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ABSTRACT

More than 5 Exabytes of digital content is being created everyday. This content

needs to be stored, indexed, cached, and searched by over 200 millions users on

a daily basis. Moreover, this vast amount of data needs to become ubiquitously

available across a variety of mobile and infrastructure-based platforms. The content

explosion faced in modern times has placed an enormous strain on the existing

Internet infrastructure. The Internet traffic has increased five-fold over the past

five years and is expected to exceed 1,000 Exabytes per year by 2016. Over half of

the Internet traffic is expected to be directed to non-PC devices (primarily mobile

platforms) by the end of 2018. This mobile data explosion is primarily due to the

rapid growth of smartphone devices.

One solution to the traffic explosion problem is to cache content as close as

possible to the users that consume it. This strategy has been realized with the rapid

deployment of content distribution networks (CDNs) over the past few years. CDNs

alleviate the content distribution scalability problem. However, content is still

primarily cached at the fixed infrastructure network. An alternative approach to

temper network traffic is to exploit the extended storage capacity of modern mobile

devices and cache content within a mobile storage cloud. The mobile devices could

gain access to the content, without burdening the fixed infrastructure. However,

storing data at a distributed mobile cloud raises challenging reliability problems.

Device mobility could frequently render the cached content unavailable. To tackle

this problem, reliable storage solutions for the mobile cloud become a necessity.

We study the data reliability problem for a community of devices forming a

mobile cloud storage system. We consider the application of regenerating codes for

maintaining a file within a geographically-limited area. Such codes require lower

bandwidth to regenerate lost data fragments compared to file replication or recon-

struction. We investigate threshold-based repair strategies where data repair is

initiated after a threshold number of data fragments have been lost due to node
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mobility. We show that at a low departure rate regime, a lazy repair strategy in

which repairs are initiated after several nodes have left the system outperforms

eager repair in which repairs are initiated after a single departure. This optimality

is reversed when nodes are highly mobile. We further compare distributed and

centralized repair strategies and derive the optimal repair threshold for minimizing

the average repair cost per unit of time, as a function of underlying code parame-

ters. Finally, we analyze storage reliability when repairs can be incomplete due to

communication bandwidth constraints.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Scope

Digital content is expected to be generated at a staggering rate of 40% in the

next decade [12]. This content needs to be stored, indexed, cached, and searched by

over 200 millions users on a daily basis. Also, this huge volume of data needs to be

accessible across a variety of mobile and infrastructure-based platforms. Enormous

strain has been levied on the infrastructure network because of this surge in Internet

content. The Internet traffic has increased five-fold over the past five years and is

expected to exceed 1,000 Exabytes per year by 2016 [6]. Over half of the Internet

traffic is expected to be directed to non-PC devices (primarily mobile platforms)

by the end of 2018 [6]. This mobile data explosion is primarily due to the rapid

growth of smartphone devices.

One solution to the traffic explosion problem is to cache content as close as

possible to the users that consume it. This strategy has been realized with the rapid

deployment of content distribution networks (CDNs) over the past few years. CDNs

alleviate the contend distribution scalability problem [4]. However, content is still

primarily cached at the fixed infrastructure network. An alternative approach to

temper network traffic is to exploit the extended storage capacity of modern mobile

devices and locally cache content within a mobile storage cloud [17,26,29,31,33,34].

A mobile distributed storage system consists of a community of mobile devices that

are capable of storing data. In such a storage scenario, a file F is stored within a

geographically-limited area A by mobile devices located within A. A user within

A can download F from the community of mobile devices, without accessing the

network infrastructure. This approach has the potential of reducing the bandwidth

required to maintain the stored data, and easy the traffic on the infrastructure
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network.

However, in a mobile storage system, devices move freely across the space.

Mobility can lead to frequent data loss when devices depart from the area of interest

A. For all practical purposes, when a mobile device storing F or any fragment

of F exits A, the stored data is lost. To deal with such losses, redundancy is

introduced in the form of data replication or coding [2, 38]. In replication, copies

of F are stored at multiple devices within the community. Although replication

serves the purpose of upholding the reliability of the system, it is expensive in

terms of storage bandwidth as file copies must be stored at several nodes. To

reduce storage overhead (as compared to replication schemes), more sophisticated

coding schemes can be utilized. In most cases, this is achieved with erasure codes

(see, e.g., [35]), where the file F is encoded into several fragments such that it can

be reconstructed as long as a threshold number of fragments are available within

A. Various redundancy methods impose different storage overheads on the mobile

devices to maintain a desired level of reliability, and erasure codes are known to be

amongst the most storage-efficient methods to reliably maintain data [2, 46].

Despite the application of coding, a stored file F will eventually be lost when a

threshold number of mobile devices (storage nodes) depart from A. To maintain F
over long periods of time, the mobile cloud system must be capable of repairing the

lost data (that can correspond to file or redundancy fragments). A repair scenario

is shown in Figure.1.1. A file F is broken to four fragments. One fragment is

used for redundancy. The four fragments are then disseminated among nodes in

A. When a node departs, a fragment is lost and then repair process is initiated.

During the repair process, the lost data is recovered by downloading fragments

from the storage nodes that remain within A. The amount of data downloaded

for repair is referred to as repair bandwidth. For mobile communities, the repair

bandwidth can be significant due to frequent fragment loss. Excessive file repairs

can lead to rapid energy depletion and spectral inefficiencies. Thus, it is important

to optimize the repair bandwidth of distributed storage systems.
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Figure 1.1: File maintenance through fragment repairs in a mobile cloud storage

system.

The file repair problem for distributed storage systems has been primarily stud-

ied assuming that erasure codes are employed for redundancy [2, 16]. However,

erasure codes are inefficient because the entire file F needs to be reconstructed

to repair any lost fragment. The repair bandwidth can be reduced by employing

regenerating codes, which allow the recovery of a lost fragment by downloading a

smaller amount of data, without requiring the reconstruction of the file [9]. This

process of obtaining only a lost fragment is termed as regeneration. Although

regenerating codes lower the repair bandwidth, the design of an efficient repair

strategy for the mobile cloud involves many parameters such as the redundancy

factor of the code, the device departure rate from A, the communication model for

downloading data fragments, the threshold for starting maintenance operations,

and the available communication bandwidth. In this thesis, we jointly optimize the

coding and file repair strategy for minimizing the cost of file maintenance in mobile

cloud storage systems. Specifically, we make the following contributions.



15

1.2 Main contributions and Thesis Organization

• We focus on threshold-based file maintenance strategies for mobile cloud stor-

age systems. In such strategies, file repair is initiated when a threshold

number of file fragments is lost. We analyze two repair strategies, namely

distributed and centralized repair. In distributed repair, the new storage

nodes directly download data from existing nodes to recover lost fragments.

In centralized repair, a leader node first recovers the file F via reconstruction,

then regenerates and transmits the remaining fragments to restore the system

reliability. The two repair strategies are shown in Figures 1.2 and 1.3 . We

derive the optimal repair threshold that minimizes the maintenance cost. We

define the latter as long-run average repair cost per unit of time. We show

that the optimal repair threshold depends on many system parameters and

thus, provide departure rate based decision rule for choosing optimal repair

strategy.

�

�

��

����������	
������

Figure 1.2: Distributed repair. A node directly downloads fragments from peers to

repair lost fragments.
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Figure 1.3: Centralized repair. A leader node distributes fragments to other nodes,

after it reconstructs the file F .

• Our results show that no one strategy is optimal for all possible system con-

figurations. In high-mobility scenarios, regenerating after a single fragment

loss minimizes the long-run average repair cost per unit of time. This repair

policy is termed as eager repair [2]. In low-mobility scenarios, repairing af-

ter several fragments are lost yields a lower long-run average repair cost per

unit of time. Delaying repair until several nodes have left A is termed as

lazy repair [2]. For relatively static networks (very infrequent fragment loss),

applying reconstruction and regeneration becomes the optimal strategy. We

also determine the optimal repair strategy for a given departure rate.

