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ABSTRACT

The pervasiveness of mobile devices equipped with positioning capabilities has led to

the emergence of numerous location-based applications and services. Using mobile

network infrastructures, mobile users can rapidly gain access to a wealth of infor-

mation by connecting to a variety of services. A large fraction of the information

sought is related to the current user’s position. This includes queries for nearby

medical services, specialized stores, social activities and groups, and others. In gen-

eral, location-based service operators are assumed to be trusted parties that preserve

the user’s privacy. However, due to the sensitive nature of the information accessed

by these parties and repeated information leakages that have been recorded, the

privacy of users that access location-based services is at risk.

User’s privay can be breached by linking one’s identity, location, and query con-

tent. On certain scenarios, knowing one’s location is sufficient to derive his identity

(e.g. if this location is the user’s residence, office, etc.). In this thesis, we address

the problem of preserving the location privacy and user anonymity of mobile users

accessing authenticated location-based services. We design novel communication

protocols that preserve the user privacy without relying on any trusted entity. At

the same time, our protocols allow the service provider to authenticate any autho-

rized requesting location-based services.
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CHAPTER 1

Introduction

1.1 Motivation and Scope

The pervasiveness of mobile devices in today’s social and commercial activities has

led to the proliferation of numerous user-centric applications and services. Using

various wireless technologies including cellular [28], WiFi [29], and WiMax [1] to

name a few, users can remain continuously connected to a web of services and infor-

mation banks irrespective of their location. Moreover, equipping the mobile devices

with positioning capabilities, either by embedding a GPS receiver, or exploiting the

reception of radio signals of known origin [29], has enabled the precise determination

of ones’s location. Sharing this location with service providers has given rise to a

wealth of personalized services that exploit knowledge of one’s position, typically

referred to as, Location-Based Services. These services include but are not limited

to the discovery of points of interest, localized traffic and weather updates, provision

of navigation instructions and social networking [15, 31, 52].

In a location-based service scenario, the user consents to disclose his location,

in exchange for receiving location-relevant information such as listings of nearby

restaurants, medical care providers, or lists of people with specific interests. Be-

cause of the generality of the types of information that can be requested, oftentimes

this information can be highly sensitive, the disclosure of which can lead to a major

breach of a user’s privacy rights. For instance, a user requesting listings of highly

specialized medical care providers may implicitly reveal an existing medical condi-

tion to the information service provider. Thus breach of privacy can occur on many

levels, including the privacy of the information sought by users and the privacy of
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the users’ whereabouts.

Typically, location service providers are assumed to be trusted entities that have

entered into legal agreement with users for the non-disclosure of private data. How-

ever, the providers themselves may exploit private data to profile users and improve

on their marketing strategies, or fall victims of security breaches in which case users’

records are illegally retrieved by unauthorized parties [3, 20].

Due to the increased privacy concerns raised by authenticated information re-

trieval, several location-based services are provisioned anonymously. The concept

of anonymity states that an individual shall not be identifiable among the set of

users. Intuitively, protecting the sender’s anonymity by excluding his identity from

this communication with a location-based server (LBS) should be sufficient to dis-

associate the sender’s identity from the nature and contents of his queries.

However, even if the user’s identity is omitted from the LBS-user interaction,

knowledge of one’s location may be sufficient to link the user to his identity and

eventually, his queries. For example, a user submitting a query from his private

residence becomes uniquely identifiable if his position is known with high accuracy.

Furthermore, for location-based services that implement a subscription or pay-

per-view pricing model, implicit or explicit authentication is required. Anonymity

and authentication requirements are seemingly antithetic goals since one requires the

concealment of one’s identity and the other requires the disclosure. In this thesis,

we address the problem of preserving the location privacy and user anonymity of

mobile users accessing authenticated location-based services. Previously proposed

solutions for protecting location privacy rely on spatial cloaking mechanisms [21].

The basic idea of spatial cloaking is to “blur” the user’s exact location to a cloaking

region (CR) which meets the user’s privacy requirements. These requirements are

expressed by the number of users within the CR and the size of the CR. The former

metric reflects the anonymity degree k, i.e., the size of the set of users for which the

user submitting a query becomes indistinguishable. The latter express the level of
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Figure 1.1: An example of achieving spatial cloaking via a LAS. When the user u1

sends a query to LBS, a cloaking region with three users u1, u2, u3 is formed and
sent to LBS via the LAS. The LBS sends the answer set {p1, p3, p4} back to the
LAS. The LAS distributes the corresponding answers to the users that submitted
the queries.

accuracy with which a user’s identity becomes known to the LBS.

The majority existing methods for spatial cloaking and query anonymization rely

on a trusted third party known as the location anonymizer server (LAS) [2, 21, 33,

37, 48]. The LAS collects queries from multiple users, removes all identity related

information from the queries, computes the spatial cloaking region and submits

the queries to the LBS. The LBS serves the queries without being able to match

the users’ locations with their queries and their identities. The LBS computes a

candidate set of responses to the submitted queries (e.g. a set of points-of-interests

(POI)) and sends the responses to the LAS [24]. The LAS filters the responses

according to the exact location of the users and provides them with the appropriate

information. An example of the implementation of a location-based service via a

LAS is shown in Figure 1.1.
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Using an intermediate trusted party for query anonymization purposes has sev-

eral drawbacks. First the LAS remains as a single point of failure. The breach of

the security of the LAS exposes users’ privacy. Methods relying on the existence

of a LAS move the problem of trust from the LBS to the LAS. The users’ location

privacy is not preserved with respect to that party. Moreover, the LAS becomes the

bottleneck in terms of system scalability, since it must process frequent updates of

users’ locations, anonymize all queries and filter the results.

To address the above shortcomings, several researchers have proposed de-

centralized anonymization schemes that do not rely on the existence of LASs

[10, 11, 19, 26, 35]. Decentralized schemes remove the placement of trust on a third

party by collectively creating a spatial cloaking region and anonymizaing queries in a

peer-to-peer(P2P) fashion. However, note that users need to disclose their locations

to their group in order to perform peer discovery and CR generation. Users’ loca-

tion privacy is not preserved among group members. Moreover, existing methods

do not address the problem of collusion among the participating parties and how

to authenticate users. We develop methods that preserve the location privacy even

among the group participants and solve the authentication problem at the same

time. In particular, we make the following contributions.

1.2 Main Contributions and Thesis Organization

We design a novel location privacy preserving and query anonymization scheme

called MAZE. Our scheme does not require the existence of a LAS, but achieves its

privacy properties in a decentralized manner using P2P groups. With respect to

privacy, MAZE achieves the following properties:

(a) the location of any user cannot be defined to an accuracy greater than a prede-

fined level.

(b) user queries are k-anonymized.
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(c) the LBS can authenticate every user requesting service for charging purposes.

MAZE guarantees properties (a) and (b) against the LBS, the participating users

or any colluding set of system participants. Moreover, it allows for user authenti-

cation, a property seemingly antithetic with the notion of k-anonymity. To achieve

this goal, we obfuscate users’ location to a proper CR without asking users’ exact

location and we disassociate users’ identity with from the contents of their queries.

The properties of MAZE are analytically shown. Furthermore, we evaluate the per-

formance of MAZE in terms of communication overhead and verify our analysis via

extensive simulations.

The remainder of the thesis is organized as follows. Chapter 2 highlights the

related work. The problem statement and model assumptions are presented in

Chapter 3. The details of the MAZE protocol are described in Chapter 4. In

Chapter 5, we present L-MAZE, version of MAZE that is resistant to colluding

adversaries. In Chapter 6, we analytically evaluate the communication overhead

of MAZE and L-MAZE. We experimentally verify our analysis in Chapter 7, and

summarize our conclusions in Chapter 8.
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CHAPTER 2

Related Work

In this chapter, we present related work on the problem of user privacy in mobile

environments.

2.1 Definition of Privacy

User privacy refers to the protection of users from unauthorized accessing, storing,

repurposing and displaying of personal information from a third party. Threats on

privacy can take many forms including the disclosure of personally identifiable data,

the identification and tracking of one’s whereabouts, profiling of user habits, and

even disclosing one’s communication patterns (when and/or with whom communi-

cation took place).

Users that receive mobile services are particularly vulnerable to privacy threats,

since their communication is carried out via the open wireless medium. An adver-

sary capable of taping the wireless medium breach the privacy of the information

transmitted over the air, pinpoint a user’s location by intercepting signals that con-

tain low-level identifiers [20], and identify a user based on his location [21]. Privacy

concerns become more prominent in pervasive computing environments where a

pre-deployed and typically trusted infrastructure is absent. In such environments,

users have to collaborate in order to communicate, thus entrusting their private

information to other users [20]. While information privacy can be protected using

cryptographic methods, location privacy, communication privacy and anonymity

are not easy to guarantee. In fact, the latter is oftentimes antithetic to notions of
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security such as authentication, which requires the identification of users for the

provision of services.

2.2 Privacy Protection Methods

There are several existing approaches to protect a user’s privacy. The purpose of

these approaches is to prevent the disclosure of user’s information, which primarily

refers to the individual’s identity and location information. The different strategies

that exist for protecting one’s location privacy can be classified into three categories:

regulatory, privacy policies, and anonymity strategies [14].

Regulatory strategies - normally government rules that dictate on the use of

personal information, which call and enforce regulations for fair use of private in-

formation [14].

Privacy policies - trust-based agreements between individuals and the private

party that gains access to private information [14].

Anonymity - anonymous access of services that prevent the disclosure of the

user’s identity in a direct or indirect manner.

This thesis focuses on the provision of anonymous but authenticated services.

Next we provide a detailed description of the three privacy protection strategies.

