
SECURING WIRELESS BROADCAST COMMUNICATION
AGAINST INTERNAL ATTACKS

by

Sisi Liu

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 1 1

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have read the
dissertation prepared by Sisi Liu
entitled Securing Wireless Broadcast Communication against Internal Attacks
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

Date: 9 Dec 2011
Dr. Loukas Lazos

Date: 9 Dec 2011
Dr. Roman Lysecky

Date: 9 Dec 2011

Date: 9 Dec 2011

Date: 9 Dec 2011

Final approval and acceptance of this dissertation is contingent upon the candi-
date’s submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it be accepted as fulfilling the dissertation requirement.

Date: 9 Dec 2011
Dissertation Director: Dr. Marwan Krunz

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the
interests of scholarship. In all other instances, however, permission must be obtained
from the author.

SIGNED:
Sisi Liu

4

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisors, Professor
Marwan Krunz and Professor Loukas Lazos, for all the help, advice, supports and
encouragements they gave to me during the past four years. Because of them, my
graduate experience has been the one that I will cherish forever. I am fortunate
to have them as my advisors who taught me how to think and research. They
have enlightened me through their professional knowledge about where to explore
and what is necessary to get there. This dissertation would have been impossible
without their guidance.

I would like to thank Professor Roman Lysecky for all the valuable suggestions
and discussions that make this dissertation better.

I would like to thank all my labmates in the wireless networking group for their
help and friendship, including Diep Nguyen, Junseok Kim, Hanif Rahbari, Moham-
mad Jamal Abdel Rahman, Mohammed Alfowzan and Harish Kumar Shankar. I
wish to give special thanks to Shu Tao who have graduated from this group for his
valuable discussions and patient help. I would also thank Tami Whelan for handling
all the paperwork and giving various forms of support during my graduate study.
I would like to thank my parents and my husband Meng Zeng for supporting and
encouraging me throughout my Ph.D. study. Their love and care give me strength
to overcome difficulties throughout this endeavor.

5

DEDICATION

To my parents and Meng Zeng.

6

TABLE OF CONTENTS

LIST OF FIGURES . 7

LIST OF TABLES . 8

ABSTRACT . 9

CHAPTER 1 Introduction . 11
1.1 Background . 11

1.1.1 Classic jamming approach . 11
1.1.2 Other attacks in wireless networks 13

1.2 Motivation of Dissertation . 16
1.2.1 Control channel jamming attack 16
1.2.2 External adversarial model and internal threat model 16

1.3 Main contribution and dissertation organization 18

CHAPTER 2 Mitigating Control-Channel Jamming at-
tacks with randomized distributed channel establish-
ment scheme . 21
2.1 Introduction . 21

2.1.1 Motivation . 21
2.1.2 Main Contributions and Chapter Organization 23

2.2 Model Description and Problem Formulation 24
2.2.1 Network Model . 24
2.2.2 Adversarial Model . 25
2.2.3 Anti-Jamming Metrics . 26

2.3 Control Channel Implementation . 27
2.3.1 Hopping Sequence Generation 28
2.3.2 Generation for Dynamic Spectrum Networks 30
2.3.3 Hopping Sequence Assignment 31
2.3.4 Control Channel Access . 31
2.3.5 Hopping Sequence Update . 34

2.4 Identification of Compromised Nodes 35
2.4.1 Compromise of a Single Node 35
2.4.2 Compromise of Multiple Nodes 41
2.4.3 Compromise of the Clusterhead 44

2.5 Performance Evaluation . 45

TABLE OF CONTENTS – Continued

7

2.5.1 External Jammer . 46
2.5.2 Compromise of a Single Node 51
2.5.3 Compromise of Multiple Nodes 52
2.5.4 Compromise of the Clusterhead 54

2.6 Conclusions . 56

CHAPTER 3 Thwarting Inside Jamming Attacks on
Wireless Broadcast Communications 57
3.1 Introduction . 57

3.1.1 Motivation . 57
3.1.2 Main Contributions and Chapter Organization 58

3.2 Problem Statement and System Model 59
3.2.1 Network topologies . 59
3.2.2 System Model . 60
3.2.3 Adversary Model . 61

3.3 Overview of TDBS . 61
3.4 TDBS for Single-hop Topologies . 64

3.4.1 Definitions and Useful Theorems 64
3.4.2 Mapping to the 1-factorization Problem 65
3.4.3 TDBS-SU: Sequential Unicast Mode 66
3.4.4 TDBS-AB: Assisted Broadcast Mode 68