• Finally, we analyze the storage system reliability when repairs can be in-

complete due to communication bandwidth constraints. Specifically, we de-

termine the probability of data loss and the mean time to data loss as a

function of the repair threshold and other system parameters. We also dis-

cuss the tradeoff associated with system reliability metrics and average cost

per time for various system parameters.

The remainder of the thesis is organized as follows. Chapter 2 highlights the

related work. The model assumptions are presented in Chapter 3. We present the

two repair strategies, namely distributed and centralized repair, in Chapter 4 and
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5 respectively. In Chapter 6, we compare the repair policies and repair schemes

under different code parameters. In Chapter 7, we perform analysis under the

assumption of incomplete repairs and we summarize our conclusions in Chapter 8.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present the basic concepts of reliable storage systems. We

then extend our description to state-of-the-art in mobile storage.

2.1 Storage Reliability

Digital data is being created at a staggering rate and is expected to double every

two years [12]. To accommodate storage demands, data centers are being deployed

across the globe, which promise reliable data storage and fast retrieval. Reliability

is ensured despite the fact that unreliable components are used for storage. This

is achieved by deploying reliability algorithms that exploit data redundancy to

maintain the stored content, despite the partial data loss. In redundant data

storage, information is replicated or coded such that the original content can be

recovered if some limited fraction of it is lost. The next subsection, we describe

popular reliability methods for storage systems, namely replication, erasure codes

and regenerating codes.

2.1.1 Replication

Replication is the most intuitive way to introduce redundancy. This method

refers to the maintenance of verbatim copies of the same file F at multiple stor-

age locations. It is currently employed in several storage systems including RAID

systems. If n instances of a file F are available in the network, then up to n− 1 si-

multaneous failures can be tolerated and this scheme is referred to as n-replication.

Although replication is easy to implement and is adopted in numerous commercial

platforms [5,7,15,24,25,27,40], it suffers from high storage overhead. The storage
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Replicated copy of 

F
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Figure 2.1: Storage of a 1MB file using 3-replication.

overhead grows linearly with the number of failures that must be tolerated. As an

example, in Figure 2.1, the storage system must store 3 MB to maintain a 1MB file

and sustain up to two node failures. The code rate for n-replication is equal to 1
n
.

Here the code rate is defined as the ratio between the number of useful information

bits stored over the total number of bits stored.

2.1.2 Erasure Codes

Erasure codes incur less storage overhead than replication to maintain the same

reliability level. These codes were initially proposed to detect and correct errors

that occur in the course of transmitting digital data. A class of erasure codes known

as maximum distance separable codes(MDS) codes have optimal performance in

terms of storage bandwidth. The basics of an MDS code (n, k) is explained with

the help of an example as shown in Figure 2.2. A file F of size M = 1MB is first

split into k = 2 fragments and then encoded into n = 4 fragments. Any subset of k

out of n encoded fragments is sufficient to reconstruct F . The n encoded fragments

have the same length as the uncoded ones. Therefore, exactlyM bytes are needed

to reconstruct a file of M bytes. This corresponds to the same amount of data if

replication were to be used. Reed-Solomon codes are a classical example of MDS

codes and are already deployed in many existing storage systems (e.g. [3,11]). The

code rate of an (n, k) erasure code is equal to k
n
.

Although, erasure codes offer significant savings in terms of storage bandwidth,
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Figure 2.2: Storage of a 1MB file using (4,2) erasure codes.

the amount of data that needs to be retrieved for recovering lost data fragments

can be prohibitive. This is because the entire file has to be reconstructed with

every loss.

2.1.3 Regenerating Codes

An alternative to file reconstruction is regeneration. In regeneration, a lost

encoded fragment can be repaired without recovering the entire file. For a fragment

repair, it is sufficient to obtain the fragments of a subset of storage nodes. A file F of

sizeM bits is stored in n storage nodes using a regenerating code with parameters

(n, k, d, α, γ). Specifically, F is divided to k fragments, which are encoded to n > k

fragments such that any k encoded fragments can reconstruct F . Each encoded

fragment of size α symbols is stored in one of the n nodes. When a fragment

is lost, a replacement node can regenerate the lost fragment by connecting to an

arbitrary set of d ≥ k nodes out of the remaining n − 1 and downloading β ≤ α

symbols from each node. Therefore, the repair bandwidth for node regeneration is

equal to γ = dβ. Therefore, the repair bandwidth for node regeneration is equal
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to γ = dβ. The values for the fragment size (α) and the repair bandwidth (γ) can

be calculated by using the following equations [9]:

α(k, γ) =


M
k
, γ ∈ [f(0),+ inf)

M−g(i)γ
k−1 γ ∈ f(i), i = 1, . . . , k − 1

f(i) =
2Md

2k − i2 − i+ 2k + 2kd− 2k2

g(i) =
(2d− 2k + i+ 1)i

2d

The system designer can choose the parameter i = 0, 1, . . . k − 1 so that the re-

sulting code meets the requirements of the application. The Minimum Storage

Regenerating (MSR) code corresponds to i = 0. For the given distribution degree

k, the MSR code has the smallest possible value of the fragment size (α). The

MSR fragment size and the MSR repair bandwidth parameter β = γ
d

becomes

(αMSR, γMSR) =

(
M
k
,

Md

k (d− k + 1)

)
. (2.1)

For MSR codes, αMSR ≤ γMSR and hence, per-node storage is smaller than the

repair bandwidth. MBR codes, on the other hand, have minimum possible repair

bandwidth (achieved when γ = α), and operate at

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
. (2.2)

The trade-off between storage bandwidth and repair bandwidth is as shown

is in Figure 2.3. Figure 2.4 shows an example of (n, k, d) = (4, 2, 3) regenerating

codes. Here, the file F of size M = 1MB is first split into k = 2 fragments with

each node storing α = 500KB. Then, these fragments are encoded to obtain n = 4

fragments. A failed node in this scenario can regenerate by requesting fragments of

size β = 250KB from d = 3 surviving nodes. Thus, the repair bandwidth required

to regenerate is given by dβ = 750KB. On the other hand, the repair bandwidth

required to reconstruct a file F is given by, kα = 1000KB. Thus, the cost of

regeneration is lesser than that of reconstruction.
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Figure 2.3: Tradeoff between repair bandwidth and storage bandwidth [9].

MSR and MBR codes achieve functional and exact repair. In functional re-

pair, lost data fragments are replaced with functionally equivalent fragments, such

that the desired degree of redundancy is maintained and hence, preserves only the

recoverability property. In contrast to functional repair, exact repair is a stricter

requirement in which corrupted data blocks are replaced with their exact replicas.

Exact repair is preferred over functional repair in practical systems because the

additional communication overheads involved during the repair is obliviated.

2.2 Related Work

The problem of reliable storage has been addressed in many different contexts.

Peer-to-peer storage and mobile cloud storage systems are the two architectures

most relevant to the setup considered in this thesis. In the following subsections,

we describe the state-of-the-art for the two aforementioned architectures.

2.2.1 Peer-to-Peer Storage Systems

P2P systems consists of independent storage nodes that are distributed in a

network. P2P systems exploit the locality feature and hence are considered to be



23

F

1 MB

����������	
��

��������	

���������	���


����

��

��


����

��

��


����

��

��


����

��

��


����

�����

������


����

������

�����

Figure 2.4: Storage of a 1MB file using a (4,2,3) regenerating code.

an interesting alternative to traditional centralized data centers. Large-scale P2P

storage systems have been studied in different contexts [2, 8, 38, 40]. A number of

works have investigated the prospect of employing replication against erasure codes

for redundancy management [2, 5, 16,20,24,39].