2.2.1 Regulatory Strategies

The five principles of fair information practices given below are the core of most

privacy regulations, (originally developed as the basis of the US privacy legislation

[4, 14]). First, individuals must be aware of who is collecting personal information

about them and for what purpose. Second, individuals must consent to personal in-

formation being collected for particular purposes and ensure that the use of personal

information is limited to those purposes. Individuals must be able to access stored

personal data which refers to them, and may request at any time for any errors to
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be corrected. Collectors must ensure that personal data is accurate and up-to-date

and protect against unauthorized access, disclosure, or use. Finally, collectors must

be accountable for any failures to comply with the other principles.

The concept of fair information practices is also applied specifically to location

privacy. For location privacy, except the above five principles, the basic principles for

handling location information are given a document, drafted by the Organization of

Economic Co-operation and Development(OECD) [27]. The main privacy guidelines

are:

Collection Limitation: only necessary information should be provided for ob-

taining required services.

Consent : A LBS has to seek the agreement of the user before his location can be

collected. This is called the opt-in principle where the user has to give his consent

before data is collected or disclosed.

Usage and disclosure: The processing and disclosure of location data shall be

limited to what consent is given for. If there’s no need for LBS to know the user’s

true identity, pseudonyms should be used.

Security safeguard : After using LBS services, location data should be erased or

be anonymized so that individuals cannot be identified.

These principles serve as the basic guideline for LBS to handle location data.

Currently, two important legislations related to privacy are in effect. In the US,

privacy laws are outlined in the Privacy Act of 1974 [4]. In the European Union,

similar laws are described in Derective 95/46/EC [13]. The US Privacy Act of 1974

was designed for information privacy. It gives legal substance to the idea of fair

information practives including openness and transparency. For example, no secret

record keeping, individual participation, collection and use limitations, reasonable

security and accountability [38].

Regulatory strategies state how to handle intrusions and give a powerful mean of

governing privacy, however, they cannot prevent intrusion of privacy. Development
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of regulations may lag behind technological progress. Moreover, it is hard to keep a

balance between new technical features and privacy protection goals. It is also hard

to restrict everyone to follow and implement these principles in practise. LBS are

used across different countries. Therefore, regulatory strategies are not enough.

2.2.2 Privacy Policies

In general, all policy-based approaches require that users place trust on the system

[14]. Policy is the agreement the system promises to follow when providing the LBS

service. In order to protect a user’s privacy, the user should have control over who

may know his whereabouts. However, when this information is revealed to the LBS,

the user has lost his control. Thus, before location information can be used by a

LBS, the LBS’s policies need to be verified for compliance with the user’s preferences

and privacy setting requirements.

The essential elements of setting privacy policies are studied in [38]. These are:

the location of an object, the identity of an object, the time this observation occurs,

and the speed of the object [38]. For example, a nurse named Alice who carries a

mobile device allows her boss to locate her during work time with a resolution of 100

meters in order to let her boss control how fast she is able to arrive when a patient

needs help. When she is off duty, she does not allow her company to locate her.

She may use location-based services to receive reports of traffic conditions within

one mile around her position on her way home and let her friends know her location

when she is out for dinner. This example shows that in different conditions, a user

has different preferences and has different trust levels on different entities. Thus,

the amount of information disclosed differs.

Especially in pervasive computing environments, where personalized computing

power is freed from a stationary position, enabling information access everywhere,

anytime, and on demand and providing location services while protecting the user’s

privacy is a big challenge. Since location based services can be accessed from any-
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place, there is no single point that needs to be protected. Second, the devices in

pervasive environments may be managed by different administrators. Policies may

changes over places and over time. Every time the policy changes, the system needs

to ask the user to give approval to the new policy and to release the location informa-

tion. This overhead appears a nuisance to the user. In [38], the problem meeting the

needs of users for protecting location privacy while minimizing the required inter-

actions is addressed. A system is developed using machine-readable privacy policies

and user preferences to automate the privacy management decision-making process

[38]. An access control mechanism based on digital certificates is developed in [23].

For example, If Bob is allowed to retrieve Alice’s location information, then there

must be a certificate specifying whether and what type of information Bob can re-

trieve. When Bob tries to locate Alice, a service receiving his location request needs

to check the existence and validity of a certificate permitting this access. In [30],

Langheinrich proposes a Privacy Awareness System (PAWS) for ubiquitous comput-

ing environments. It provides users with a privacy enabling technology. A language

named APPEL, an XML-language, is used for specifying a user’s privacy require-

ments when browsing the web. The P3P (Platform for Privacy Preference Project)

[12], framework enables the encoding of privacy policies into machine-readable XML

code. These policies are used to describe the requirements for privacy issues [38]

in PAWS. Then using a trusted device, the user negotiates his privacy preferences

with the UbiCom environment.

All the policies we discussed in this section assume that the LBS will strictly

follow the policies they provide to the users. However, privacy policies are not

effective against malicious providers who to break the privacy policies.

2.2.3 User Anonymity

Instead of trusting the policies setforth by the LBS, there is a more effective way of

preventing private information disclosure before it is sent out to the LBS which is
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based on communication anonymity. The basic idea is hiding the information that

can lead the traceback of the users, such as the user identity. Instead, communica-

tion can occur using pseudonyms. Intuitively, using a pseudonym can disassociate a

user with real identity. However, after tracking a user with the same pseudonym for

sufficient amount of time, adversaries are still able to profile and link pseudonym to

the victim’s real identity. Beresford and Stajano [3] proposed the idea of frequently

changing the pseudonym of each user, such that the chance of being tracked by an

adversary is reduced. Users cannot change their identities anytime, since this could

lead to the linkage between old and new pseudonyms. The change of pseudonym

should be spatially and temporary restricted inside a region called mix-zone where

there are other users changing pseudonyms as well. However, pseudonyms are costly

to acquire. Moreover, changing pseudonyms is not effective against global adver-

saries. If an adversary can hear all communications in the network, then the move-

ment of a user can be predicted according to position, speed, movement pattern etc.,

thus different pseudonyms can be linked with high probability [5]. Furthermore, for

LBS, even it is able to hide a user’s identity, it still cannot solve the problem of

location privacy. Adversaries are able to link a user’s pseudonym to its real identity

when he sends out a query from a sensitive location like his private residence.

Thus, location information also should be anonymized by reducing the temporal

and spatial resolution of the user’s location, which is called spatial cloaking. The

basic idea of spatial cloaking technique is to “blur” the user’s exact location into a

cloaked area with at least (k− 1) other users. This is a concept called k-anonymity

which was first developed for protecting published medical data [46]. k anonymity is

defined as “A dataset is said to be k-anonymized, if each record is indistinguishable

from at least k-1 other records with respect to certain identifying attributes [19, 43]”.

This notation was first used for preserving location privacy in [21].

Several works improved upon the method for computing the spatial cloaking

region in mobile environments. These works can be classified to centralized schemes
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[2, 21, 33, 37, 48] , and decentralized ones [10, 11, 19, 26, 35].

In centralized schemes, query anonymization and spatial cloaking are achieved

at a trusted third party known as the location anonymizer server (LAS) [2, 21, 33,

37, 48]. The LAS is responsible for collecting users’ queries including their exact

locations, and transforming those locations to a cloaked region that satisfies the

desired k-anonymity requirement. The LAS then forwards the queries along with

the cloaked region to the LBS which responds with multiple replies based on the

entire cloaked area. The LAS filters the replies and distributes the optimal answers

to the users. The size of the cloaked region and degree of anonymity establish a

tradeoff with the accuracy of the returned results.

To improve upon this accuracy, several cloaking algorithms have been proposed

[2, 17, 19, 37]. In [19, 37], the proposed cloaking algorithms focus on computing the

smallest area that satisfies the k-anonymity requirement. In [2], two dynamic grid

cloaking algorithms, a bottom-up and a top-down algorithm are proposed, aiming at

achieving a high degree of accuracy in a resource-efficient manner. The CliqueCloak

algorithm assumes that users may have different k-anonymity requirements [17].

It then combines these requirements to form clique graphs of users that can share

the same cloaked region. The Casper scheme introduced a privacy-aware query

processor embedded in the LBS, capable of handling queries that include spatially

cloaked regions and not exact locations [37].

Compared to MAZE, centralized schemes rely on the existence of a trusted entity,

therefore placing explicit trust on a single party. On the other hand, in MAZE, none

of the system participants is assumed to be trusted. Moreover most previous works

focus on constructing efficient methods for computing the cloaking region. Our work

is complimentary, attempting to satisfy the antithetic requirements of privacy and

authentication.

Decentralized schemes remove the requirement for the existence of a trusted LAS

[10, 11, 35]. P2P models have been proposed in [10, 11]. In these modes, users form
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a P2P group that meets the desired k-anonymity requirement. The spatial cloak-

ing region is collaboratively computed based on the users’ exact locations. One

of the P2P group participants is randomly selected to act as an agent, responsible

for forwarding the group queries to the LBS and distributing the responses to in-

dividual users. Since the exact users’ locations are needed to compute the spatial

cloaking region, previous P2P methods do not preserve location privacy within the

P2P group. Moreover, these methods do not consider the problem of authenticated

services. Only the id of the agent user becomes known to the LBS, thus preventing

the authentication of the entire P2P group submitting queries. In [35], the authors

proposed a distributed privacy preserving scheme for location-base queries that con-

siders P2P as potential threats to users’ privacy. In this scheme, users submit queries

via a set of peers that act like mixes and re-encrypt a message before sending it to

the LBS provider. The authors also discuss the idea of homomorphisms for the pur-

pose of aggregating multiple queries into single messages. However, the scheme in

[35] does not take into account the collusion of the LBS with users of a P2P group.

