects the path with the highest path reputation, as the single

routing path to D. We emphasize that several alternative selection strategies are

possible. For instance, instead of selecting the path with the highest path reputation

value, the source can select the shortest path with a reputation value higher than

the threshold γ1. Using this strategy, shorter routes are preferred as long as they

satisfy a minimum reputation requirement. Moreover, our route discovery process

enables the caching of backup paths in case the primary path fails.

An example of the route discovery process outlined in Steps 1-6 is shown in Figure

4.4. After the RREQs have been forwarded to the destination, D considers 4 paths

P1−P4. Path P4 is rejected because |P4| > λ|P2|, where P2 is the shortest discovered

path. Moreover, path P2 is also rejected because rP2 < γ1 (where γ1 = 0.6). D replies

with a RREP over P1 and P3. At the source, P1 is selected because rP1 > rP3 . Note
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Figure 4.4: Example of DSR-based route discovery, for λ = 1.2 and γ1 = 0.6. The
destination rejects P2 and P4 because rP2 < γ1 and |P4| > λ|P2|. Path P1 is preferred
because rP1 > rP3 .

that although in our example, rP1 > rP3 both at the source and the destination, it

is possible that the direction of the inequality is reversed when the RREP reaches

the source.

4.3.2 AODV-based Route Discovery

In AODV [50], when a source S has data for a destination D, it first checks if a

route exists in its cache (similar to DSR). If a route does not exist, S broadcasts a

RREQ for D. A receiving node will rebroadcast the RREQ if it is not D, it does

not have a cached route to D, it is the first time that this RREQ is received, and

the TTL field is not equal to zero. It will also record the identity of the one-hop

neighbor that broadcasted the RREQ. Once the RREQ reaches the destination, D

replies with a RREP message. This message is unicasted to the one-hop neighbor

of D that transmitted the RREQ first. In the same manner, the RREP will be

unicasted back to the source, using the recorded one-hop neighbors that originated

the RREQ.

In the AODV route discovery process, the path from the source to the destination

does not become fully known to the path nodes, including the source and the desti-

nation. Because the audit module requires knowledge of PSD, the path can become

known after it it established, as an auxiliary service. However, without knowledge
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of PSD during the path discovery, the intermediate nodes for which a reputation

value must be provided cannot be identified. Therefore, the path reputation metric

of Definition 1 cannot be computed.

To overcome this shortcoming, we employ an alternate path reputation definition

specific to AODV. This definition is stated as follows.

Definition 2. Path reputation value: The reputation of a path PSD =

{S, n1, n2, . . . , nk, D} is defined as:

rS→D =

√√√√r1S · rkD · r
k−1
k · r21 ·

k−1∏
i=2

(ri+1
i · ri−1i ). (4.13)

The path reputation metric in Definition 2 is tailored to the amount of informa-

tion available during the route discovery process of AODV. Essentially, because only

the previous (next) hop becomes known during the reception of a RREQ (RREP),

the reputation of the upstream (downstream) node is augmented at each hop. Every

node provides the reputation of the previous hop during the RREQ stage and the

forwarding hop during the RREP stage. The AODV-based route discovery process

of AMD includes the following steps.

Step 1: Source S initializes APR to a random value ro ∈ (0, 1]. It encrypts APR

with D’s public key, and computes a signature on the APR field. The broad-

casted RREQ is as follows,

RREQ: S ||D || TTL || EpkD(r0) || EpkD(r0) || sigskS(r0)

Step 2: Any intermediate node ni receiving a RREQ from a node ni−1, with i−1 6=
S, encrypts ri−1i with pkD and multipies the result with the APR field. It then

rebroadcasts the RREQ. The RREQ broadcasted by intermediate node ni is

as follows,

RREQ: S ||D || TTL || EpkD(APRi−1)EpkD(ri−1i ) || EpkD(r0) || sigskS(r0)

Step 3: When the destination receives a RREQ, it decrypts the APR field and

EpkD(r0). It then verifies S’s signature on r0. If the verification is successful,



49

it verifies that APR ≤ r0, and rejects the route otherwise. Finally, it divides

APR with r0, and multiplies with rkD. If the final value is smaller than γ1, the

route is rejected.

Step 4: For every valid route, D constructs a RREQ that includes the APR value

multiplied with r0 and encrypted with pkS, and a unique identifier. If further

includes a second encrypted copy of the APR value, and a signature on APR.

The RREP format is as follows,

RREP: S ||D || TTL || EpkS(APRD) || path id || EpkS(APRD) || sigskD(APRD)

Step 5: An intermediate node receiving a RREP from a downstream node ni+1

(ni+1 6= D), encrypts ri+1
i with pkS and multiplies the result with the APR

value. It also records the downstream node for the particular RREP path id.