Utard and Vernois [44] consider a P2P storage system consisting of indepen-

dent nodes which share their disk space for storing data fragments. The nodes are

free to leave the system at anytime and thus, when a node leaves, the fragments

stored at that node are lost. The authors investigate two redundancy mechanisms:

replication and erasure codes. They determine the expected data lifetime for the

two schemes using a Markov chain model, and show that it is better to use replica-

tion instead of erasure codes when the peer availability is very small. In contrast,

Weatherspoon and Kubiatowicz [46] show that, for a system consisting of indepen-

dently, identically distributed failing disks, erasure codes use an order of magnitude

less repair bandwidth and storage space than replication to provide the same sys-
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tem durability. This conclusion is based on quantitative analysis in terms of mean

time to failure (MTTF).

Rodrigues and Liskov examine a cooperative data storage model [39]. They

compare replication with a hybrid solution (mixing both replication and erasure

codes). They studied real world traces (Overnet, Farsite and Planetlab) and pro-

posed a failure model based on a membership timeout. Membership timeout is a

metric that measures the system delay in responding to failures. After a timeout,

the node state of a host that stores data changes to “failed”, and their data need

to be repaired. They state that erasure codes fare better compared to replication

for scenarios of low server availability. In some cases, however, the complexity in

terms of encoding and design of deploying erasure codes does not pay off the gains

in storage efficiency.

Bhagwan et al. [2] proposed a P2P storage system called TotalRecall which is

also based on erasure codes. They propose two dynamic repair strategies, namely

eager repair and lazy repair. In eager repair, corrupted data blocks are immediately

repaired upon detection. In lazy repair, data is recovered only after a threshold

number of data blocks corrupted. The two strategies trade off reliability for network

bandwidth efficiency. The lazy repair strategy incurs a lower network overhead for

repairing corrupt data blocks at the expense of higher probability of data loss. The

authors compare the repair bandwidth required by each policy using an empirical

trace of P2P host availability. Our work analyzes similar threshold repair strategies

for the mobile cloud environment. Additionally, we derive closed-form expressions

for the repair bandwidth, but for regenerating codes, and optimally tune the repair

threshold.

Giroire et al. [16] analytically evaluated network bandwidth metrics for the

lazy repair strategy, using Markov models. Specifically, they computed the aver-

age required bandwidth per peer, the data loss rate and the peak of bandwidth

consumption. In their analysis, a constant reconstruction time was assumed when

performing repairs. Their work serves as a guideline for system designers to tune
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system parameters depending on the desired level of reliability. They conclude that

for a given reliability, lazy repair strategy achieves better utilization of bandwidth

at the cost of storage bandwidth.

Works on P2P storage investigate the use of erasure codes and/or replication

to maintain the redundancy of the system. In our work, we consider the use of

regenerating codes [9] in mobile cloud storage systems. Previous works related to

regenerating codes focus on the code construction [19, 23, 37, 41] and studying the

properties of certain regenerating codes. For example, exact regenerating codes (see

e.g. [18], [36], [45]) are codes that are able to reconstruct an exact copy of the lost

data fragment. Deterministic code construction [47] allows for easily maintainable

implementations. More recently, quasi-cyclic regenerating codes [13] have been

introduced and shown to be efficient, simple regenerating codes. A few studies have

been conducted on the practical implementation of regenerating codes: e.g. [10]

concentrates on applying regenerating codes to peer-to-peer backup systems and

in [21], the authors studied the impact of various parameters of regenerating codes

at the system level rather than in terms of a single device. It also compares the

computational costs of various implementations of regenerating codes and acts as

a good guide in choosing the parameters in design of regenerating codes.

2.2.2 Mobile Cloud Storage Systems

Coded storage has also found application in wireless P2P storage systems for

applications such as video sharing. The increased storage capacity of wireless de-

vices has paved way for wireless P2P storage systems. While coding has been

suggested to improve the performance of caching in terms of capacity and energy

consumption [1,22,48], very few works offer solutions for keeping cached files avail-

able when the devices move out of the coverage area. Some works that consider

the file maintenance problem are described below.

In [34], to increase the reliability of transmissions within the storage commu-

nity, packet level erasure coding is investigated. A sparse delay tolerant network
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consisting of mobile nodes that are capable of sending, forwarding, and receiving

requests for resources is analyzed. The authors investigate the impact of different

redundancy mechanisms on the performance of mobile nodes that obtain resources

from an infrastructure network. They observe that erasure coding at the applica-

tion layer may improve end-end delivery performance.

In [32], a wireless P2P storage system consisting of mobile users and a base-

station is considered. It is assumed that the energy consumed in downloading a

file requested by a user from the base station is greater than that consumed when

data is transmitted between two mobile users. The mobile nodes cache data and

upon request, can exchange data. They derive closed form expressions for expected

total cost for two schemes; simple caching and redundant caching. Simple caching

involves the file being stored on one of the local nodes in the network and hence,

a new node obtains file contacting this node. In redundant caching, regenerating

codes are used to cache the file on the storage nodes. On analyzing this system, it

is proved that the expected total cost of 2-replication is lower than that of scheme

with regenerating codes.

In [30], the authors assume a similar model as in [32]. They show that regenerat-

ing codes can be used to decrease the energy consumption of mobile cloud storage.

They conclude that if the energy consumption per bit for the data transmission

between two nodes is less expensive as compared to that between a node and a

remote source, then regenerating codes decrease the overall energy consumption.

The drawback of the analysis presented in [30] and [32] is that eager repair is con-

sidered. Also, their analysis assumes fixed code parameters that do not necessarily

exploit the advantages provided by regeneration. The repair bandwidth associated

with reconstruction is equivalent to that associated with regeneration in this case.

As an extension of [30, 31] and assuming the same model, in [33], the authors

address the problem of tolerating multiple simultaneous failures. They investigate

the performance of regenerating codes in terms of the total energy consumption of

a cellular network. They show that large performance gains can be obtained by
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employing regenerating codes. Also, they show that the popularity of a file has an

effect on the gains associated with using redundancy. They also provide decision

rules for choosing between simple caching, replication, MSR and MBR codes. These

rules are based on numerical results on certain application scenarios. In this thesis,

we analytically provide decision rules to choose optimal repair strategies apart from

choosing optimal codes, MBR or MSR codes, that minimizes repair cost.
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CHAPTER 3

SYSTEM MODEL ASSUMPTIONS

In this chapter, we describe the system model assumptions. The notation

adopted in the rest of the thesis is presented in Table 3.1.

Table 3.1: Summary of Notations

Parameter Description

F file

M file size in bits

A geographically-limited area where F is maintained

k number of fragments of before file encoding

n number of fragments of after file encoding

d minimum number of fragments required for regeneration

α fragment size in bits

β repair fragment size for regeneration

γ repair bandwidth

λ node departure rate from A
µ repair rate

τ repair threshold

B communication bandwidth

c(τ) repair cost

r(τ) long-run average repair cost per unit time

MTTDL mean time to data loss

PDL probability of data loss
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3.1 Network model

We consider the mobile cloud storage system show in Figure 3.1. The system

consists of mobile storage nodes that enter. When a node departs fromA, its data is

lost. As we are interested in the system performance due to network dynamics, we

do not consider data loss due to hardware failures. This is a reasonable assumption

for the mobile environment in which data loss due to node departure occurs orders

of magnitude more frequently than hardware failure.

A

+

F

fragments

repair

Figure 3.1: File maintenance through fragment repairs in a mobile cloud storage

system.