Moreover, because accurate location information is included with every query, the

user identity is disclosed if that location is sensitive (such as one’s home).

Several other methods employing cryptographic techniques have been proposed

in the broader context of privately answering questions. The scheme proposed in

[18] supports private location dependent queries, based on the theoretical work on

Private Information Retrieval (PIR) [9]. The protocol based on PIR, allows users to

privately retrieve information from a database, without this information being re-

vealed to the database server. In this scheme, no third-trusted party is required and

the user’s identity (or location) remains secret. However, communication and com-

putation requirements are high and large portions of the server’s data are exposed

to the user with successive queries. The associated resource overhead is alleviated

in [39], [49] by developing a two-level PIR system, and the combination of PIR

with an oblivious transfer protocol, respectively. Other cryptographic techniques
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for anonymizing queries and achieving user authentication employ group signatures

[8] and ring signatures [42]. Group signature techniques rely on a central authority

for setting up and managing the group membership and associated pseudonyms,

thus adding considerable communication overhead [16]. Ring signatures allow users

to use a ring of pseudonyms for creating their own privacy cloaks. A graph-theoretic

model was developed in [16] in order to evaluate different ring construction strate-

gies.
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CHAPTER 3

Problem Statement and Model Assumptions

In this chapter, we state the problem addressed in this work and list our model

assumptions. For clarity, the notation adopted in the rest of the thesis is presented

in Table 3.1.

Table 3.1: Notation.
ui : identity of user i
qi : query submitted by ui

ri : a response to a query qi
li : location of ui

ki : anonymity level of ui

k-ASR : k-anonymizing spatial region
α : k-ASR area radius
lc : the center of k-ASR
d : user density
ûi : the group initiator
ϕ : privacy resolution tolerance
Pi = {ki, ϕi} : privacy profile of ui

U = {u1, u2, . . . , uk} : A user set of size k
Q = {q1, q2, . . . , qk} : A set of queries submitted by U
R = {r1, r2, . . . , rk} : A set of responses to a query set Q
F = {f1, f2, . . . , fk} : A set of transformation applied by U
G = {g1, g2, . . . , gk} : A set of transformation applied by the LBS

3.1 Problem Statement

We address the problem of preserving the privacy of users who seek location-based

services from untrusted servers. The main goal of our system is to disassociate the
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identity of a user ui submitting a query qi to a LBS, from the contents of qi and the

location ℓi of ui. To quantify the privacy level achieved by our solution, we adopt

the metric of k-anonymity [40]:

Definition 1. k-anonymity: A dataset is said to be k-anonymized, if each record

is indistinguishable from at least (k − 1) other records with respect to identifying

attributes of interest. In our context, a query submitted by a user ui is said to be

k-anonymized, if ui is indistinguishable from the identities of at least (k − 1) other

users.

To prevent the association of a location-based query qi with the identity of a

user ui by exploiting the correlation of his location with his identity ui (e.g., a query

issued from a user’s private residence leaks his identity), the user’s exact location is

obfuscated to a larger area known as the k-anonymizing spatial region (k-ASR). This

region is defined as the minimum area with a radius α that contains at least (k− 1)

other users, so that the k-anonymity of any user within the k-ASR is preserved.

However, for areas of high user density the k-ASR can acquire very small values,

thus compromising the location privacy of the user. For this purpose, we also adopt

the metric of privacy resolution tolerance ϕ, defined as follows:

Definition 2. Privacy resolution tolerance (PRT): The privacy resolution tolerance

ϕ is defined as the set of candidate locations ℓi of a user ui submitting a query qi to

an LBS.

From the definitions of k-ASR and PRT, it holds that α ≥ ϕ. In other words, the

k-ASR cannot become smaller than the location resolution tolerated by the user.

The parameter ϕ is user customizable.

Based on the aforementioned privacy metrics, we design our system to satisfy

the following requirements:

1. The queries submitted by any user ui must be k-anonymous.
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2. The location of any user ui cannot be determined beyond the PRT level ϕ.

3. The LBS can authenticate all queries originating from legitimate users (sub-

scribers).

4. The LBS can charge a user ui, for obtaining service to a submitted query qi.

Note that our system must be designed to satisfy seemingly antithetic goals.

On one hand, the anonymity of the user must be preserved in order to protect his

privacy. On the other hand, a user requesting any service must be authenticated

and uniquely identified in order to be charged.

3.2 User Privacy Profile

The privacy profile Pi of a user ui consists of the 2-tuple < ki, ϕi >. Ideally, each

user can select exact values for ki, and ϕi. However, from a usability perspective, the

majority of users will not be able to correlate the profile parameters to a mental per-

ception of privacy. For this reason, we assume that privacy profile can be customized

to a distinct and finite set of privacy levels P = {P a, P b, . . . , Pw}, corresponding to

privacy values {< ka, ϕa >,< kb, ϕb >, . . . , < kw, ϕw >}. For instance, a user ui can

set his privacy profile to one of three privacy levels {LOW,MED,HIGH}.
We assume that P is an ordered set. For two privacy levels P a and P b with

a < b, it holds that ka < kb, and ϕa ≤ ϕb. We further assume that a user ui with a

privacy level preference of P a
i is willing to accept a privacy level P b

j > P a
i of a user

uj. This decision can be automated via a pre-selection option in the user’s device.

This flexibility allows the participation of users with different privacy settings to the

same P2P group.
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3.3 Model Assumptions

Network Model–We consider a set of users which obtain location-based services

from one or several LBSs. Users are assumed to form an overlay P2P network for

obtaining anonymous location-based services. This network can be facilitated by

an existing infrastructure such as a set of base-stations, or can occur in an ad-hoc

mode. In the latter case, the ad hoc network is responsible for relaying queries to the

LBS in a multi-hop fashion. Figure 3.1 shows the two scenarios under consideration;

the infrastructure-based P2P overlay and the ad hoc P2P network. The confiden-

tiality and authenticity of P2P and peer-to-LBS communications is guaranteed via

cryptographic methods such as symmetric or asymmetric cryptography. Using such

methods, any pair of nodes in the network can establish pairwise symmetric keys,

when necessary. Users are assumed to be capable of establishing pairwise symmetric

keys for the purpose of preserving the confidentiality of pairwise P2P communica-

tions. Thus can be facilitated via the use of pre-existing public keys or via other

methods such as a Diffie-Hellman key exchange [45]. Moreover, every user ui holds

a secret/public key pair denoted as (ski, pki).

Figure 3.1: System architecture.

Adversary Model–We assume that none of the network participants is trusted.

This includes users collaborating for the provision of anonymity as well as the LBS
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units. Similar to [47], we further assume that the network participants including

the LBS are honest but curious. The goal of the participants are to breach the

location privacy of users submitting queries. This can be achieved by associating

query qi issued by a user ui with the identity ui of that user. Untrusted peers aim

at achieving one of the following goals: (a) learn the contents of a query qi, (b)

associate qi with the user’s location ℓi, (c) associate a query qi or a response ri

with a location ℓi, and (d) learn the contents of a response ri. Despite their curious

nature, all peers honestly participate in the system and do not launch any active

denial-of-service attacks such as dropping, modifying, or misrouting packets.

We consider two possible adversary models. In the first model, each malicious

entity is acting independently. Peers and/or LBSs independently attempt to breach

the privacy of users based on the information they can collect. In the second model,

the LBS may collude with untrusted users in order to breach the privacy of any

other user. The two entities share their information in an effort to discover the

identity of a user submitting queries, or correlate his identity with his location.
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CHAPTER 4

The MAZE Protocol

4.1 System Architecture

In this section, we describe MAZE, a distributed privacy preserving protocol that

relies on P2P collaboration. MAZE does not utilize a centralized trusted party such

as a location anonymizer. Our goal is to provide the anonymization service in a

distributed manner, and in complete lack of trust between the system’s participants.

As we show in Section 4.5, MAZE satisfies all the system requirements set forth in

Section 3.1, under independent adversaries.

In MAZE, a set of users cooperate in order to anonymize their location-based

queries to a desired degree of anonymity according to their user profile settings.

Once queries have been anonymized, they are collectively submitted to the LBS for

service. The LBS is able to authenticate that the queries originate from legitimate

users (subscribers) and is able to charge the users submitting the requests. However,

the LBS cannot link the submitted queries to individual users. The responses of

the LBS propagate back to the group of users and are distributed accordingly. The

MAZE protocol consists of the following three phases.

Group formation phase: During this phase, a set of users U = {u1, u2, u3, · · · , uk}
form a P2P anonymity group of size k. The group U satisfies privacy profile of each

individual user ui ∈ U . Because peers are considered to be untrusted, during the

group formation phase, users do not reveal their locations for forming U .
Query anonymization phase: In this phase, users in U anonymize a set of queries

Q = {q1, q2, · · · , qk} by applying a transformation F = {f1, f2, . . . , fk} to the query

set Q. The transformed set F(Q) = {f1(q1), f2(q2), . . . , f2(qk)}, is shuffled between



37

the group participants (similar to a mixnet operation) so that the identity of the

originator of each query cannot be determined by the users or the LBS. The goal of

F is dual; to prevent the disclosure of the contents of a query qi made by ui to any

user in U , and to prevent the LBS from associating qi with ui.

Query service phase: In this phase, the set of transformed queries F(Q) is col-

lectively submitted to the LBS by the group U . The LBS authenticates all users in

U , and charges them an appropriate fee for the service it provides. It then obtains

Q by applying the inverse transformation F−1 = {f−1
1 , f−1

2 , . . . , f−1
k } and prepares

a response set R = {r1, r2, · · · , rk}. Set R is hidden by the application of a trans-

formation G = {g1, g2, . . . , gk} on R. Because the LBS cannot associate qi with ui,

the set of transformed responses G(R) is sent to all members of U . Each member is

able to extract ri from G(R) by applying an inverse transformation g−1
i , but cannot

learn the response to any other query.