The RREP format is as follows,

RREP: S ||D || TTL || EpkS(APRi+1)EpkS(ri+1
i ) || path id

|| EpkS(APRD) || sigskD(APRD)

Step 6: When a source receives a RREP, it decrypts EpkS(APR1), EpkS(APRD)

and verifies the signature on APRD. Upon successful verification, it verifies

that APR1 ≤ APRD. For an accepted route, it multiplies APR1 with r1S,

divides with r0, and computes the square root of the APR to obtain the path

reputation value. If rS→D < γ1, the route is rejected.

Step 7: The source selects the route with the highest rS→D. The first packet from

S to D contains the path id, so that intermediate nodes can identify the

downstream node.

The proposed AODV-based route discovery mechanism does not compute the

path with the highest path reputation value. This is because reputations are en-

crypted and hence, intermediate path reputations cannot be used by intermediate

nodes for selecting optimal reputation paths. Such path selection is only allowed

at the destination and the source. If reputation values are transmitted in the clear,
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the selection of the most trustworthy path using either Definition 1 or Definition 2

can be solved by any distributed shortest path algorithm [32].

Figure 4.5: AODV-based route discovery. Three candidate paths are evaluated at
D. Path P2 containing the misbehaving node is rejected due to its low reputation
value.

An example of the route discovery process outlined in Steps 1-7 is shown in

Figure 4.5. The destination receives RREQ from three candidate paths. Path P2 is

rejected due to its low reputation value. The destination initiates two RREPs with

path ids 1 and 2, respectively. Both RREPs are forwarded back to the source via P1

and P3. The source selects path P3 due to its higher reputation value. The initial

packets forwarded from S to D contain the RREQ path id number 2, so that n1 is

informed to forward packets to n3 rather than n2. Subsequent packets do not need

to carry this information since the path selection is only made once.

4.3.3 Complexity Analysis of AMD Route Discovery

We notice that in the forward stage, AMD is similar to DSR or AODV. The only

difference is that both DSR and AODV respond to the first arrived RREQ, which

typically corresponds to the shortest path. However, AMD might responds to multi-

ple RREQs, and lets source choose the final path. Now, consider the communication

complexity of DSR/AODV and AMD. The worst scenario of DSR/AODV is that all

of the nodes in the network are included in the path, and hence, all the nodes are

involved in the forward and backward stages. Therefore, the communication com-

plexity of DSR/AODV is O(2N) (N is the number of nodes in the network) [57].
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Actually, the worst scenario of AMD is the same as DSR/AODV, which is also that

all the nodes are included in the path. Therefore, the communication complexity is

still O(2N). From the communication complexity’s perspective, our AMD does not

increase the complexity compared to normal DSR and AODV.

4.4 The Audit Module

The audit module is responsible for detecting misbehaving nodes along entire paths

from a source to a destination. It operates on an end-to-end basis, thus allowing

the concurrent behavior evaluation of all nodes along a particular path. Instead

of monitoring neighboring nodes on a per-packet basis, behavioral evaluations are

performed per flow. To accelerate the identification of misbehaving nodes, the audit

module biases its search process according to input received from the reputation

module. Once the audit module converges to the misbehaving node(s), it provides

input to the reputation module for updating the reputation values. In this section,

we describe the audit process in several stages: audit phase, search phase, and

identification phase. At last, we analyze the case where multiple misbehaving nodes

are included in the same path.

4.4.1 Audit Phase

We now describe how the source can perform audits in a resource-efficient man-

ner. The audit mechanism is adopted from our REAct scheme [38] and is based on

the compact representation of a membership set via Bloom filters [6]. The audit

module is triggered if a performance degradation is experienced on path PSD. Des-

tination D notifies S of a performance drop by sending an explicit alarm message.

Alternatively, the source can initiate the audit phase when performance information

becomes available from the transport layer (e.g., based on TCP acknowledgements)

Upon receipt of an alarm, S initiates a process of audits to identify the misbehav-

ing node. The goal of auditing a node ni ∈ PSD is to force ni to commit to the

set of packets Xi that it received and forwarded to the next hop. Contradicting
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commitments are used to identify misbehaving links and eventually misbehaving

nodes. To respond to an audit, the node ni records the packets forwarded for a

period of time, and reports them to the source. Based on this report, the source

compares the packets in Xi with the packets in XS originally sent to the destination.

Buffering the packets themselves requires a large amount of storage and significant

overhead for transmission back to the source. On the other hand, Bloom filters pro-

vide a storage-efficient way of performing membership testing [6]. The audit process

occurs in three steps: sending an audit request, constructing the audit reply, and

processing the audit reply. We now describe these steps in detail [37].

Sending an Audit Request

The source audits a node ni according to the algorithms described in Section 4.4.2.