Following the model of prior works [16, 32], the time that each storage node

resides within A is an exponentially distributed random variable with parameter

λ. The resident times of various storage nodes within A are assumed to be inde-

pendent. Nodes in A are assumed to form a one-hop broadcast network. That

is, transmissions from one node are received by all nodes within A. This model

also represents communications between nodes in multihop topologies at the logical

level (by abstracting the broadcast relay operation).
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3.2 Storage model

A file F of size M bits is stored in n storage nodes using a regenerating code

with parameters (n, k, d, α, γ). Specifically, F is divided to k fragments, which are

encoded to n > k fragments such that any k encoded fragments can reconstruct

F . Each encoded fragment of size α symbols is stored in one of the n mobile

nodes within A. In case of a node departure from A, a replacement node can

regenerate the lost fragment by connecting to an arbitrary set of d ≥ k nodes

out of the remaining n − 1 and downloading β ≤ α symbols from each node.

Therefore, the repair bandwidth for node regeneration is equal to γ = dβ. For the

given distribution degree k, the MSR code has the smallest fragment size(α) and

therefore minimizes the required storage bandwidth. The MSR fragment size and

the MSR repair bandwidth parameter β = γ
d

are given by,

(αMSR, γMSR) =

(
M
k
,

Md

k (d− k + 1)

)
. (3.1)

For MSR codes, αMSR ≤ γMSR and hence, the per-node storage is smaller than the

repair bandwidth. MBR codes, on the other hand, minimize the repair bandwidth

(achieved when γ = α), and operate at

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
. (3.2)

In our model, the system continuously monitors the redundancy level and initiates

a repair when τ nodes are left within A. The determination of τ , the type of

repair (regeneration, reconstruction, or both) and the communication scheme for

fragment retrieval (centralized or distributed) form a threshold repair strategy. We

note that the practical implementation details of the redundancy monitoring and

communication protocols for retrieving various fragments are beyond the scope of

the present work. We focus on the theoretical aspects of the maintenance process.
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3.3 Metrics

We evaluate the possible repair strategies using the following metrics.

DEFINITION 1 (Repair cost c(τ)). The total cost c(τ) of fragment recovery

when τ < n nodes remain in A. It is defined as the number of bits that must be

downloaded from the τ remaining nodes to restore the n encoded fragments in A.

DEFINITION 2 (Average repair cost per unit of time r(τ)). The long-run av-

erage cost per unit of time ( [42]) for maintaining fragments when repairing at τ

(measured in bits per second).

DEFINITION 3 (Mean time to data loss MTTDL). The mean time until F can

no longer be recovered by nodes in A (i.e., more than k fragments are lost).

DEFINITION 4 (Probability of data loss PDL). The probability of storing fewer

than k fragments within A.
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CHAPTER 4

DISTRIBUTED REPAIR

In this chapter, we analyze the distributed threshold repair strategy. Let τ

denote the number of nodes remaining within A after the departure of n−τ nodes.

We focus on determining the optimal repair threshold τ ∗, which minimizes the

average repair cost per unit of time. For our analysis, we assume that repairs

occur instantaneously (we relax this assumption in Chapter 6).

4.1 Repair cost

In distributed repair, new nodes recover lost fragments by independently down-

loading existing fragments from other nodes. The repair process is initiated when

a threshold of k ≤ τ < n− 1 nodes remain within A. During the repair, the n− τ
lost fragments are restored at new nodes that exist or have entered A. If τ ≥ d,

this fragment recovery process can be performed through regeneration. Each of

the n − τ replacement nodes downloads β symbols from d storage nodes and in-

dependently regenerates a lost fragment. If τ < d, regeneration cannot be directly

applied. To reduce the repair cost, we consider a dual scheme consisting of re-

generation and reconstruction. First, d − τ nodes are repaired by downloading α

symbols from k nodes and reconstructing F . When d fragments become available,

regeneration is applied to repair the remaining n − d nodes. For each case, the

repair cost is expressed as follows.

c(τ) =


kα(d− τ) + γ(n− d), if τ < d

γ(n− τ), if τ ≥ d.
(4.1)

In (4.1), γ denotes the regeneration cost of a single fragment and depends on

the regeneration code (see eqs. (3.1) and (??) for MSR and MBR). From (4.1), it is
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n -1n d. . .

nλ (n - 1)λ (d+1)λ

τ

(τ+1)λ

. . .

Figure 4.1: Markov chain model for a distributed threshold repair strategy.

evident that c(τ) monotonically decreases with τ. Moreover, the cost increase rate

is higher when τ < d. To determine the optimal threshold τ ∗, we are interested in

minimizing r(τ), which captures the long-term cost (for maintaining fragments) per

unit of time. To calculate r(τ), we use the continuous-time Markov chain (CTMC)

shown in Figure. 4.1, which models the node departure process (equivalently, the

fragment loss process). The model consists of n − τ + 1 states representing the

number of fragments that remain within A after each node departure, until the

fragments are repaired. The departure rate from a state i equals the node departure

rate λ, times the number of nodes which store fragments at state i. Assume that

whenever the CTMC is in state τ , it incurs cost at rate c(τ). Let r(τ, T ) be the

total expected cost in the interval [0, T ] [42]. The long-run cost rate starting from

state i is then given by

r(τ) = limT→∞
r(τ, T )

T
. (4.2)

For an irreducible CTMC with limiting distribution π = [πn, ..., πτ ] the expected

long-run cost rate at state τ becomes,

r(τ) = r =
n∑
i=τ

πic(i). (4.3)

This is motivated by the idea that independent of the initial state, the CTMC

spends a fraction of time pi in state i where it incurs cost ar rate c(i). Because

the repair process is initiated only when state τ is reached, it follows that c(i) =

0,∀i 6= τ . Hence, eq. (4.3) degenerates to r(τ) = πτc(τ). To determine πτ , we first

derive the balance equations for the CTMC of Figure. 4.1 as follows (see Appendix
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A for detailed derivation).

πi =


n
i
πn, τ + 1 ≤ i ≤ n− 1

nλπn, i = τ.
(4.4)

We use the normalization
∑
i πi = 1 to compute πn.

πn =
1

1 + nλ+ nHn−1,τ
, Hn−1,τ =

n−1∑
i=1

1

i
−

τ∑
i=1

1

i
. (4.5)

In (4.5), Hn−1,τ denotes the difference between the harmonic numbers of n− 1 and

τ . Using (4.4), from which we obtain πτ = nλπn, and (4.5), we obtain the average

cost r(τ) = πτ (̧τ) as given by the following.

r(τ) =


nλ(kα(d−τ)+γ(n−d))

1+nλ+nHn−1,τ
, if τ < d

nλ(γ(n−τ))
1+nλ+nHn−1,τ

, if τ ≥ d.
(4.6)

4.2 Optimal threshold

4.2.1 Regeneration

We use (4.6) to determine the optimal threshold τ ∗ which minimizes r(τ). This

is given by the following propositions.

Proposition 1. For regeneration (d ≤ τ ≤ n− 1), the optimal repair threshold τ ∗

is given by

τ ∗ =


d, λ ≤ Hn−1,d

n−d−1 −
1
n
,

n− 1, otherwise.
(4.7)

Proof. A straightforward minimization of r(τ) through differentiation involves har-

monic sums. To determine τ ∗, we compare r(d) with the average repair cost at all

other possible regeneration states d + δ, where for δ satisfying 1 ≤ δ ≤ n− d− 1,

we check if r(d) ≤ r(d+ δ). Hence, consider:

r(d) ≤ r(d+ δ). (4.8)
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Instead, we consider the above condition. On substituting r(τ) from (4.3),

nλ(n− d)γ

1 + nλ+ nHn−1,d
≤ nλ(n− d− δ)γ

1 + nλ+ nHn−1,d+δ
⇒

λ ≤ (n− d)Hd+δ,d

δ
− 1

n
−Hn−1,d. (4.9)

Inequality (4.9) yields the maximum node departure rate λ for which it is more

cost-efficient to repair at state τ = d than any other state τ = d + δ. We now

examine the behavior of the right-hand side (RHS) of (4.9) as a function of δ for

fixed n and d. The RHS of (4.9) has the same monotonicity as function

f(δ) =
Hd+δ,d

δ
≈

ln d+δ
d

δ
, (4.10)

because the rest of the terms do not depend on δ. In (4.10), we have approximated

Hn = lnn + ε, where ε is the Euler-Mascheroni constant. This approximation

holds for sufficiently large n. To find the monotonicity of f(δ) with respect to δ we

compute the first derivative

f
′
(δ) =

1

δ(d+ δ)
−
ln(d+δ

d
)

δ2
. (4.11)

Equating f
′
(δ) with zero yields a log-linear function that cannot be solved analyt-

ically. We resort to the following bounds on the logarithmic function ln(1 +x) [43]

to derive f ’s monotonicity.