Figure 4.1 shows the MAZE protocol architecture. A group of five users has

formed an anonymity group U . The anonymity group satisfies the privacy require-

ments in terms of ki, ϕi for all ui ∈ U . Members of U send a transformation F(Q) of

their query set Q to the LBS. The LBS responds with the transformed response set

G(R). Each member is able to extract the individual response ri. We now describe

the three phases of MAZE in detail.

4.2 Phase I: Group Formation Phase

The group formation phase is initiated by any user who wants to submit a query

to the LBS, and does not already belong to an anonymization group. We denote

the group initiator as ûi. Based on his privacy profile, ûi selects the values of the

anonymity level k, and the k-ASR area radius α. Parameter α can be roughly

calculated by α ≈
√

k/π × d, where d is the user density assuming that α ≥ ϕ.

Otherwise α can be set equal to ϕ. The group initiator also selects a random point

ℓc within a disc C(ℓi, α), where ℓi denotes the center of the disc (and also the
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Figure 4.1: The MAZE protocol architecture. A set of users form a P2P group
U = {u1, u2, u3, u4, u5} with an anonymity degree k=5 and a spatial cloaking region
of size A=(lc, α). The users in U exchange a transformation F(Q) of their query set
in order to anonymize it. F(Q) is submitted to the LBS who responds with a set
of hidden responses G(R). G(R) is flooded among the P2P users with each ui ∈ U
obtaining only the response ri.

location of ûi) and α denotes its radius. The point ℓc serves as the center of the

k-ASR and is randomly selected to prevent the center-of-ASR attack [25]. Disk

C(ℓc, α) becomes the k-ASR for group U initiated by ûi. To form a group U , the
following steps are executed.

Step 1: The group initiator broadcasts a group formation message.

mf : gid ∥ (ℓc, α) ∥ ûi ∥ ts ∥ Pi.

Message mf contains the group id gid, the k-ASR boundaries, the identity ûi of the

group initiator, a timestamp and user’s privacy profile Pi.

Step 2: A user uj located within the k-ASR boundaries replies with a join message

mj

mj : gid ∥ join ∥ uj

if Pi > Pj (i.e. ki ≥ kj, αi ≥ ϕj). And then uj rebroadcast mj out.
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Step 3: If the number of join messages received by ûi is less than (k − 1), ui

increases the size α of the k-ASR and repeats Steps 1, 2. To avoid duplicate join

requests, users within the k-ASR do not respond to requests with the same gid.

Step 4: The group initiator ûi randomly selects (k − 1) users that replied with a

join message and forms group U = {u1, u2, . . . , uk} identified by gid. It then notifies

all group members of U by broadcasting an accept message,

ma : {u1, u2, · · · , uk} ∥ gid ∥ ûi ∥ accept

The dissemination mechanism for the messages necessary for the formation of

U depends on the underlying network architecture. We describe two mechanisms,

one for infrastructure-based networks and one for ad hoc networks.

Infrastructure-based networks–In infrastructure-based networks, communica-

tion among peers is realized via base stations (BS). The group initiator ûi sends

the group formation message mf to the BS that he is associated with. The BS is

responsible for relaying mf to all users within the area specified by the k-ASR (disk

of radius α centered at ℓc). Note that depending on the BS deployment, multiple

BSs may be needed to participate in the relay of mf and also in the subsequent

phases of the query anonymization. An example of the group formation phase for

an infrastructure-based network is shown in Figure 4.2. The group initiator u1

broadcasts message mf with a cloaking region k-ASR C(lc, α) via the BS. Only

users with privacy profile Pi < P1 and located within C(lc, α) will reply with a join

message mj. Group initiator u1 will then respond with message ma specifying U ,
thus completing the group formation phase.
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Figure 4.2: Group formation phase in an infrastructure-based network.

Ad hoc networks–In ad hoc networks, the group formation phase takes place in

a distributed manner. Here, we employ a flooding mechanism for disseminating the

group formation message mj. In Step 1, the group initiator ûi broadcasts mf . Any

user within the k-ASR that receives mf for the first time re-broadcasts it. Note that

users can identify duplicate requests based on the unique gid and timestamp ts, and

therefore, avoid broadcasting mf multiple times. Nodes within k-ASR receiving mf

continue to relay it. The propagation of mf terminates at the boundaries of the

k-ASR since nodes outside that region ignore mf . Any user uj that has received an

mf that satisfies his privacy profile as it is outlined in Step 2, unicasts message mj

to ûi. The group initiator randomly selects (k − 1) replies and forms group U by

sending the accept messagema to the group members. At this stage, group members

form an overlay network using a broadcast routing algorithm for ad hoc networks

(e.g. [32]). The resulting broadcast routing tree is utilized for the dissemination of

group messages among the group members for the purpose of query anonymization.

In the case where Step 3 is necessary due to an insufficient number of users

within the the initial selection of C(lc, α), the group initiator does not sent an

accept messagema. Instead, he broadcasts a newmf with the same gid, but different

timestamp ts. Users within the new k-ASR, flood mf similarly to the flooding of
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Figure 4.3: Group formation phase in an ad hoc network.

the original request. However, only users that did not reply in the original request,

unicast mj to ûi. Once ûi obtains at least (k − 1) replies, it can then broadcast ma

to the corresponding members.

The group formation phase for an ad hoc network of 10 users is shown in Figure

4.3. In this example, assume that u1 is the group initiator. User u1 broadcasts a

group formation message mf , indicating the k-ASR boundaries C(lc, α1) and P1.

Users u2 and u5 rebroadcast mf since they are located within the k-ASR. Similarly,

users u3 and u4 rebroadcast the requests received from u2 and u5 respectively. On

the other hand, users u7, u8, u9 and u10 do not propagate mf since they are outside

the k-ASR.

Out of the five users within the k-ASR that received mf , only four reply with a

join message. User m6 does not join the group due to its high privacy requirement.

Since at leat six nodes are needed to satisfy the anonymity value k, user u1 expands

the k-ASR to C(lc, α2) and rebroadcasts mf . Under the new k-ASR, users u7, u8,

and u9 reply with a join message. User u1 randomly picks five users out of the seven

that replied with a join request. The group formation phase terminates in a P2P

anonymity group of size k, satisfying the privacy settings of all group members.

The group formation phase culminates in a set of k users satisfying their privacy
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settings profile and forming a P2P group. Note that users do not reveal their

location while joining a group. The only information that is provided is that every

user is within the k-ASR. Because a user uj responds to the group formation request

originating from ûi only if αi ≥ ϕj the location privacy of uj is preserved.

4.3 Phase II: Query Anonymization Phase

In this phase, the P2P group applies a transformation F to their set of queries Q
in order to anonymize them. The transformation involves cryptographic operations

on Q as well as exchange of messages between members of U .
To anonymize the set of group queries Q and at the same time allow the LBS to

authenticate and charge each group member, we employ All-Or-Nothing (AONT)

transformations. Such transformations were originally proposed by Rivest to slow

down brute force attacks against block encryption algorithms [41].

Definition 3. AONT: A transformation f : {Fu}n −→ {Fu}n
′
, mapping a message

y = {y1, y2, . . . , yn} to a set of pseudo-messages s = {s1, s2, . . . , sn′} is set to be an

AONT if:

1. f is a bijection.

2. It is infeasible to obtain any part of y, if one of the si is unknown.

3. f and its inverse f−1 are efficiently computable.

In this definition, Fu denotes the alphabet of message blocks yi, si and n′ denotes

the number of output pseudo-messages given the input messages n, with n′ ≥ n.

Here, the main idea of an AONT is to prevent the recovery of any part of y, if

any pseudo-message si is not known. In essence, AONTs can be considered to be an

(n′,n′)-threshold scheme, where a secret is split to n′ shares all of which are required

to recover the secret [41]. Several AONTs have been proposed in the literature
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including the package transform [41] and the linear AONT [44]. The latter provides

unconditional security1 while preverving the size of the original message.

To anonymize the set of queries Q, the P2P group executes the following steps.

Step 1: Each user generates a random symmetric key Kri . This key will be used

by the LBS for the encryption of the response ri corresponding to query qi.

Step 2: Each user transforms yi : qi∥Kri = {y1i , y2i , . . . , yk
′

i } to pseudo-messages

si = {s1i , s2i , . . . , ski } by applying AONT f : {Fu}k
′ −→ {Fu}k. Here, {Fu} is the al-

phabet of the input blocks yji and k′ ≤ k denotes the number of input blocks needes

such that the number of output pseudo-messages is equal to the anonymity degree k.

Step 3: Each user selects a random permutation πi(U) of the user set U and sends

pseudo-message sji∥siID to user π(U)(j). Here, siID denotes a unique identifier for

si, so that pseudo-messages belonging to the same message can be correlated at the

LBS. Messages sji∥siID are encrypted with the symmetric key shared between user

ui and user πi(U)(j).

Step 4: Each user ui encrpyts all received pseudo-messages with the pairwise key

shared between ui and the LBS. It then sends to LBS

EKui ,LBS(s
π−1
1 (U)(i)

1 ∥s1ID, s
π−1
2 (U)(i)

2 ∥s2ID, . . . , s
π−1
k (U)(i)

k ∥skID) ∥ ui ∥ gid ∥ (lc, α).