The source selects the audit duration ad, measured in number of packets, and the

initial packet sequence number as from which the audit will begin. The value of

ad is a parameter that must be sufficiently large to differentiate misbehavior from

normal packet loss. The audit request is routed to ni via PSD. Values as and ad are

randomized thereby preventing any misbehaving nodes from conjecturing the start

and duration of audits, unless they are audited by themselves. Note that an audit

request may fail to reach the audited node ni since a misbehaving node along PSni

may drop it, or ni is the misbehaving node and chooses not to respond. In this case,

the source tries a threshold number of times to audit ni. Failure to obtain a reply

is interpreted as ”Node ni did not forward packets in XS to the next hop.” This is

true since either ni is the misbehaving node or a misbehaving node is upstream of

ni.

Constructing an Audit Reply

When a node ni is audited, it constructs a Bloom filter of the set of packets it receives

and forwards, from as to as +ad, denoted by Xi = {xas , xas+1, . . . , xas+ad}. By using

a Bloom filter, packets in Xi can be compactly represented in an m-bit vector vi
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with m � |Xi| [6]. After ad packets have been added to vi, node ni encrypts vi

with pkS, signs it with skn1 , and sends it to S via the reverse path PniS. The signed

Bloom filter binds the audited node to the set of packets Xi that it claims to have

forwarded to the next hop, in a publicly verifiable manner. Based on ni’s signature,

any node can verify the authenticity and integrity of vi. To assess the behavior of

audited nodes, the source constructs its own Bloom filter vS in the same manner as

ni. When S receives ni’s Bloom filter, it compares it against vS and compute what

fraction of packets in XS was forwarded by ni.

Processing the Audit Reply

When S receives vi, it verifies its authenticity and discards vi if the signature check

fails. Otherwise, given the vector length m, the cardinalities of Xi, XS, filters vi, vS,

and the number z of hash functions used to generate the Bloom filters, S computes

the metric [8], and obtains the reputation value.

In Section 4.2, we talked about how to compute δ(t), which denotes a weighted

fraction of packets which originated from ni and forwarded by nj. In Formula 4.2,

Y1, Y2, . . . , YK denotes the number of packets forwarded by nj. We can use the

Bloom filters vj to determine Y1, Y2, . . . , YK . Since there are K types of packets,

S maintains K Bloom filters. The intersection between vj and each of the Bloom

filters from S will be Y1, Y2, . . . , YK .

4.4.2 Search Phase

We now describe the audit selection process for identifying the misbehaving node.

We first define the notion of a suspicious set V as the set of nodes ni ∈ PSD which

have not been shown to be honest. Initially, all nodes ni ∈ PSD are placed in V .

Let A denote a one-dimensional array of length |PSD| with A[i] = δi, 1 ≤ i ≤ |PSD|.
Array A is sorted in descending order. This is a valid assumption since for any

node upstream of the misbehaving node, δi ≥ γ0; and for any node downstream

of the misbehaving node δi < γ0. By converging on the transition A[i] ≥ γ0 and
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A[i + 1] < γ0, the misbehaving link can be identified. This convergence can be

achieved by performing binary search on A, requiring a maximum of log2 |PSD| steps.

Let p = |PSD| and Vn be the suspicious set at iteration n, with V0 = {n1, . . . , np}.
The source selects ni ∈ V0 such that i = d |V0|

2
e. If ni returns δi ≥ γ0, then V1 =

{ni, . . . , np}; else V1 = {n1, . . . , ni}. The process is repeated until |V| = 2. Once

|V| = 2, the search has converged on the misbehaving link with termination time

log2 |PSD|.
Since the reputation of each node is available from the reputation module, we can

exploit this information to achieve faster convergence to the misbehaving node. The

assumption here is that nodes with low reputation are more likely to be malicious.

Therefore, we can save time and communication overhead by only auditing those

nodes that are more likely to be malicious.

Instead of selecting ni ∈ V at random, the source identifies ni ∈ V such that,

rni
S = min

V
riS (4.14)

It then audits node ni+1. If the audit of node ni+1 indicates that the misbehaving

node is upstream (δi+1 < γ0), the source reduces V = {n1, . . . , ni+1} and immediately

audits ni−1. If ni−1 indicates that the misbehaving node is downstream (δi−1 ≥
γ0), the source reduces V = {ni−1, n + i, ni+1}and audits ni. This step concludes

in the identification of the misbehaving link. Else, if ni−1 indicates an upstream

misbehaving node, the source reduces V = {n1, . . . , ni−1} and repeats the audit

process by selecting the node in V with the lowest reputation. The reputation-

based binary search algorithm is shown in Algorithm 1.

4.4.3 Identification Phase

Once the search has converged on the misbehaving link, the two suspicious nodes

ni, ni+1 are excluded in turn from the routing path to the designation D. The node

preceding the first suspicious node will split the traffic between ni, ni+1 in turn.