2x

2 + x
≤ ln(1 + x), for 0 ≤ x <∞. (4.12)

By using the lower bound of ln(1 + x), elementary calculations yield:

f ′(δ) ≤ −1

(δ + d)(δ + 2d)
< 0, ∀d, δ > 0. (4.13)

This proves that f(δ) is monotonically decreasing with δ. As a result, the departure

rates λ for which (4.8) holds are also monotonically decreasing with δ. Substituting

δ∗ = n− d− 1 to the RHS of (4.9) yields the maximum departure rate

λ ≤ Hn−1,d

n− d− 1
− 1

n
, (4.14)
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for which r(d) ≤ r(d + δ),∀δ. In this case, minimization of r(τ) is achieved at

τ ∗ = d.

We now prove that for rates λ >
Hn−1,d

n−d−1 −
1
n
, the average cost r(τ) is minimized

when τ = n− 1. Following a similar reasoning, we compare r(τ) at τ = n− 1 with

r(τ) at any other possible regeneration threshold. We consider

r(n− 1) ≤ r(n− 1− δ), (4.15)

where 1 ≤ δ ≤ n− d− 1. By substituting r(τ) from (4.3), it follows that

1

1 + nλ
≤ δ + 1

1 + nλ+ nHn−1,n−δ−1
.

λ ≥ Hn−1,n−δ−1

δ
− 1

n
. (4.16)

Let

g(δ) =
Hn−1,n−δ−1

δ
≈

ln n−1
n−δ−1
δ

. (4.17)

Considering the derivative of (4.17) with respect to δ:

g′(δ) =
1

δ(n− δ − 1)
− ln (n− 1)− ln(n− δ − 1)

δ2
. (4.18)

We now utilize the upper bound lnx < x − 1, x > 1 to derive the sign of g′(δ).

From this bound, it follows that

ln
n− 1

n− δ − 1
<

n− 1

n− δ − 1
− 1⇒

− ln
n− 1

n− δ − 1
>

−δ
n− δ − 1

. (4.19)

Substituting (4.19) to (4.18), we obtain that

g′(δ) >
1

δ(n− δ − 1)
−

δ
n−δ−1
δ2

⇒

g′(δ) > 0. (4.20)

Hence, g(δ) is an increasing function of δ. The minimum λ for which r(n − 1) ≤
r(n− 1− δ), ∀δ is therefore obtained when δ∗ = n− d− 1. Substituting δ = δ∗ to

(4.16) completes the proof.
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Figure 4.2: r(τ) vs. τ with τ ∗ = d for distributed repair(regeneration).

Threshold(τ)
25 26 27 28 29

r(
τ
) 

M
B

ps

100

Distributed(regeneration)-MBR
Distributed(regeneration)-MSR

[n,k,d,M,λ]=[30,20,25,5MB,10s−1]

Figure 4.3: r(τ) vs. τ with τ ∗ = n− 1 for distributed repair(regeneration).

Proposition 1 determines the departure rate regime for which repair at τ = d,

known as lazy repair [2], is more efficient than repairing at τ = n − 1, known as
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eager repair [2]. Figure 4.2 and 4.3 shows average repair cost per unit time as a

function of threshold τ for different departure rate. Figure 4.2 verifies that for low

λ, r(τ) is minimized at τ ∗ = d. On the other hand, Figure 4.3 verifies that for high

λ, the r(τ) is minimized at τ ∗ = n− 1.

4.2.2 Regeneration plus reconstruction

We now examine if there is a departure rate regime for which reconstruction

plus regeneration results in a lower average cost per unit of time compared to

regeneration only. This rate regime is given by the following proposition.

Proposition 2. For regeneration plus reconstruction (k ≤ τ ≤ d,) the optimal

repair threshold τ ∗ is given by

τ ∗ =


d, λ ≥ γ(n−d)Hd,k

kα(d−k) −Hn−1,d − 1
n
,

k, otherwise.
(4.21)

Proof. The proof follows along the same lines as Proposition 1. We compare the

repair at r(d) with repair at any other possible state d− δ for 1 ≤ δ ≤ d− k.

r(d) ≤ r(d− δ). (4.22)

On substituting for r(τ) using (4.3), we get:

nλ(n− d)γ

1 + nλ+ nHn−1,d
≤ nλ(kαδ + (n− d)γ)

1 + nλ+ nHn−1,d−δ
. (4.23)

nλ(n− d)γ

1 + nλ+ nHn−1,d
≤ nλ(n− d)γ + kαδ

1 + nλ+ nHn−1,d + nHd,d−δ
. (4.24)

Thus, λ ≥ (n− d)γHd,d−δ

kαδ
− 1

n
−Hn−1,d. (4.25)

Expression (4.25) yields a bound on the minimum λ for which the optimal repair

threshold is τ ∗ = d. We now study the behavior of (4.25) as a function of δ for

fixed n, k and d. Let,

h(δ) =
Hd,d−δ

δ
≈

ln d
d−δ
δ

. (4.26)
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Considering the derivative of (4.26) with respect to δ:

h′(δ) =
1

δ(d− δ)
− ln (d)− ln(d− δ)

δ2
. (4.27)

We now utilize the upper bound lnx < x− 1, x > 1, it follows that

ln
d

d− δ
<

n− 1

d− δ
− 1⇒

− ln
d

d− δ
>

−δ
d− δ

. (4.28)

Substituting (4.28) to (4.27), we obtain that

h′(δ) >
1

δ(d− δ)
−

δ
d−δ
δ2
⇒

h′(δ) > 0. (4.29)

Therefore h(δ) is monotonically increasing with δ. Substituting the maximum δ∗ =

d− k yields the minimum departure rate,

λ ≥ γ(n− d)Hd,k

kα(d− k)
−Hn−1,d −

1

n
. (4.30)

for which r(d) ≤ r(d− δ),∀δ. For this rate regime, the optimal repair threshold is

at τ ∗ = d.

We now prove that for rates λ ≤ γ(n−d)Hd,k
kα(d−k) −Hn−1,d − 1

n
, the average cost r(τ)

per unit of time is minimized when τ = k. We compare r(τ) at τ = k with r(τ) at

any other possible repair threshold.

r(k) ≤ r(k + δ). (4.31)

On substituting for r(τ) from (4.3), we get:

nλ(kα(d− k) + γ(n− d))

1 + nλ+ nHn−1,k
≤ nλ(kα(d− k − δ) + γ(n− d))

1 + nλ+ nHn−1,k+δ

λ ≤ (kα(d− k) + γ(n− d))Hk+δ,k

kαδ
− 1

n
−Hn−1,k

The above expression yields a bound on the maximum node departure rate λ

for which the optimal repair threshold is τ ∗ = k. We now study the behavior of

(4.32) as a function of δ for fixed n, k and d. Let,

y(δ) =
Hk+δ,k

δ
≈ ln(k + δ)− ln k

δ
. (4.32)
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y
′
(δ) =

1

δ(k + δ)
−
ln(k+δ

k
)

δ2
. (4.33)

Equating y
′
(δ) with zero yields a log-linear function and thus we consider the lower

bound on logarithmic function in (4.33). By using the elementary calculations yield:

y′(δ) ≤ −1

(δ + k)(δ + 2k)
< 0, ∀k, δ > 0. (4.34)

Since k > 1 it follows that y(δ) is also a monotonically decreasing function. There-

fore, δ∗ = d− k yields the maximum λ.