(4.1)

The four steps of the anonymization phase are shown in the example of Figure

4.4. In this example, the P2P group consists of three users. Queries qi∥Kri are

split to three pseudo-messages. The recipient of each pseudo-message is selected

1Given any n′ − 1 pseudo-messages, all messages y are equally likely.
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according to the random permutation πi(U) generated by each user. Users forward

all received pseudo-messages to the LBS including their identity.

Figure 4.4: Anonymization under independent adversaries.

4.4 Phase III: Query Service Phase

In this phase, the LBS responds to the queries received from the P2P group and

charges each of the group participants. To achieve this, the following steps are

executed:

Step 1: The LBS authenticates and decrypts every message carrying group id gid.

Step 2: The LBS recovers all transformed queries si, ∀ui ∈ U , using the message

ids siID of each pseudo-message. It then reconstructs each query qi, ∀ui ∈ U by

applying the inverse AONT f−1 on f(Q).

Step 3: The LBS prepares response set R = {r1, r2, . . . , rk} where each ri

corresponds to a query qi.

Step 4: The LBS sends g(R) = {EKr1
(r1), EKr2

(r2), . . . , EKrk
(rk)} to all users of

the P2P group U .
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Step 5: Each ui ∈ U obtains its own response ri by decrypting EKri
(ri) with Kri .

At the termination of this phase, each user in U has received its individual

response ri. Moreover, the LBS has authenticated and individually charged every

user participating in U .

4.5 Privacy Analysis

In this section, we analyze the privacy properties of MAZE.

4.5.1 Correctness

We first verify that execution of MAZE leads to the service of each query in Q.

This can shown in a straightforward manner by inspecting the query anonymization

and query service phases. If every participant follows the stpes of MAZE, the LBS

will obtain all pseudo-messages corresponding to the queries in Q. Because f is a

bijective function set Q is uniquely recovered. Each user will then be able to obtain

this response from the response set g(R) by using his randomly generated symmetric

key.

4.5.2 Location Privacy in U

We first show that MAZE preserves the location privacy requirements of any users

participating in the P2P anonymization process.

Proposition 1. For every user ui ∈ U , with profile Pi = ⟨ki, ϕi⟩, no user uj ∈ U ,
j ̸= i can determine ui’s position li, at an accuracy smaller than ϕi.

Proof. During the group formation phase, the group initiator ûi selects k-ASR

C(lc, α) by randomly selecting lc within C(li, α). Therefore, all points within C(lc, α)
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area equally likely as candidate position of ûi. The group formation message mf

contains only C(lc, α) thus localizing ûi within an accuracy α ≥ ϕi. Any users uj

replying to mf acknowledges to be within C(lc, α), thus allowing its localization

with an accuracy α. Since it is assumed that uj will only reply if Pi > Pj, it follows

that α ≥ ϕj. Therefore, the location privacy of every user in U with respect to other

users in U is maintained.

4.5.3 Location Privacy at the LBS

The reconstructed query set at the LBS contains the specification of the k-ASR via

the inclusion of C(lc, α). Because a user uj participates in U only if α ≥ ϕj, if follows

that the LBS cannot learn the location of a user in U at an accuracy greater than the

one specified in everyone’s user profiles. Hence, the location privacy requirements

of all users in U are preserved.

4.5.4 Query Privacy in U

We now analyze the query privacy properties of MAZE with respect to the users in

U .

Proposition 2. Collusion of up to (k − 1) users in U does not reveal the query of

the kth user.

Proof. This is a direct consequence of the use of AONTs. During the anonymization

phase, a query qi is partitioned in k pseudo-messages, (k−1) of which are distributed

to (k − 1) other users. Hence, the collusion of (k − 1) users can recover (k − 1)

pseudo-messages which according to the definition of an AONT do not reveal any

information about qi.

Similarly, because every user ui with holds one pseudo-message from the group

U , the collusion of (k − 1) users cannot recover Kri . Therefore, no user but ui can

decrypt the query response and obtain ri. Note here that MAZE not only preserves
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k-anonymity, but prevents users in U from learning the contents of queries and

responses.

4.5.5 Query Anonymization at the LBS

We now show that under MAZE, the LBS cannot associate the identity of a user ui

with his query qi.

Proposition 3. MAZE preserves k-anonymity with respect to the LBS.

Proof. After the anonymization phase, every user in U sends a message yi to the

LBS. This message contains one pseudo-message from every query in Q and the

associated query ids siID corresponding to each query qi. Using siID, the LBS can

reconstruct Q, but it cannot link a particular qi to a ui, since the sID of each query

is not related to the user identity. The probability that a query qi reconstructed for

pseudo-messages si = {s1i , s2i , . . . , ski }, where each of sji is provided by one user in U
is equal to 1/k. Hence, all users in U are equally likely to have generated qi, and

the k-anonymity of users in U is preserved.

However, MAZE does not preserve the query anonymity when the LBS colludes

with one of the nodes in U . Using the query id siID the LBS can reconstruct every

query qi, ∀ui ∈ U . Moreover, individual users in U , can associated any query

id siID with the corresponding user ui. This is because during the steps of the

anonymization phase, a user ui reveals the sID of his query to the user that receives

his pseudo-message. A user uj receiving a message sji∥siID from ui, knows that ui

is the message originator and hence can link a message siID to user ui. Therefore a

user colluding with the LBS can associate qi with ui via the siID. In the following

section we modify the query anonymization phase to prevent the breach of privacy

due to the collusion of LBS with users in U .
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CHAPTER 5

Collusion-Resistant Query Anonymization

As shown in Chapter 4, MAZE is not resistant to the collusion of the LBS with

users in U .In this chapter, we develop L-MAZE, an anonymization protocol that is

resistant to the collusion of up to (L− 1) users with the LBS.

To preserve anonymity, we employ and L-stage decryption mixnet[7] that

anonymizes the originator of pseudo-messages with a given message id. The dis-

association of the user ui from the message siID effectively addresses the collusion

problem, in which the LBS exploits its knowledge of the link between a query and

a message id to identify a user. In L-MAZE, the group formation phase and query

service phase remain identical to those of MAZE. The query anonymizaiton phase

is modified as follows.

5.1 L-MAZE: Query Anonymization Phase

The steps of the collusion-resistant query anonymization phase of L-MAZE are as

follows:

Step 1: Each user generates a random symmetric key Kri . This key will be used

for the encryption of the response ri corresponding to query qi, at the LBS.

Step 2: Each user transforms yi : qi∥Kri = {y1i , y2i , . . . , yk
′

i } to pseudo-messages

si = {s1i , s2i , . . . , ski } by applying AONT f : {Fu}k
′ −→ {Fu}k.
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Step 3: Each user ui generates a mixnet matrix M i
k×L with the following prop-

erties. Every column of M i
k×L is a permutation of U . Every row of M i

k×L is a

sub-permutation of U . The initial column permutation is selected at random. The

remaining column permutations satisfy the row sub-permutation requirement. One

such M i
k×L for k = 5 and L = 3 is shown in Figure 5.1.

Figure 5.1: MIXNET matrix M i
5×3.

Step 4: Every user ui with pseudo-messages si = {s1i , s2i , . . . , ski } encrypts each

pseudo-message sji∥siID L times using the sequence of public keys of the set of users

denoted by row j of M i
k×L.

Epk
Mi

k×L
(j,1)

(Epk
Mi

k×L
(j,2)

(. . . (Epk
Mi

k×L
(j,L)

(sji∥siID)))). (5.1)

Mixnets are cryptographic systems that implement an anonymous channel be-

tween two parties, a sender and a receiver[8]. These systems involve a combination

of cryptographic operations such as an encryption/decryption operation with a shuf-

fling and/or permutation operation in order to prevent the tracing of a message to

its origin. The cryptographic and shuffling/permutation operations may be repeated

a number of times L, until messages are sufficiently anonymized. In this case, we

say that the mixnet consists of L stages.

In our context, the role of the sender is assumed by a user ui that wants to

anonymize query qi. The role of the receiver is assumed by the set of colluding
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users and the LBS.

Step 5: Every encrypted pseudo-message is broadcasted to the entire group U .

Step 6: At each stage, an intended receiver decrypts one layer of encryp-

tion from each pseudo-message it receives. User waits until it receives (k − 1)

pseudo-messages. It then repeats steps 5, 6 a total of (L−1) times (L stages in total).

Step 7: After all layers of encryption have been removed, each user encrypts

all received pseudo-messages and his id with the symmetric key shared between the

user and the LBS. It then sends all encrypted pseudo-messages to the LBS.

5.2 Privacy Analysis

5.2.1 Correctness

We first show that the execution of the L-MAZE protocol allows the correct recon-

struction of all queries at the LBS. This is shown via the following proposition.

Proposition 4. At every stage of the mixing operation, every user in U holds exactly

one pseudo-message from each query.

Proof. Consider a message yi = qi∥Kri transformed in k pseudo-messages si =

{s1i , s2i , . . . , ski } via an AONT. At every mixnet stage these messages are sent to a

permutation of U (columns of M i
k×L are permutations of U). Hence, at the each

stage, every user in U receives exactly one sji .

There are a total of k queries, each one being split to k pseudo-messages. Ac-

cording to Proposition 4, at the end of the Lth stage, each user receives one pseudo-

message from each query. In all, each user holds k pseudo-messages, each one
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belonging to one of the k queries. In Step 7, all pseudo-messages are forwarded to

the LBS. The LBS reconstructs the sis, ∀i using each siID and recovers the query qi,

∀i by applying the inverse AONT.

5.2.2 Query anonymization under collusion

We now analyze the resistance of L-MAZE to the collusion of the LBS with up to

(L − 1) users. Our purpose is to show that collusion of any number x ≤ (L − 1)

users in U with the LBS reduces the anonymity of the remaining (k − x) users

to (k − x). That is, the queries submitted by the (k − x) non-colluding users are

indistinguishable. This is the best case scenario since the colluding users already

reveal their queries to the LBS.