In Figure 4.6, S uses node n2 to exclude in turn suspicious node n3 and n4. The

source alerts D that two suspicious nodes are monitored via path exclusion. The
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Algorithm 1 Reputation-based Binary Search Audit Algorithm

1: Initialize: vl ← n1, vr ← n|PSD|,Vn = {vl, . . . , vr}
2: while |V| > 2 do

3: ni ← arg (minV(riS))

4: audit(ni+1)

5: if δi+1 ≥ γ0 then

6: vl ← ni+1

7: else

8: audit(ni−1)

9: if δi−1 < γ0 then

10: vr ← ni−1

11: end if

12: end if

13: end while

14: return V

destination creates two Bloom filters, vDi
, vDi+1

corresponding to the packets routed

through suspicious nodes ni, ni+1, and send them to S. The source compares vi,

vi+1 with its own filters vSi
, vSi+1

, and identifies the misbehaving node.

4.4.4 Multiple Misbehaving Nodes

We now examine the case of multiple independently misbehaving nodes. There

exists two strategies for the nodes: (a) continuous misbehavior, and (b) randomly

oscillation between honesty and misbehavior. In either case, we show S can identify,

isolate, and locate the misbehaving nodes. The first step is to identify that more

than one misbehaving node exists in PSD, which is achieved as follows.

Case 1: Continuous Misbehavior

Assume ni, nj ∈ PSD are independently misbehaving and ni < nj, i.e., ni is upstream

of nj. If ni is misbehaving, then regardless of nj’s strategy, for all downstream nodes
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Figure 4.6: The search converges on link n3 − n4. S makes a slight alteration to
PSD, isolating n3 and n4, to determine that n4 is the misbehaving node.

nk, δk ≥ γ0 including nj. Executing the search process of REAct will terminate with

|V| = 2, and S will make the path alterations to exclude in turn the two suspicious

nodes. Note that the suspicious set V = {ni, ni+1}, where one of ni, ni+1 is the

misbehaving node. Let that node be ni. Since nj is downstream from ni, when S

excludes ni from the path, D will still report that both paths misbehave since both

paths contain nj. The only placement such that both paths do not contains nj is for

V = {ni, nj}, in which case excluding in turn will cause misbehavior in each path.

Thus, S identifies that multiple misbehaving nodes exist.

Case 2: Changing Strategies

In the case where multiple misbehaving nodes independently change their strategy

from misbehaving to honesty, it is possible for these nodes to avoid detection. As

an example, consider Figure 4.7(a) and assume n1, n5 are malicious. Node n5 is

misbehaving while n1 faithfully forwards all packets. If the algorithm selects node

n3 for audit, the suspicious set will reduce to V = {n3, . . . , n5}. In Figure 4.7(b), the

behavior pattern changes while searching with n1 misbehaving and n5 being honest.

Thus, the search converges on V = {n3, n4}, since any node downstream of n3 has

δi < γ0. The problem arises because n3 cannot change its response.

However, when excluding nodes in V in turn, both alternating paths contain mis-

behaving n1. This results in both suspicious nodes misbehaving, indicating to S that

PSD contains multiple misbehaving nodes. If n1, n5 happen to change their strategy,
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Figure 4.7: (a) n5 misbehave while n3 is audited. δ3 ≥ γ0. (b) Misbehavior strategies
change (n1 misbehaves, n5 is honest). n4 is audited and returns δ4 < γ0. Search
converged to |V| ≤ 2.

Figure 4.8: Path is partitioned into two suspicious sets; V1
0 = {n1, n2, n3},V2

0 =
{n4, n5}.

both nodes appear honest. Hence, S always detects the existence of multiple mis-

behaving nodes. The randomization of the audit start and duration, in addition to

the random search, prevents a misbehaving node from devising a strategy to frame

honest nodes.

Isolation and Identification of Misbehavior

Once the source determines the existence of multiple misbehaving nodes, path PSD

is partitioned into two parts to isolate the misbehaving nodes from each other. The

partition occurs between the two nodes in the suspicious set V = {ni, ni+1}, i.e.,

PSD is partitioned to PSni
, Pni+1D. In Figure 4.8, S partitions PSD → PSn2 , Pn3D.

With PSD partitioned to PSni
, Pni+1D, S executes REAct on each partition to

locate the misbehaving node(s). In the single misbehaving node case, S uses alert

messages from D to verify misbehavior in PSD before accepting an audit response.

Once PSD is partitioned, S can only accept an audit response from nj ∈ PSni
if

misbehavior is occurring in PSni
. The destination is unable to provide this, as D

can only determine if misbehavior is in PSD; not which partition.

Therefore, S simultaneously audits two nodes in each partition. In PSni
, S audits
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Figure 4.9: (a) Nodes n1, n4 collude, with n4 dropping all packets. Audited node n2

claims misbehavior is downstream. (b) Nodes n1, n4 alter their behaviors, with n1

dropping all packets. Audited node n3 claims misbehavior is upstream. (c) Source
simultaneously audits n2, n3 to verify if misbehaving link exists.

a randomly selected nj ∈ PSni
for the search, and node ni. Auditing ni determines

if misbehavior is occurring in PSni
by checking if Xi: δi ≥ γ0. Thus node ni acts as

a pseudo-destination. If ni = nM , it has only two strategies, (a) respond honestly

with XM : δM ≥ γ0, thus facilitating REAct or (b) lie and return XM : δi < γ0, in

which case node nM+1 would return XM+1: δM+1 ≥ γ0, thus identifying the link

nM − nM+1 has misbehaving.