λ ≤ (kα(d− k) + γ(n− d))Hd,k

kα(d− k)
−Hn−1,k −

1

n
(4.35)

λ ≤ γ(n− d)Hd,k

kα(d− k)
−Hn−1,d −

1

n
, (4.36)

for which r(τ) is optimized at τ ∗ = k.
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Figure 4.4: r(τ) vs. τ with τ ∗ = k for distributed repair(regeneration plus recon-

struction).
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Figure 4.5: r(τ) vs. τ with τ ∗ = d for distributed repair(regeneration plus recon-

struction).

Figures 4.4 and 4.5 show the average repair cost per unit time as a function

of τ for τ ∈ [k, d] at different threshold departure rates. It can be seen that the

analytical proof is in good terms with the plots. By combining Propositions 1 and

2, we can define the optimal repair strategy for any λ.
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CHAPTER 5

CENTRALIZED REPAIR

In this chapter, centralized repair strategy is described. In the centralized repair

strategy, repairs are performed by a leader node in two stages. In the first stage, the

leader node downloads α symbols from k nodes and reconstructs F . In the second

stage, the leader node transmits α bits to each of the remaining (n− τ − 1) nodes

to restore the remaining (n− τ −1) fragments. The motivation behind this scheme

is a possible reduction in the number of transmissions to carry out the repairs.

5.1 Repair cost

We investigate the optimal repair threshold τ ∗, which minimizes the average

repair cost per unit of time. The repair cost for a centralized repair strategy is

then given by:

c(τ) = α (k + n− τ − 1) . (5.1)

The node departure process does not vary with the repair strategy. Therefore, the

CTMC model shown in Fig. 5.1 applies for the centralized repair. According to

(4.3), the long-run average repair cost per unit of time is given by:

r(τ) = πτc(τ) =
nλα (k + n− τ − 1)

1 + nλ+ nHn−1,τ
. (5.2)

n -1n d. . .

nλ (n - 1)λ (d+1)λ

τ

(τ+1)λ

. . .

Figure 5.1: Markov chain model for a centralized threshold repair strategy.



43

5.2 Optimal threshold

The optimal threshold τ ∗, which minimizes r(τ) is obtained in Proposition 3.

Proposition 3. The optimal repair threshold τ ∗ which minimizes r(τ) for central-

ized repair is given by

τ ∗ =


k, λ ≤ kHn−1,k

(n−k−1) −
1
n
,

n− 1, otherwise.
(5.3)

Proof. To determine τ ∗, we compare r(k) with other possible repair states k + δ,

r(k) ≤ r(k + δ), (5.4)

where 1 ≤ δ ≤ n− k − 1. On substituting for r(τ) from (4.3), we obtain:

nλ(kα + α(n− k − 1))

1 + nλ+ nHn−1,k
≤ nλ(kα + α(n− k − δ − 1))

1 + nλ+ nHn−1,k+δ
.

kα + α(n− k − 1)

1 + nλ+ nHn−1,k
≤ (kα + α(n− k − 1))− αδ

(1 + nλ+ nHn−1,k)− nHk+δ,k

⇒

λ <
(kα + α(n− k − 1))Hk+δ,k

αδ
− 1

n
−Hn−1,k. (5.5)

Inequality (5.5) yields the maximum node departure rate λ for which it is more

cost-efficient to repair at state τ = k than any other state τ = k + δ. We now

examine the behavior of the right-hand side (RHS) of (5.5) as a function of δ for

fixed k and d. The RHS of (5.5) has the same monotonicity as function

f(δ) =
Hk+δ,k

δ
≈

ln k+δ
k

δ
, (5.6)

rate. On taking the derivative of f(δ) with respect to δ and approximating the

logarithmic function using (4.12), we get:

f
′
(δ) =

1

δ(δ + k)
−
ln δ+k

k

δ2
⇒ (5.7)

(5.8)
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Equating f
′
(δ) with zero yields a log-linear function that cannot be solved analyt-

ically. We resort to the following bounds on the logarithmic function ln(1 +x) [43]

to derive f ’s monotonicity.

2x

2 + x
≤ ln(1 + x), for 0 ≤ x <∞. (5.9)

By using the lower bound of ln(1 + x), elementary calculations yield:

f ′(δ) ≤ −1

(δ + d)(δ + 2d)
< 0, ∀d, δ > 0. (5.10)

f
′
(δ) ≤ −1

(δ + k)(δ + 2k)
. (5.11)

As, the first derivative is negative, f(δ) is monotonically decreasing function for

∀δ. Substituting δ∗ = n− k − 1 to the RHS of (5.5) yields the maximum rate

λ ≤ kHn−1,k

(n− k − 1)
− 1

n
. (5.12)

for which r(k) ≤ r(k + δ),∀δ. For this rate regime, the optimal repair threshold is

at τ ∗ = k.

We now evaluate if there is a departure rate regime for which the average cost

per unit of time is minimized at τ ∗ = n− 1.

r(n− 1) ≤ r(n− 1− δ). (5.13)

where 1 ≤ δ ≤ n− k − 1. On substituting for r(τ) from (4.3), we get:

nλ(kα)

1 + nλ
≤ nλ(kα + αδ)

1 + nλ+ nHn−1,n−1+δ
⇒ (5.14)

λ ≥ kHn−1,n−1−δ

δ
− 1

n
. (5.15)

We determine the behavior Of the RHS of inequality (5.15) as a function of δ, we

consider:

h(δ) =
ln(n− 1)− ln(n− 1− δ)

δ
(5.16)
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Taking the first derivative of h(δ) with respect to δ.

h′(δ) =
−1

δ(δ − n+ 1)
− ln(−(n− 1)/(δ − n+ 1))

δ2
. (5.17)

We utilize the upper bound lnx < x − 1, x > 1 to derive the sign of h′(δ). From

this bound, it follows that

ln
n− 1

n− δ − 1
<

n− 1

n− δ − 1
− 1⇒

− ln
n− 1

n− δ − 1
>

−δ
n− δ − 1

. (5.18)

Substituting (5.18) to (5.17), we obtain,

h′(δ) >
1

δ(n− δ − 1)
−

δ
n−δ−1
δ2

⇒

h′(δ) > 0. (5.19)

Hence, h(δ) is an increasing function of δ. Substituting δ∗ = n − k − 1 yields the

minimum rate for which τ ∗ = n− 1.

λ ≥ kHn−1,k

(n− k − 1)
− 1

n
. (5.20)

Threshold(τ)
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τ
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M
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[n,k,d,M,λ]=[30,20,25,5MB,0.001s−1]

Figure 5.2: r(τ) vs. τ with τ ∗ = k for centralized repair.
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Figure 5.3: r(τ) vs. τ with τ ∗ = n− 1 for centralized repair.

Figure 5.2 and 5.3 shows r(τ) as a function of the threshold τ for threshold

departure rates as shown in proposition 3. Figure 5.2 Verifies that for low λ, r(τ)

is minimized at τ ∗ = k. On the other hand, Figure 5.3 verifies that for high λ, the

r(τ) is minimized at τ ∗ = n− 1. The graphical results comply with that obtained

by analytical results.
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CHAPTER 6

COMPARISON OF REPAIR STRATEGIES

In this chapter, we determine the rate regime for which lazy repair is more cost-

efficient than eager repair. Moreover, we determine the optimal repair strategy

(decentralized vs. centralized) as a function of the redundancy code parameters.

6.1 Eager Repair vs. Lazy Repair

According to the results of Propositions 1, 2, and 3, we classify the departure

rates into a low departure rate regime (λlow) and a high departure rate regime

(λhigh). The two regimes are defined by finding the lowest and highest rates, based

on the bounds stated in the three propositions.