To illustrate the collusion resistance property, we model the mixnet represented

by a matrix M i
k×L as a set of paths on a complete graph Gk where the set of vertices

corresponds to the users of U . An example of such a graph for the mixnet of Figure

5.1 is shown in Figure 5.2.

Figure 5.2: G5 for the user u1.

Using this graph model, the mixnet operations applied to a pseudo-message sji

are represented as a path P j
i = {i,M i

k×L(j, 1),M
i
k×L(j, 2), . . . ,M

i
k×L(j, L)}. This

path has the following properties.



53

Proposition 5. Each path P j
i , j = 1, . . . , k corresponding to the mixnet opera-

tion applied to the pseudo-messages si = {s1i , s2i , . . . , ski } contains at least one non-

colluding user.

Proof. Every path P j
i consists of exactly L vertices corresponding to the L stages of

the mixnet. These vertices are denoted by each of the rows of M i
k×L. By construc-

tion, each row of M i
k×L is a sub-permutation of U of size L. Therefore, P j

i contains

exactly L distinct vertices. Given that at most (L−1) users are assumed to collude,

every path P j
i will contain at least one non-colluding user.

Using Proposition 5, we can now show that L-MAZE preserves (k − L − 1)

anonymity.

Proposition 6. L-MAZE preserves the query anonymity of the (k−x) non-colluding

users when x ≤ (L− 1) users collude with the LBS.

Proof. According to Proposition 4, at each stage of L-MAZE, every user obtains

exactly one pseudo-message from each user in U corresponding to the k queries

generated in U . Moreover, according to Proposition 5, the pseudo-messages of a

transformed query si follow paths that contain at least one non-colluding user. When

the encrypted form of pseudo-message sij reaches one non-colluding user, it is mixed

with (k−1) other encrypted pseudo-messages. Out of the total k messages received

by the non-colluding user, x of them are known to the LBS since they belong to the

colluding users. The remaining (k − x) messages were generated by non colluding

users. These unknown (k−x) pseudo-messages are encrypted with the public key of

the non-colluding user that received these k messages. When this layer of encryption

is removed at the non colluding user, the incoming (k−x) encrypted pseudo-messages

become uncorrelated to the (k − x) outgoing ones, since the secret key used of the

non-colluding user for decryption is not known to others. Note that the message

id siID appended to each pseudo-message is randomly generated for each query.

Therefore, even if a user submits the exact query twice, the incoming and outgoing
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cipher texts are randomized. Since the colluding users cannot correlate the (k − x)

incoming pseudo-message with the (k − x) outgoing ones when mixed at a non-

colluding node, the linking of an siID to ui becomes a random guess with probability

of success equal to 1/(k − x).

We emphasize that in Step 5 of L-MAZE, the encrypted pseudo-messages are

broadcasted to the entire group U . This is because a recipient of an encrypted

pseudo-message is not aware of which user is supposed to receive the pseudo-message

at the next stage of the mixnet. Even if the intended recipient is reached before

the broadcast is completed (recall that users in U may span in multiple hops), the

relay of the pseudo-message is contained until all users in U receive it. Therefore,

when a pseudo-message leaves a colluding user and is destined to a non-colluding

one, the set of colluding users cannot identify which of the non-colluding users are

the intended recipients. In combination with the mixing operation of the incoming

pseudo-messages, occurring at the non-colluding users that property of (k − x)-

anonymity is shown.

To illustrate Proposition 6 consider the mixnet shown in Figure 5.3. Assume that

users u2 and u5 are colluding and attempt to correlate a pseudo-message originating

from u1 with his identity. At stage 1, u2 identifies that the encrypted pseudo-message

he received originated from u1, since the first transmission of any user must contain

pseudo-messages generated from that user1.

User u2 will remove one layer of encryption and forward the pseudo-message

to the next stage of the mixnet. Since u4 is a non-colluding node, users (u2, u5)

cannot identify which of the (u2, u3, u4) received the pseudo-message. Moreover, u4

receives 4 more pseudo-messages, only two of which are known to (u2, u5). User u4

1Because the encrypted pseudo-messages do not contain any identifier with repect to the recip-

ient, a user has to try decrypting all received pseudo-messages with his private key and keep the

k ones that he is able to decrypt. To indicate the success of the decryption, the pseudo-messages

are accompanied by a message authentication code.
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Figure 5.3: In 3-MAZE, when two users u2 and u5 collude, they are not able to trace
back to the query sender u1.

will remove one layer of encryption and forward all 5 recieved pseudo-messages to

the next hop. Out of the five pseudo-messages forwarded to stage three, the three

that belong to u1, u3, u4 are indistinguishable. Therefore, (u2, u5) can correlate those

messages to their originators with probability 1/3.
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CHAPTER 6

Analysis of the Communication Overhead of MAZE

In this chapter, we analytically evaluate the communication overhead of MAZE. We

express this overhead in terms of the number of messages that need to be transmitted

in order to complete each of the phases of MAZE. We consider two cases, (a) number

of messages transmitted by users participating in the P2P group without taking

into account the multi-hop nature of the network, and (b) number of messages

transmitted by any of nodes of the network. For case (b), we further divide our

classification to infrastructure-based and ad hoc networks.

6.1 Communication Overhead of MAZE

We first compute the number of messages that need to be transmitted in MAZE

and L-MAZE without taking into consideration how these messages are relayed to

the appropriate destinations. Here, we assume that the users of the P2P group form

an overlay network and hence, are connected via one-hop virtual connections. The

total communication overhead can be expressed as the sum of the communication

overheads for completing each of the three phases of MAZE.

OTotal = Ogfp +Oqap +Oqsp, (6.1)

where OTotal denotes the total communication overhead and Ogfp, Oqap and Oqsp,

denote the overhead of the group formation, query anonymization and query service

phases, respectively. For the group formation phase it holds that

Ogfp = k + 1. (6.2)
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Eq. (6.2) accounts for the group formation message mf , the group acceptance

message ma and the individual join messages mj sent from each user located within

the k-ASR. Here, we have assumed that the size of the k-ASR has been selected to

contain exactly k users. Therefore, (k − 1) users reply to the group initiator with a

join request.

In the query anonymization phase, every user transforms his query to a set of k

pseudo-messages, (k − 1) of which are distributed to other users. After the query

anonymization, every user sends one message to the LBS. Hence, the total number

of messages transmitted during this phase is equal to

Oqap = k2. (6.3)

Note that each pseudo-message has a length equal to 1
k

th
of the length of the

query message y. Thus, the (k − 1) pseudo-messages transmitted for the query

anonymization can be thought of to be equivalent to the transmission of one message

equal to the query qi, plus the random symmetric encryption key. In this case, the

number of messages of the anonymization phase becomes equal to Oqap = 2k. In the

case of L-MAZE, the anonymization phase has L stages, with each stage involving

the transmission of k pseudo-messages, or the equivalent of a single query. Thus,

the communication overhead of the anonymization phase becomes equal to (L+1)k.

Finally, during the query service phase, the LBS sends one reply message for

every query it receives accounting for a total of Oqsp = k messages. Summing the

communication overhead of all three phases yields

OTotal = k + 1 + 2k + k = 4k + 1. (6.4)

That is, the communication overhead of MAZE increases linearly with the k-

anonymity requirement. For L-MAZE, the total communication overhead is equal

to (L+ 3)k + 1.
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6.2 Network Overhead of MAZE

In this section, we evaluate the communication overhead imposed by MAZE on the

entire network. In our analysis, we account for the number of messages that need

to be relayed by the network in order to complete the different phases of MAZE.

6.2.1 Infrastructure-based Networks

In infrastructure-based networks, communication among the peers of group U takes

place via BSs. In our analysis, we assume all users participating in a P2P group

are served by a single BS. Hence, the transmission of each message from any of the

group participants, or the LBS requires a total of two messages to be relayed to the

appropriate destination; one message from the source to the BS and one message

from the BS to the intended destination. Utilizing eq. (6.5), the required network

overhead for realizing MAZE is

OTotal = 2(4k + 1). (6.5)

For L-MAZE the network overhead becomes equal to OTotal = 2(L+ 3)k + 2.

6.2.2 Ad hoc Networks

When the communication among the peers of the P2P group is realized via

an ad hoc architecture, the network overhead of MAZE is topology dependent.

To make our analysis tractable, we make the following simplifying assump-

tions. We assume that users are uniformly distributed within the network area

with a density d1. Moreover, every user can reach the LBS via a single transmission.

1Our analysis can be easily extended to the case where users with different profiles are deployed

with different densities.
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Group Formation Phase: In the group formation phase, the group initiator

broadcasts a group formation message mf that must be relayed to every node within

the k-ASR. Given the radius α of the k-ASR, the relay of mf requires on average,

the transmission of dπα2 messages, which is equal to the expected number of nodes

within an area of size πα2. Note that all nodes within the k-ASR relay mf irre-

spective of whether the privacy profile included in mf satisfies their own privacy

requirements.

In Step 2 of the group formation phase, each user within the k-ASR that meets

the privacy requirements set by the group initiator, unicasts a join message mj to

the group initiator. Depending on the network topology, each mj may be relayed to

the group originator via a multi-hop route. To compute the overhead of this phase,

we divide the k-ASR to several zones Z1, Z2, . . . , Zh. The number of zones is equal

to h = ⌈α+ϵ
r
⌉, where ϵ denotes the distance between the group initiator and the

randomly selected center of the k-ASR, and r denotes the communication range of

each user.