Likewise on Pni+1D, S audits two nodes; a randomly selected nk ∈ Pni+1
for the

search, and node ni+1. The audit response of ni+1 acts as a verification of how

many packets from XS have reached the partition to detect misbehavior. Node

ni+1 therefore acts as a pseudo-source for Pni+1D. With these steps, REAct can be

recursively executed to find multiple independently misbehaving nodes on PSD.

4.4.5 Colluding Adversaries

If two or more nodes collude, the source may converge on a link in which both nodes

are behaving, as shown in the following example. In Figure 4.9(a), M = {n1, n4}
with nodes n1, n4 colluding. Initially, n4 drops all packets, while n1 behaves. Let

node n2 be audited and report no misbehavior, thus V = {n2, n3, n4}. Assume now

that nodes n1, n4 switch their behavior with node n1 dropping packets while n4 is

behaving, as shown in Figure 4.9(b). If node n3 is audited, it will report misbehavior

upstream, reducing V to {n2, n3} and thus removing n4 from V . Hence, link (n2, n3)
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is incorrectly identified as misbehaving.

The problem can be solved through the repetitive questioning of the result,

thereby exhausting the responder’s lies. In our case, a simultaneous audit on nodes

ni, ni+1 of an identified link V = {ni, ni+1} is sufficient to identify a misbehaving

link or the occurrence of a lie. If δi ≥ γ0 and δi+1 < γ0, a misbehaving link is

identified. Else, the source concludes that a lie occurred. Returning to our previous

example, in Figure 4.9(c), n2 and n3 are simultaneously audited. Since both nodes

are honest, they return identical audit replies and no misbehaving link is identified.

Therefore, S can identify that a lie occurred.

When the source identifies a lie occurred, it can also reach to the following

conclusion: either (a) nM ∈ V but lied during the simultaneous audit, or (b) |M | ≥ 2

with at least one misbehaving node upstream of ni+1 and one downstream of ni. Note

that if |M | = 1 and the misbehaving node stops misbehaving (due to the fact that

it is being audited) the destination alerts the source that misbehavior has stopped

in PSD. In such a case, the source will take two steps. First, any outstanding audits

will be discarded. Second, the search will be suspended at the current state until

misbehavior re-appears on PSD. When misbehavior is resumed, the source continues

the search from where it left off the last time misbehavior occurred.

4.4.6 Mobility

We now relax our assumption that PSD does not change during the identification

process. Let a node ni be removed from PSD. If ni /∈ V , then its removal has no

effect on the search. The source identifies misbehaving links from the nodes in V .

Let ni ∈ V . There are two cases, either ni is a behaving node, or ni is misbehaving.

If ni is behaving, then removing it is analogous to reducing V to a smaller set that

still contains the misbehaving node. If ni is misbehaving, then the performance in

PSD is restored or one less misbehaving node is present.

Consider now adding a new node ni to PSD. If ni is added between nodes in V ,

then regardless of ni’s behavior, this is equivalent to ni being in V , in the first place

and not yet been audited. Let ni be added in PSD outside V . If ni is an honest
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node, there is no effect on the audit process. If ni is a misbehaving node, then this

is equivalent to the situation in which |M | ≥ 2 and one of the nM has been removed

from V . However, we have shown that our auditing strategies can address the case

of multiple misbehaving nodes. Once this node is removed, the source will continue

to identify the newly added misbehaving node.
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CHAPTER 5

Performance Evaluation

In this chapter, we evaluate the performance of the AMD system in detecting and iso-

lating misbehaving nodes. We consider the cases where: (a) the misbehaving nodes

continuously drop packets, and (b) the misbehaving nodes alternate between periods

of behavior and misbehavior by selectively dropping packets. We further evaluate

the resource overhead associated with the various processes of AMD, namely the

route discovery process and the audit process. Finally, we compare our method with

representative schemes from each class of the misbehavior detection algorithms.

5.1 Simulation Setup

We randomly deployed 100 nodes within an area of 100m x 100m. A fraction of

these nodes was randomly selected to misbehave. The misbehaving nodes indepen-

dently implemented a packet dropping strategy, either continuous or selective. The

reputation of each node is initialized to c = 0.5.

We randomly selected source/destination pairs from the set of honest nodes. For

each pair, we ran the route discovery module to construct a trustworthy path. In

each session, the source routed 1,000 packets to the destination via the established

path. If packets were dropped, the audit module was launched in order to identify

the misbehaving nodes. Each experiment was repeated for 50 random network

topologies. A summary of the basic simulation parameters is shown in Table 5.1.