λlow ≤ min

(
Hn−1,d

n− d− 1
− 1

n
,
γ(n− d)Hd,k

kα(d− k)
−Hn−1,d −

1

n
,

kHn−1,k

(n− k − 1)
− 1

n

)

λhigh > max

(
Hn−1,d

n− d− 1
− 1

n
,
γ(n− d)Hd,k

kα(d− k)
−Hn−1,d −

1

n
,

kHn−1,k

(n− k − 1)
− 1

n

)
.

Noting that
Hn−1,d

n−d−1 −
1
n
<

kHn−1,k

(n−k−1) −
1
n

for k < d, the two regime expressions can

be simplified to

λlow ≤ min

(
Hn−1,d

n− d− 1
− 1

n
,
γ(n− d)Hd,k

kα(d− k)
−Hn−1,d −

1

n

)
, (6.1)

λhigh > max

(
γ(n− d)Hd,k

kα(d− k)
−Hn−1,d −

1

n
,

kHn−1,k

(n− k − 1)
− 1

n

)
. (6.2)

For any λlow, the repair cost per unit of time is minimized when lazy repair is

applied and the lowest possible repair threshold is selected. On the other hand,
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λ
eager repairlazy repair 

λ
low 

λ
high 

n, k, d, γ, α dependent  

Figure 6.1: Optimal repair for different λ regimes.

for any λhigh, eager repair (i.e., repair at τ ∗ = n− 1) yields the lowest r(τ). These

findings hold for both distributed and centralized repair.

If the departure rates do not lie in either of the λ regimes, then the optimal

repair policy (eager vs. lazy) depends on the relationship of the code parameters

and the repair strategy (centralized or distributed). The comparison of eager repair

with lazy repair for different λ regimes is summarized in Fig. 6.1.

6.2 Centralized vs. Distributed repair

We now fix the departure rate λ and compare the repair cost of centralized

vs. distributed repair per unit of time, as a function of the code parameters.

Specifically, we determine relationships between n, k, d and the code type (MSR

vs. MBR) for which an optimal strategy can be derived. Our results are stated in

the following two propositions.

Proposition 4. For d ≤ τ ∗ ≤ n − 1, using MBR codes and distributed repair

minimizes the average repair cost per unit of time, if d > n+k−1
3

.

Proof. Let r(τ)d and r(τ)c denote the average repair cost of distributed and cen-

tralized repair at τ, respectively. We consider the following inequality:

r(τ)d < r(τ)c. (6.3)

In centralized repair, for fixed n, k, and d, r(τ)c depends on α. As αMSR ≤
αMBR, MSR codes minimize r(τ)c. Thus, we select MSR codes and centralized
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repair for our comparison. Similarly, for given n, k, and d, the average repair cost

r(τ)d depends on the repair bandwidth γ. As γMBR ≤ γMSR, MBR codes are

selected to minimize r(τ)d. Substituting r(τ)c and r(τ)d from eqs. (1)-(4),

M(2d)(n− τ)πτ
k(2d− k + 1)

<
M(n+ k − τ − 1)πτ

k
⇒

n+ k − τ − 1 < 2d. (6.4)

Inequality (6.4) determines the minimum number of surviving nodes for which

MBR distributed repair emerges as the most cost-efficient strategy. The LHS of

(6.4) is a decreasing function of τ . Maximizing the LHS yields the relationship

between n, k, and d for which distributed MBR always outperforms centralized

MSR. This occurs when τ = d. Substituting τ = d results in d > n+k−1
3

. If we

reverse the direction of the inequality in (6.3), we obtain:

2d < n+ k − τ − 1. (6.5)

Threshold(τ)

10 15 20 25

r(
τ
) 

M
B

p
s

0.1585

0.2512

0.3981

0.6310

1

1.5849
Distributed-MBR

Centralized-MBR

Distributed-MSR

Centralized-MSR

[n,k,d,M,λ]=[30,10,11,5MB,0.01s−1]

Figure 6.2: r(τ) vs. τ with d < n+k−1
3

.

Minimizing the RHS of (6.5) yields the relationship between n, k, and d for
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which centralized MSR always outperforms distributed MBR. This occurs when

τ = n − 1. Substituting τ = n − 1 results in d < k
2
. However , by definition

d ≥ k. Therefore, there is no condition for which centralized MSR repair always

outperforms distributed MBR repair. This can also be verified graphically and is

as shown in Figure 6.2 and 6.3 . It can be seen that when d < n+k−1
3

, no scheme

is uniformly optimal for the given regime of τ . On the contrary, when d > n+k−1
3

,

distributed repair with MBR codes is uniformly optimal.

Threshold(τ)

10 15 20 25

r(
τ
) 

M
B

p
s

0.1585

0.2512

0.3981

0.6310

1

1.5849 Distributed-MBR

Centralized-MBR

Distributed-MSR

Centralized-MSR

[n,k,d,M,λ]=[30,10,13,5MB,0.01s−1]

Figure 6.3: r(τ) vs. τ with d > n+k−1
3

.

We now prove that if τ ∗ lies between k and d, using MSR codes with centralized

repair is optimal.

Proposition 5. For k ≤ τ ∗ < d, the optimal repair strategy is given by centralized

repair with MSR codes.
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Proof. To determine the optimal repair strategy, we compare r(τ)c with r(τ)d when

k ≤ τ ∗ < d.

r(τ)c < r(τ)d.

Substituting r(τ) for distributed repair and centralized repair from (4.6) and (5.2),

respectively, we obtain:

(α(n+ k − τ − 1))πτ < (α(k(d− τ)) + γ(n− d))πτ . (6.6)

For MSR codes, αMSR ≤ γMSR and for MBR codes, αMBR = γMBR. Thus, for each

case, we have α ≤ γ. By choosing the lowest γ, we can write:

α(n+ k − τ − 1) < α(k(d− τ)) + α(n− d)⇒

k − 1 < k(d− τ)− (d− τ)⇒

k − 1 < (k − 1)(d− τ)⇒

τ < d. (6.7)

As k ≤ τ ∗ < d, inequality (6.7) is always true and hence, centralized repair

outperforms distributed repair. As explained in Proposition 4, for centralized re-

pair, MSR codes minimize the average repair cost rate per unit of time compared

to MBR codes. Thus, centralized repair using MSR codes yields the optimal repair

strategy.
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Figure 6.4: r(τ) vs. τ with τ ∗ = d for distributed repair.

The comparison of different repair strategies is shown in Figure. 6.4. Figure. 6.4

considers a low departure rate regime in which node departures are infrequent.

For this regime, we observe that the cost of distributed repair is optimized by

performing lazy repair (τ ∗ = d).
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Figure 6.5: r(τ) vs. τ with τ ∗ = n− 1 for distributed repair.
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Figure 6.6: r(τ) vs. τ for τ ∗ = k for centralized repair.

When we move to the λhigh regime (Figures 6.5,6.7), eager repair (τ ∗ = n− 1)

becomes optimal. Moreover, as d > n+k−1
3

, distributed repair using MBR codes
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results in the best performance when d ≤ τ ≤ n − 1. On the other hand, for

k ≤ τ < d, centralized repair using MSR codes outperforms all other strategies.

Overall, distributed repair using MBR codes results in the lowest average repair

cost.
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Figure 6.7: r(τ) vs. τ for τ ∗ = n− 1 for centralized repair.
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CHAPTER 7

EXTENDED MODEL WITH INCOMPLETE REPAIRS

In the previous chapters, we have assumed that repairs occur with a very high

repair rate (almost instantaneously) relative to the node to node departure process.

In a realistic scenario, the rate of repair is limited by the available communication

bandwidth B. The delay in repairing the lost fragments can lead to permanent loss

of F , if fewer than k nodes remain within A before the file repair is completed.