As shown in Figure 6.1, each zone Zi is the intersection between a ring of width

r and the k-ASR. We make the approximation that a join request originating from

a user within zone Zi requires a total of i transmissions before it is received by

the group originator. Let the area of each zone that intersects with the k-ASR

be denoted by AZi
(ϵ). The total number of messages that are transmitted by the

network for the completion of step two of MAZE is equal to

h(ϵ)∑
i=1

idAZi
(ϵ). (6.6)

To compute the size of the areas AZi
(ϵ) for any arbitrary i, we consider the geom-

etry of Figure 6.1. In Figure 6.1, disc Cr(A(xA, yA), r) denotes the communication

area of the group originator and disk Cα(B(xB, yB), α) denotes the k-ASR. Based

on the selection strategy of point B (the center of k-ASR), the distance AB = ϵ may
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Figure 6.1: Intersection area of disc Cr(A, r) and Cα(B,α).

vary to any value from 0 to α. In fact, it is easy to show via elementary geometric

arguments that the probability distribution for the distance AB, given that A is

uniformly selected to be within the circle Cα(B,α) is given by

Pr[AB ≤ ϵ] =
1

α
, 0 ≤ ϵ ≤ α (6.7)

For a fixed distance ϵ, the area of zone Z1 is equal to the area of intersection

between discs Cr and Cα (we have assumed that α > r). Assume Cr(A, r) and

Cα(B,α) intersect in two points which is labeled C and D as shown in Figure 6.1.

The area of zone Z1 can be computed to be equal to

AZ1(ϵ) =


1
2
r2CBD − 1

2
r2 sin(CBD)

+1
2
α2CAD − 1

2
α2 sin(CAD) if ϵ ≥ α and ϵ ≥ r

πr2 if r ≤ ϵ ≤ α

(6.8)

where

ϵ =
√

(xA − xB)2 + (yA − yB)2

CBD = 2× arccos( r
2
r+(ϵ)2−r2α
2×rr×ϵ

)

CAD = 2× arccos( r
2
α+(ϵ)2−r2r
2×rα×ϵ

)
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Similarly, the area of zone Z2 can be computed as the intersection between a

disk of radius C2r(A, 2r), and the k-ASR minus the area of zone Z1.

AZ2(ϵ) = area(C2r(A, 2r) ∩ Cα(B,α))− AZ1(ϵ). (6.9)

Generalizing to the area of zone Zi it follows that,

AZi
(ϵ) = area(Cir(A, ir) ∩ Cα(B,α))−

i−1∑
j=1

AZj
(ϵ), i ≥ 2. (6.10)

By substituting eq. (6.10) to eq. (6.6), we obtain an approximation of the

communication overhead associated with Step 2 of MAZE, for a given distance ϵ.

Averaging over all possible values of ϵ based on the probability density function in

eq. (6.7), we obtain the value of the expected communication overhead of Step 2 as

∫ α

0

h(ϵ)∑
i=1

idAZi
(ϵ)

1

α
dϵ. (6.11)

In Step 3 of the group formation phase, the group initiator sends an accept mes-

sage ma to (k−1) nodes located within the k-ASR. To facilitate the communication

among the group members, we have assumed that communication takes place via a

broadcast routing tree. The overhead associated with this type of communication

is topology-dependent and equal to the number of non-leaf nodes of the broadcast

tree topology. To estimate this communication overhead, we evaluate the number

of users that are needed for covering the k-ASR with a connected network. The

justification for this estimated value lies in the selection process of the users that

participate in the P2P group. Out of all users within the k-ASR, the k users that

compose U are selected at random. Hence, these users can be located anywhere

within the k-ASR. A connected network of users that covers the k-ASR is guaran-

teed to relay information to all users within it. Therefore, by finding the minimum

number of users necessary to cover the k-ASR, we calculate a conservative estimate

on the overhead broadcast routing operation.
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The number of users needed to cover the disk of radius α with a connected

network is given by the following theorems [34, 50].

Theorem 1. [34]: Consider a two-dimensional infinite plane where nodes of cov-

erage range r0 are deployed uniformly at density d. The area coverage Ac of such

network is

Ac = 1− e−dπr20 (6.12)

Theorem 1 is a result obtained from the discipline of stochastic geometry [22].

Using Theorem 1, we can compute the required density dmin such that the k-ASR

is covered almost surely [34]. This can be achieved by setting Ac = πa2 and solving

for dmin. That is,

dmin = − ln(1− πα2)

πr20
. (6.13)

In our scenario, the coverage range of the nodes that cover the k-ASR corresponds

to the communication range r of the users. If a set of users with communication

range r0 covers the k-ASR, then their transmission is guaranteed to reach every

node within the k-ASR. However, coverage is not a sufficient condition to obtain a

connected network of users that would correspond to a broadcast routing tree. To

satisfy the connectivity requirement, we rely on the following theorem.

Theorem 2. [50] Let a set of nodes have a coverage range r0 and a communication

range r. If this set of nodes at least 1-covers a convex region A, the communication

graph is connected if r ≥ 2r0.

Combining Theorem 2, with eq. (6.13) yields the desired minimum density such

that the network of nodes that 1-covers the k-ASR is also connected. One example

of 1-cover connected network that covers the k-ASR is shown in Figure 6.2. This is

achieved by setting the coverage range equal to half the communication range, i.e.,

r0 =
r
2
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Figure 6.2: Connected-coverage. The shaded area represents the connected-covered
area.

dmin = −4 ln(1− πα2)

πr2
. (6.14)

The number of nodes that need to transmit in order to cover the k-ASR is found

by multiplying the density with the size of the k-ASR. This number is equal to

dminπα
2 = −4 ln(1−πα2)

πr2
πα2. We note that the infinite plane assumption of Theorem

1 is satisfied in our case, since the k-ASR is a small part of the entire network

deployment and hence, border effects do not apply. The deployment density is kept

constant through the entire k-ASR.

Combining all steps of the group formation phase, the average network overhead

for this phase is estimated to

Ogfp = dπα2 +

∫ α

0

h(ϵ)∑
i=1

idAZi
(ϵ)

1

α
dϵ+ dminπα

2. (6.15)

Query Anonymization Phase: In the query anonymization phase, the members

of U exchange pseudo-messages using the established broadcast routing tree. We
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note that according to Step 5 of the query anonymization phase, any pseudo-message

is broadcasted to the entire group U , in order to keep the identity of the recipient

secret. Hence, the network overhead of the query anonymization phase is equal to the

number of messages that need to be transmitted by the users in U times the number

of transmissions necessary to broadcast a message to all nodes, as expressed by eq.

(6.14). Here, we consider the transmission of k pseudo-messages to be equivalent to

the transmission of one query, since the pseudo-messages have a length equal to 1
k

th

of the query messages. For MAZE, this network overhead is estimated to

Oqap = kdminπα
2 + k. (6.16)

The second component accounts for the k messages that have to be relayed from

each of the users in U to the LBS, after the pseudo-messages have been mixed.

In the case of L-MAZE, there are L mixing stages of the k pseudo-messages that

correspond to each of the k queries. Hence, the network overhead for this phase

increases to

Oqap ≤ Lkdminπα
2 + k. (6.17)
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CHAPTER 7

Experiment Evaluation

In this chapter, we experimentally evaluate the communication overhead of MAZE

via simulations. We compare the overhead of MAZE with the P2P anonymization

protocol in [11]. We note however that the two protocols cannot be considered to

be equivalent since the protocol in [11] does not preserve location privacy in U , and
is not resistant to collusion.

7.1 Experimental Setup

We randomly deployed n users within an area of 1, 000m× 1, 000m, yielding a user

density of n/1, 000, 000 users/m2. Users are assumed to form multihop ad hoc

network. The communication range of each user was assumed to be 250m. For the

query anonmization phase, a broadcast tree was built using the broadcast routing

algorithm in [32]. We note that nodes of the ad hoc network may participate in

the broadcast tree without necessarily being a member of U . Each experiment was

repeated for 40 random network topologies and the results were averaged.

7.2 Impact of the Anonymity Level k

7.2.1 Varying Cloaking Region Size

In the first set of experiments, we varied the anonymity level requirement of the

group initiator from k = 10 to k = 30, while the cloaking region size was varied

according to the anonymity level k. Here, the cloaking region size was set to the

minimum value that satisfied k-anonymity. To find that value, we initially set the
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Figure 7.1: (a) Average communication overhead as a function of the anonymity
level k, (b) Comparison of the average communication overhead between MAZE
and 2-MAZE as a function of the anonymity level k, (c) Average cloaking region
size as a function of the anonymity level k.
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radius of k-ASR to α =
√

k
πd
. If k user were not found, α was increased by a factor

β = 0.1. All users were assumed to have the same privacy profile.

Figure 7.1(a) shows the average communication overhead OTotal when the user

density is set to d = 0.0005, compared to the communication of the P2P protocol

in [11] as a function of k. We observe that for small values of k, MAZE has lower

OTotal than the scheme in [11]. This communication overhead increases linearly

with the anonymity level requirement. On the other hand, the protocol in [11]

incurred a fixed communication overhead since the search for group peers is limited

to broadcasts within one hop as long as the user density is sufficient to satisfy k.

Note that nearly all communication overhead of the P2P scheme in [11] is incurred

during the group formation phase, since there is no mechanism that protects the

privacy of users within U . MAZE, on the other hand, incurs most of its overhead

during the query anonymization phase where pseudo-messages are mixed among the

users of the group in order to preserve the query anonymity. Therefore, the larger

k the value of the larger the number of message exchanged during anonymization.