5.2 Performance Evaluation Metrics

In our experiments, we measured the following performance evaluation metrics.
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Table 5.1: Simulation Parameters
Number of nodes 100

Number of source/destination pairs 1,000

Size of area 100m x 100m

Simulation epochs 10,000

Average path length 5

Packets transferred per session 1,000

Threshold γ0 0.6

Threshold γ1 0.6

-Average reputation value ri(t): The average reputation value ri(t) of a node

ni at time epoch t is defined as the average of the individual reputations rij(t) of all

other nodes in the network,

ri(t) =

∑N
j=1,j 6=i r

i
j(t)

N − 1
. (5.1)

-Percentage of dropped packets D: The percentage of dropped packets,

denoted by Fr is computed over all source/destinaton pairs every 50 epochs. It is

defined as,

Fr =
# packets dropped

# packets sent by sources
× 100%. (5.2)

-Average route expansion factor E: The average route expansion factor E

is defined as the length of the path PSD discovered by AMD, over the length of

the shortest path PSD, averaged over all paths discovered during the course of the

simulation.

-Normalized route discovery overhead: The normalized route discovery

overhead is measured as the communication overhead of AMD for discovering routes,

normalized over the communication overhead of AODV and considered over all paths

discovered during the simulation.

-Audit communication overhead: The audit communication overhead is de-

fined as the number of messages that need to be transmitted/received in order to
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Figure 5.1: (a) The average reputation value of behaving and misbehaving nodes for
different α, β, as a function of the simulation epochs. (b) The average reputation
value of nodes experiencing 30% packet loss due to poor channel conditions.

identify the misbehaving node(s) on a given path. The transmission communication

overhead is considered to be double the reception overhead.

5.3 Evaluation of the Evolution of Reputation Values

In the first set of experiments, we evaluated the evolution of the average reputation

value as a function of time and for different parameters α, β, when 20% of the nodes

are misbehaving and the misbehaving nodes are continuous droppers. Parameter α

determines the rate of decrease of the reputation value of a misbehaving node, while

parameter β determines the rate of increase of the reputation value of an honest

node.

Figure 5.1(a) shows the average reputation value of honest and misbehaving

nodes for different α, β, as a function of the simulation epochs. We observe that

the reputation value of malicious nodes rapidly decreases with the progress of time,

even for large values of α. On the other hand, the reputation value of honest nodes

increases with the progress of time, and approaches the maximum value of one.

Figure 5.1(b) shows the average reputation value of nodes experiencing 30%

packet loss due to poor channel conditions for different threshold γ0. We notice that
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Figure 5.2: (a) The average reputation value of misbehaving nodes when such nodes
drop a different percentage of their incoming traffic at random. (b) The average
reputation of misbehaving nodes when they drop packets of type P1 with different
weight distribution.

the reputation value increases slowly when γ0 = 0.6. This is expected because the

expectation of the received packets is 70%. Therefore, most of the bad channels are

considered as behaving nodes. However, when γ0 reaches 0.7 or larger, the reputa-

tion value decreases, because the number of lost packets becomes larger than the

threshold. For the sake of the routing function, a node that drops packets due to

poor channel conditions should not be included in the routing paths. Hence, its

reputation should be lowered. In this thesis, we don’t make any attempt to differ-

entiate the patterns of a dropper due to pool channel conditions versus a malicious

dropper.

In Figure 5.2(a), we show the average reputation value of misbehaving nodes,

when such nodes drop a different percentage of their incoming traffic at random.

We observe that the reputation of such nodes approaches zero, though the decrease

is slower for smaller percentages of dropped packets. We further observe that for

a node that drops a fraction of packets close to (1 − γ0), the reputation value can

increase on certain time intervals. However, this value will eventually converge to

zero, because of the multiplicative decrease property.
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Figure 5.3: (a) The percentage of dropped packets as a function of time for perfor-
mance between AMD and DSR under different fractions of misbehaving nodes. (b)
The percentage of dropped packets as a function of time when different fractions of
transit traffic is randomly dropped.

In Figure 5.2(b), we show the average reputation of misbehaving nodes when they

employ a selective dropping strategy. In this experiment, we considered two types of

packets P1 (e.g., control packets), and P2 (e.g., data packets). In the traffic stream,

10% are P1 and 90% are P2. Packets of different types were assigned weights w1

and w2, based on their significance. The misbehaving nodes were assumed to drop

packets of type P1 with 90% of probability, and to drop packets of type P2 with 10%

of probability. From Figure 5.2(b), it is evident that when the weight distribution

is 90% and 10%, dropping packets results in identifying droppers as misbehaving

nodes faster. This is expected since packets of type P1 are assumed to be the more

important on the traffic stream. On the other hand, for a weight distribution of

60% and 40%, the reputation value of droppers exhibits an oscillating behavior with

an downward trend. Note that this reputation value oscillation may be sufficient

to exclude misbehaving nodes from routing paths because their reputation is still

lower compared to the reputation of honest nodes.
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5.4 Evaluation of the Percentage of Dropped Packets

We first measured the percentage of dropped packets when misbehaving nodes con-

tinuously drop packets. We considered networks with different percentages of mis-

behaving nodes. We compared the performance of AMD with the performance of

DSR (route discovery independent of misbehavior). Figure 5.3(a) shows Fr as a

function of time. As expected the percentage of dropped packets for DSR is fairly

constant, since DSR is not designed to avoid nodes with poor reputation. The small

variation observed is related to the random selection of source/destination pairs. On

the other hand, AMD quickly reduces the percentage of dropped packets to almost

zero. This is due to the fact that misbehaving nodes are excluded from the routing

paths as their reputation value decreases. Hence, most routes consist only of honest

nodes.