For this realistic scenario, we calculate PDL and MTTDL using the CTMC

model shown in Figure. 7.1. The model consists of n− k + 1 possible states with

each state representing the number of fragments that remain within A. In this

model, repair is performed only at state τ, but with rate µ. The model in Fig-

ure. 7.1 assumes that all repairs proceed in parallel and that no repaired fragments

are available until all repairs are completed. This model faithfully reflects the dis-

tributed repair process in which repairs at each node proceed independently using

shared resources. The treatment of other repair policies such as sequential repair,

follows a similar analysis.

n -1n τ. . .

nλ (n - 1)λ (τ +1)λ

k -1

τλ

k

kλ

. . .

µ

Figure 7.1: Markov chain model under incomplete repairs.

7.1 Probability of Data Loss

For the CTMC model in Figure. 7.1, state k − 1 is an absorbing state, as F
can no longer be reconstructed if fewer than k fragments remain in A. Thus, the
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probability of permanent loss of F equals the steady-state probability of reaching

state k−1. That is, PDL = πk−1. To determine πk−1, we write the balance equations

as follows (see Appendix A for details).

πi =



n
i
πn, τ + 1 ≤ i ≤ n− 1

nλ
τλ+µ

πn, i = τ

τ
i
πτπn, k ≤ i ≤ τ − 1

τλπτπn, i = k − 1

(7.1)

We use the normalization
∑
i πi = 1 to compute πn and express the probability of

data loss as:

PDL =

τλ(nλ)
τλ+µ

1 + nHn−1,τ + nλ
τλ+µ

(1 + τHτ−1,k−1 + τλ)
.

7.2 Mean Time to Data Loss

Another typical reliability metric for storage systems is the MTTDL. Based

on the CTMC of Figure. 7.1, we determine the expected hitting time of state k−1

using the theorem presented in [28]. The theorem states that for a CTMC X(t)

with rate matrix Q and J being a subset of the state space, the vector of expected

hitting times kJ = (kJi : i ∈ S) is the minimal non-negative solution to the system

of linear equations. 
kJi = 0, for i ∈ J

−∑l∈S qilk
J
l = 1, for i /∈ J.

(7.2)
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In our context, J = {k− 1} and the rate matrix Q is a n−k+ 1×n−k+ 1 square

matrix and is given by:

Q =



−nλ nλ . . . 0

0 −(n− 1)λ . . . 0
...

...
...

...

B
c(τ)

0 . . . 0
...

...
...

...

0 . . . −kλ kλ

0 0 0 0


Thus, the MTTDL is given by the last term of the vector kJ . A closed-form

solution cannot be analytically obtained for kJ . However, given the system param-

eters, the MTTDL can be computed using numerical methods.

7.3 Tradeoff Between System Reliability and Repair Cost
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Figure 7.2: Probability of data loss as a function of τ at λlow.
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Figure 7.3: Probability of data loss as a function of τ at λhigh.

Figures 7.2, 7.3 and 7.4, 7.5 show PDL and MTTDL as a function of the

repair threshold τ , respectively. It can be observed that system reliability is the

least when repair threshold is set to τ = n− 1. This can be attributed to the fact

that if repair threshold is set to a high value, then on moving to state τ − 1, the

system has no chance being able to repair, thus increasing chances of data loss.

But on the contrary, if the threshold τ is set to a low value, then assuming that

repair is faster than departure rate, the time it takes to repair threshold state τ

is high. Hence, MTTDL is increases as τ decreases. We observe that both PDL

and MTTDL are optimized when τ = d. At a low rate regime λlow, setting τ = d

also optimizes the average repair cost per unit of time. However, at a high rate

regime λhigh a tradeoff is established between file maintenance and file reliability.

The eager repair strategy, which is shown to minimize the average repair cost per

unit of time under this scenario, has an increased PDL and reduced MTTDL as

compared to reliability-optimal values for these parameters. Thus, depending on

the parameter of interest, the threshold for repair should be chosen accordingly.
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Figure 7.4: MTTDL as a function of τ at λlow.
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Figure 7.5: MTTDL as a function of τ at λhigh.
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CHAPTER 8

CONCLUSION

In this thesis, we studied the data reliability problem for a community of devices

forming a mobile cloud storage system. We focused our analysis on threshold-based

maintenance using regeneration. We analyzed two repair strategies, namely dis-

tributed and centralized repair. For each strategy, we derived the optimal repair

threshold that minimizes the repair bandwidth as a function of the node departure

rate. The latter also signifies the fragment loss rate. We showed that the optimal

repair threshold and strategy depends on many system parameters. Our results

showed that no one strategy is optimal for all possible system configurations. For

high-mobility scenarios, eager repair is the optimal repair policy. For low-mobility

scenarios, lazy repair yields a lower repair cost. For relatively static networks, ap-

plying reconstruction first and then resorting to regeneration becomes the optimal

. We also determine the optimal repair strategy for a given departure rate.

Finally, we analyzed the storage system reliability when repairs can be incom-

plete due to communication bandwidth constraints. Specifically, we determined the

probability of data loss and the mean time to data loss as a function of the repair

threshold and other system parameters. We also discussed the tradeoff associated

with system reliability metrics and average cost per time. Our findings showed

that in high-mobility scenarios, a tradeoff is established between file reliability and

the average cost for maintaining a file.
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APPENDIX A

APPENDIX

Derivation of Steady State Probabilities

Let πi denote the steady-state probability that the chain is in state i. Under

steady-state condition, the probability at each node can be written as:

At node (n-1), nλπn = (n− 1)λπn−1

⇒ πn−1 =
n

n− 1
πn

At node (n-2), (n− 1)λπn−1 = (n− 2)λπn−2

⇒ πn−2 =
n

n− 2
πn

...
...

At node τ + 1, πτ+1 =
n

n− (n− τ − 1)
πn

At node τ , πτ = (τ + 1)λπτ+1

⇒ πτ = nλπn

Since,
n−τ+1∑
i=1

πi = 1∑n−τ−1
i=1

n
n−iπn + nλπn︸ ︷︷ ︸

πτ

+πn = 1

⇒ πn =
1

1 + nλ+
∑n−τ−1
i=1

n
n−i

Also, πτ = nλπn

=
nλ

1 + nλ+
∑n−τ−1
i=1

n
n−i

=
nλ

1 + nλ+ n
∑n−1
k=τ+1

1
k

=
nλ

1 + nλ+ n (Hn−1 −Hτ )
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Derivation of Probability of data loss

Let πi denote the steady-state probability that the chain is in state i. Under

steady-state condition, the probability at each node can be written as:

At node (n-1), nλπn = (n− 1)λπn−1

⇒ πn−1 =
n

n− 1
πn

At node (n-2), (n− 1)λπn−1 = (n− 2)λπn−2

⇒ πn−2 =
n

n− 2
πn

...
...

At node τ + 1, πτ+1 =
n

n− (n− τ − 1)
πn

At node τ , (τλ+ n)πτ = (τ + 1)λπτ+1

⇒ πτ =
nλ

τλ+ µ
πn

At node τ − 1, ((τ − 1)λ+ n)πτ−1 = (τ)λπτ

⇒ πτ−1 =
τ

τ − 1

nλ

τλ+ µ
πn

...
...

At node k, πk =
τ

.
k

nλ

τλ+ µ
πn

At node k − 1, πk−1 = kλπk

⇒ πk−1 = τλ
nλ

τλ+ µ
πn

Since,
n−τ+1∑
i=1

πi = 1

πn =
1

1 + n (Hn−1 −Hτ ) + nλ
τλ+µ

(1 + τHτ−1,k−1 + τλ)

Thus, PDL = πk−1 =
τλ nλ

τλ+µ
πn

1+n(Hn−1−Hτ )+ nλ
τλ+µ

(1+τHτ−1,k−1+τλ)
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