In Figure 7.1(b) we compared the communication overhead of the version of

MAZE that preserves the query privacy when users do not collude with the LBS,

with L-MAZE, the version of MAZE that is resistant to LBS-user collusion. Here

we set L = 2. As expected, the communication overhead of the collusion-resistant

MAZE protocol is increased L-fold compared to that of MAZE under independent

adversaries. This is due to the fact that L-MAZE involves L rounds of mixing during

the query anonymization phase (the two protocols incur the same overhead during

the group formation phase). The collusion resistance property comes at the expense

of a proportional increase in the number of messages.

In the same graph, we also show the theoretical values of the network overhead

of MAZE, as computed based on our analysis in Chapter 6. We observe that our

analytical estimates are conservative, and the gap between the theoretical and sim-

ulated values increases as a function of k. This can be justified by the conservative
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estimate of the number of messages needed for completing a broadcast operation us-

ing the broadcast routing tree. Because this broadcast operation is repeated k times

during the query anonymization phase, any error in the estimate of this overhead

accumulates with k in a linear fashion.

Finally, in Figure 7.1(c) we show the size of the cloaking region as a function

of k. Based on the node density d, we expect that the cloaking region will grow

according to

ACR(k) =
k

d
. (7.1)

Figure 7.1(c) shows the almost linear increase of ACR(k) with the increase of k.

7.2.2 Fixed Cloaking Region

In the second set of experiments, we kept the size of the cloaking region fixed

and independent of k. Thus scenario arises when the privacy profile of the user

requires a minimum privacy resolution tolerance that is larger than the minimum k-

ASR size that satisfies the k-anonymity requirement. Figure 7.2 shows the average

communication overhead of MAZE as a function of the anonymity level k, when

the radius of the k-ASR is fixed to α = 160m and α = 180m respectively. We

observe that the communication overhead of MAZE increases linearly with k and

also becomes larger with α. This is justified by the fact that the k users of U are

spread over a large area and thus communication among the group peers becomes

more expensive.

Moreover, comparing to the MAZE overhead for the case of a varying k-ASR we

identify that for lower values of k, keeping the k-ASR area large leads to a higher

overhead. However, as the value of k increases the overhead with varying k-ASR

becomes larger. This is because if k is not satisfied with the initial value of α,

the peer discovery phase has to be repeated multiple times. Setting the value of α

tot a large value almost guarantees the discovery k peers thus limiting the group

formation phase to a single iteration.
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Figure 7.2: Anonymity level impact with fixed cloaking region size.

7.3 Impact of User Density

In this set of experiments, we evaluated the impact of the user density on the

communication overhead of MAZE. Figure 7.3(a) shows the average communication

overhead OTotal as a function of d compared to the P2P protocol in [11], for k = 10.

We observe that for the P2P protocol, the overhead increases linearly according to

the user density value. This because the number of users within one hop of the

group initiator, who reply to a group formation message are a linear function of d.

For MAZE protocol, OTotal decreases with d approaching an asymptotic value. This

behavior is explained by the expected network topology of the ad hoc network as

d increases. For large values of d, users of U are located within a one-hop range of

each other (they form a one-hop network). Thus smaller cloaking region are needed

to satisfy the k-anonymity requirement, as shown in Figure 7.3(c). Therefore, a

transmission by any user is received by all other users. Under such a topology, the

overhead costs of the group formation and query anonymization phases are fixed

and cannot be further reduced by the increase of d.

The exact overhead cost of MAZE when applied to a one-hop ad hoc network is

equal to
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Figure 7.3: (a) Average communication overhead versus user density, (b)Comparison
of average communication overhead between MAZE and 2-MAZE versus user den-
sity, (c) Average cloaking region size versus user density.
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Ototal = 2dπα2 + k − 1, (7.2)

where α is the radius of the k-ASR. As expected, L-MAZE increase the commu-

nication overhead of the anonymization phase L-fold compare to MAZE, while the

overhead of the group formation phase is decrease, as shown in Figure 7.3(b).

7.4 Impact of the k-ASR Expansion Factor β

In this set of experiments, we study the impact of the k-ASR expansion factor β.

This parameter denotes the factor by which the k-ASR radius is extended if k users

are not discovered within the initial k-ASR. Smaller values of β lead to a more

accurate determination of the minimum k-ASR size that satisfies the k requirement

at the expense of repeating the group formation process multiple times until k users

are discovered. On the other hand, large values of β require fewer stages until k

users are discovered but lead to the spreading of those k users over a larger area.

In Figure 7.4(a), we show the size of the cloaking region as a function of β for

different densities. We observe that larger β result in larger k-ASR. We note that

the k-ASR was increased only if k users were not discovered within our initial k-

ASR area. Figure 7.4(b) shows the associated overhead of MAZE for anonymizing

k queries as a function of β. We observe that β plays an important role only when

the user density is not sufficient to satisfy the anonymity level requirement with the

selection of the initial k-ASR size.

7.5 Impact of ûi’s Privacy Requirement

As described in Section 3.2, assuming ûi can set his privacy profile to one of three

privacy levels {LOW,MED,HIGH}, the higher the user’s privacy requirement

level is, the easier he is able to find other peers to join the group, since they can all

accept his privacy requirement. To study the impact of ûi’s privacy requirement, we
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Figure 7.4: (a) Average cloaking region size as a function of parameter β, (b) Average
communication overhead of MAZE as a function of parameter β.
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randomly set the privacy level of users to one of the three privacy levels and then

compute the overhead of MAZE when the group initiator’s privacy requirement

is LOW , MED and HIGH respectively. The results are shown in Figure 7.5.

MAZE requires a larger cloaking region and incurs more communication overhead

when his privacy requirement level is set to LOW . This is because users with a

MED or HIGH privacy level do not reply to ûi’s request. On the other hand,

when the privacy profile of the group initiator is set to HIGH, users of any level

responds to ui’s request thus reducing the required size of the cloaking region and

the communication overhead.
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CHAPTER 8

Conclusions

8.0.1 Future Work

In this thesis, we addressed the problem of preserving the location privacy and user

anonymity when receiving authenticated location-based services. We developed a

privacy-preserving communication protocol called MAZE, that allows users to place

queries to a location based server without revealing their identity, or current lo-

cation beyond a certain accuracy. In addition, we showed that MAZE allows the

location-based service provider to authenticate and charge any user that receives a

location-based service. Our security analysis showed that MAZE preserves the loca-

tion privacy and query anonymity against any of the system participants, including

users and the location-based server, when these participants act independently. Fur-

thermore, we proposed the L-MAZE protocol that protects the user privacy even if

up to (L− 1) users collude with the location-based server.

The privacy properties of MAZE are achieved in a decentralized manner by

forming P2P anonymity groups. Hence, MAZE does not employ third trusted par-

ties such as a location anonymization server. The P2P group formation process

is described for both infrastructure-based and ad hoc network architectures. To

preserve the location privacy, the position of each user is blurred to a cloaking re-

gion of a desired area. To preserve anonymity, user queries are divided into several

pseudo-messages using all-or-nothing transformations and then mixed among the

P2P group participants using a mixnet operation and onion encryption. The ap-

plication of a mixnet disassociates a user’s identity from the query it submits. All

pseudo-messages are received by the location-based server, that can reconstruct all
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queries using the inverse all-or-nothing transformation. The server responds to the

queries, with each response being sent to the intended user in a confidential manner.

Finally, we evaluated the communication and network overhead of MAZE and

L-MAZE analytically and via extensive simulations. We showed that while both

protocols are not the most efficient for all possible privacy requirements, they incur

acceptable overhead in exchange for resilience to collusion of system participants

and provision of authenticated location based services.

8.0.2 Implementation

Implementation of a mobile application for providing location based services with

privacy protection by our MAZE protocol is practical.

First, technologies for building location-based service platform exists and is get-

ting maturely developed. This platform is divided into client side and server side

[51]. Client side of this platform software can be developed based on the following

techniques: mobile Scalable Vector Graphics (SVG), a language for describing two-

dimensional vector and mixed vector/raster graphics in XML, Bluetooth, mobile

media, map slicing, map layering, and Java 2 Micro-Edition (J2ME). Sever side is

developed by XML, J2ME, and MySQL [51]. With this platform, terminal user

can send location-based query through his client application embedded in the ter-

minal while GPS can determine the position of the user. Wireless communication

provides transmission between terminal and server, and database stores the maps,

path information, user’s profile and etc. Many valuable LBS can be enabled on this

platform by some suitable modification [51].

With the help of location-based service platform, more features are needed, like

finding and communicating with people nearby, and settings to filter people that

are not satisfy the requirements. There are various applications nowadays that can

achieve these features. [36] indicates that since people are carrying mobile phones

with variety of sensing components (e.g. GPS, proximity sensors, microphone, cam-
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era, etc.) mobile phones can create mobile sensor networks that is capable of sensing

information like where are people? And the expanding sensing capabilities of mobile

phones combined with the open programming environments and platforms, typified

by the Android platform and the Apple iPhone SDK, is accelerating the develop-

ment of new people-centric sensing applications and systems [6]. For example, an

application called CenceMe application is designed and implemented in [36] that

can let sensor-enabled mobile phones automatically infer peoples sensing presence

(e.g., dancing at a party with friends) and then shares this presence through social

network portals such as Facebook. Other examples are, mModes Find Things or

People Nearby and a new application called Blendr that combines location based

social services and online dating services together. People can set up pre-filtering

settings that only people meet their requirements will show up in their application.

Moreover, people can send quick messages to one another through the application

easily.

With the location-based service platform that consists of Terminal user, GPS,

Client software, Wireless network, Database [51] and nearby people sensing features,

we are able to implement our MAZE protocol for protecting user’s privacy when

using location-based services.
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