We further implemented a random dropping behavior in which misbehaving

nodes randomly drop a fraction of the transit traffic. Figure 5.3(b) depicts the

percentage of dropped packets in the entire network as a function of time when

20% of the nodes are misbehaving. We observe that a less aggressive behavior can

only delay the isolation of misbehaving nodes. Eventually the reputation values of

such nodes becomes low enough that they are excluded from routing paths and the

percentage of dropped packets becomes practically zero.

5.5 Evaluation of the AMD Overhead

In this section, we evaluate the overhead of the route discovery and audit modules

of AMD.

5.5.1 Average Route Expansion Factor

We first evaluated the average route expansion factor of AMD, relatively to the

shortest paths discovered by DSR and AODV. Routes computed by AMD are ex-

pected to be longer when misbehaving nodes are located in the shortest path from a

source to a destination, because the path reputation value of those shortest paths is
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Figure 5.4: (a) The average route expansion factor E as a function of the percentage
of misbehaving nodes, for various values of the route selection factor λ. (b) The
average route expansion factor E as a function of the nodes’ communication range.

expected to be low. Figure 5.4(a) shows the average expansion factor as a function

of the percentage of misbehaving nodes, for various values of the route selection

factor λ. The value of λ represents the extend to which AMD expands the search

for the most reputable path, relative to the shortest path. From Figure 5.4(a), we

observe that for λ = 1.2, the average length of paths discovered by AMD are only 4%

longer than the shortest paths even when 45% of the nodes misbehave. This value

increases to only 11% when the search is expanded to paths up to 60% longer than

the shortest path for the same number of misbehaving nodes. This performance

indicates that AMD pays a relatively small penalty for avoiding the misbehaving

nodes. Moreover, we can conclude that even when the search is expanded over a

large number of relatively long paths, shorter paths are still preferred. This can be

explained by the multiplicative nature of the reputation path value that penalizes

longer paths.

In Figure 5.4(b), we show the average expansion factor as a function of the nodes’

communication range. An increase in communication range translates to an increase

on the number of neighboring nodes, thus increasing the number of paths from a

source to a destination. With the increase of the number of available route choices,
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the route expansion factor becomes almost equal to one.

Figure 5.5 shows the average path reputation value of the paths discovered by

AMD as a function of the route selection factor λ and for different number of mis-

behaving nodes. We observe that increase of λ marginally increases the reputation

of the paths discovered by AMD with the largest increase being realized when a

large fraction of nodes is misbehaving. This reinforces the fact that a small value of

λ should be sufficient to discover reputable paths. As we show in the next section,

small λ is desirable in order to reduce the communication overhead associated with

route discovery.

5.5.2 Communication Overhead of the Route Discovery Module

We also measures the communication overhead associated with the route discovery

stage of AMD. We compares the performance of AMD with the overhead of the route

discovery process of DSR and AODV. Figure 5.6 shows the communication overhead

of AMD normalized over the overhead of DSR/AODV as a function of the nodes’

communication range, for various values of the route selection factor λ. We observe
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Figure 5.6: The communication overhead of AMD normalized over the overhead of
DSR/AODV as a function of the nodes’ communication range, for various values of
the route expansion factor.

that the route discovery phase of AMD is as much as 2.5 times more expensive than

that of DSR for large λ. However, as it is indicated by Figures 5.4(a) and 5.5, a

value of λ = 1.2 is sufficient to discover reputable paths (the average length of the

paths discovered by AMD was within 10% of the shortest path).

For λ = 1.2, the normalized communication overhead varies from 1.7 when r = 12

to 1.05 when r = 22, indicating a fairly efficient route discovery of trustworthy paths.

The additional overhead of AMD is due to the multipath nature of the propagation

of RREP messages. RREP messages need to travel on multiple paths so that the

source can pick the one with the highest reputation value. Moreover, RREQ and

RREP messages are longer due to the inclusion of the reputation-related fields.

5.5.3 Communication Overhead of the Audit Module

We compared the performance of AMD with the performance of CONFIDANT

[10] from the class of reputation-based systems and the performance of 2ACK [42]

from the class of acknowledgment-based schemes. Specifically, we evaluated the

communication overhead associated with the identification of compromised nodes

and the incurred delay. In the CONFIDANT scheme, every one-hop neighbor of

a transmitting node was assumed to operate in promiscuous mode, thus overhear-
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ing transmitted messages. The energy for overhearing a message was set to 0.5

times the energy required to transmit [22]. For 2ACK, a fraction p of the messages

transmitted by each node was acknowledged two hops upstream of the receiving

node. We set that fraction to p = {1, 0.5, 0.1} [42]. For all the schemes we mea-

sured the communication overhead in terms of number of messages that need to be

transmitted or overheard to perform neighbor monitoring. Both CONFIDANT and

2ACK are proactive, incurring communication overhead regardless of the existence

of misbehavior. However, AMD incurs overhead only if misbehavior exists, due to

its reactive nature. The audit duration for AMD was set to 200 packets, i.e., each

node had to provide proof for acount = 200 packets every time it was audited.

Impact of percentage of misbehaving nodes

In Figure 5.7(a), we show the communication overhead in number of transmitted

messages, as a function of the percentage of misbehaving nodes. The Y axis is

logarithmic scale. We observe that communication overhead of the AMD scheme

is almost 3 orders of magnitude less than the overhead of the proactive schemes.

The AMD scheme incurs overhead on a per-flow basis while the other schemes
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incurs overhead on a per-packet basis. For CONFIDANT and 2ACK schemes, the

overhead is independent of the percentage of misbehaving nodes. However, for the

AMD scheme, if more nodes are misbehaving, the overhead increases accordingly

because of incurring more audits.

Impact of audit size

The audit size parameter defines the number of packets needed to differentiate nor-

mal dropping rate from misbehavior. In Figure 5.7(b), we show the communication

overhead as a function of audit size, acount. Both proactive schemes incur a linear in-

crease in communication overhead with audit size. The overhead for AMD depends

on the number of audits, not the duration of each audit. Hence, it is independent of

the audit size. The savings in the communication overhead of AMD are due to the

compact representation of the number of packers forwarded by each node in PSD.

5.5.4 Identification Delay

The identification delay defined as the time elapsed from the occurrence of misbe-

havior until the misbehaving nodes are identified. While the AMD scheme provides

significant savings in communication overhead, it requires a longer time to identify

misbehavior, as multiple audits need to be performed. Proactive schemes requires

only a single audit duration to identify misbehavior since all nodes in path PSD are

monitored in parallel. Fortunately, the audits required by the AMD grows loga-

rithmically with path length due to the random binary search algorithm employed,

resulting in fairly small increases in identification delay compared to savings in com-

munication overhead.

In Figure 5.8, we show the identification delay for AMD, CONFIDANT, and

2ACK as a function of path length |PSD|, in units of audits. We observe the log-

arithmic increase of identification delay with path length for the AMD scheme.

CONFIDANT requires a single audit duration to identify misbehavior. 2ACK also

requires a single audit duration when all packets are acknowledged. However, the
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identification delay increases with the audit size.
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CHAPTER 6

Conclusions

In this thesis, we addressed the problem of identifying and isolating misbehaving

nodes that refuse to forward packets in wireless ad hoc network. The impact of such

nodes has been shown to be detrimental to network performance, lowering the net-

work throughput and dramatically increasing the end-to-end delay. To mitigate the

problem of malicious packet dropping, we developed a comprehensive misbehavior

detection and suppression system named AMD. The AMD system integrates three

critical functions: reputation management, route discovery, and identification of

misbehaving nodes based on behavioral audits. All three functions are coordinated

in a distributed manner without the need for centralized control. This is achieved

by the implementation of three modules at every node: the reputation module, the

route discovery module, and the audit module.

We showed that the route discovery module can construct trustworthy paths

that exclude nodes with low reputation values. Moreover, we showed that misbe-

having nodes cannot manipulate reputation metrics to attract transit traffic. In case

a misbehaving node is included in a path (by, for example, increasing its reputation

value via honest behavior), this node is prominently identified by the audit mod-

ule. This module is responsible for locating misbehaving nodes along established

paths. Its function is complementary to the trustworthy route discovery function.

Identification of misbehaving nodes is achieved by requesting the provision of be-

havioral proofs from the nodes participating in a path. These proofs are compactly

represented using Bloom filters which are storage-efficient membership structures.

Our extensive simulation results showed that AMD could recover the network

operation even if a large fraction of nodes were misbehaving. This is due to the

fact that misbehaving nodes are excluded from routing paths by the route discov-

ery module. This significant performance improvement comes at a cost of a small
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increase in the overall path length, but a moderate increase in the communication

cost for establishing trustworthy paths.

Moreover, we showed that our misbehavior identification process significantly

reduced the communication overhead of locating packet droppers compared to other

methods. This improved performance is justified by the savings achieved when the

behavior evaluation is performed on a per-flow basis, instead of on a per-packet basis.

Finally, we showed that the audit module could identify the misbehaving nodes in

a time logarithmic the path length by exploiting recommendations provided by the

reputation module.
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