3.5 TDBS in Multi-hop Networks . 71
3.5.1 Intra-cluster Phase . 71
3.5.2 Inter-cluster Phase . 73

3.6 Performance and Security Evaluation 74
3.6.1 Performance in the Absence of Jammers 74
3.6.2 Security Analysis . 75
3.6.3 Evaluation of Multi-hop Scenarios 83

3.7 Conclusions . 86

CHAPTER 4 Spectrum Opportunity-Based Control
Channel Assignment in Cognitive Radio Networks . . . 87
4.1 Introduction . 87

4.1.1 Motivation . 87
4.1.2 Main Contributions and Chapter Organization 88

4.2 Problem Statement and System Model 89
4.3 Cluster-based Channel Assignment 91

4.3.1 Mapping to Biclique Graphs 91
4.3.2 Maximum Edge Biclique Graphs 93

TABLE OF CONTENTS – Continued

8

4.3.3 Maximum One-Sided Edge Biclique Graphs 96
4.4 Spectrum-Opportunity Clustering . 98

4.4.1 Correctness of the SOC Algorithm 101
4.4.2 Clusterhead Election . 103

4.5 Dynamic Control Channel Assignment 104
4.5.1 Periodic Control-Channel Rotation 104
4.5.2 Reclustering . 105

4.6 Coordination Without a Control Channel 106
4.6.1 Protocol Overview . 106

4.7 Performance Evaluation . 108
4.7.1 Evaluation Setup . 109
4.7.2 Evaluation of the C-SOC Algorithm 111
4.7.3 Comparison of SOC/C-SOC with Other Schemes 113
4.7.4 Periodic Control-Channel Rotation 116
4.7.5 Performance of Algorithms ?? and ?? 118
4.7.6 Evaluation of The Coordination Protocol 119

4.8 Conclusions . 121

CHAPTER 5 Related Work . 123
5.1 Jamming Attack in Wireless Networks 123
5.2 Control Channel Assignment . 126

CHAPTER 6 Conclusions and Future Work 129
6.1 Conclusions . 129

6.1.1 Future Work . 130

References . 131

9

LIST OF FIGURES

1.1 (a) The adversary jams route requests (RREQ) broadcasted by node
ni on the control channel, (b) the adversary partitions the network in-
to two components A and B, by deploying multiple jamming devices,
so nodes in A cannot alert their base station regarding the jamming
attack, (c) the adversary forces all traffic from A to B to pass through
the link ni, nj. 12

1.2 (a) Direct sequence spread spectrum (DSSSS), (b)frequency hopping
spread spectrum (FHSS). 17

2.1 (a) The adversary blocks all control messages within range Rmax by
jamming a single frequency band, (b) the control channel is located
at different channels within each cluster. The impact of the jammer
is now confined to clusters within Rmax that use the jammed channel. 23

2.2 Hopping sequence generation for L = 12,M = 5 and K = 8. The
control-channel location vector c is interleaved with the random se-
quences s1, s2, and s3 at the slot positions indicated by the M -long
vector v. 29

2.3 Adjusting the hopping sequences to account for dynamic channel
availability. 29

2.4 Number of slots required for accessing at least one control channel
slot with probability p0 as a function of the ratio M

L+M
. 32

2.5 (a) E[D] as a function of the ratio M
L+M

for static spectrum network-

s, (b) E[D] as a function of the ratio M
L+M

for dynamic spectrum

networks, (c) E[ER] as a function of M
L+M

for dynamic spectrum net-
works. 49

2.6 (a) pmf of the Hamming distance between two random sequences
of length 100, (b) expected Hamming distance as a function of a
sequence of length L for static spectrum networks (error margins
denote 99.7% confidence intervals), (c) expected Hamming distance
as a function of L for dynamic spectrum networks. 49

2.7 (a) E[D] as a function of the number of compromised nodes for static
spectrum networks, (b) E[D] as a function of the number of com-
promised nodes for dynamic spectrum networks, (c) weight of the
compromised node compared to the maximum weight of uncompro-
mised ones. 52

LIST OF FIGURES – Continued

10

2.8 Average weight of compromised nodes and maximum weight of un-
compromised ones versus q. 54

3.1 (a) A WPAN architecture in which devices located within one-hop
form a broadcast communication group, (b) a multi-hop architecture
in which communicating nodes span several hops. 60

3.2 (a) Operation in the SU mode. Broadcast is realized as a series of
unicasts. The pair (f, s) denotes the frequency band and time slot
where the unicast takes place. (b) The timeline of the unicast trans-
missions of n1 for the SU mode. The “x” marks denote frequencies
jammed by the adversary. 62

3.3 (a) Operation in the AB mode. A broadcast transmission is relayed
by several nodes at separate frequency bands. (b) The timeline of
the unicast transmissions for the AB mode. The “x” marks denote
frequencies jammed by the adversary. 63

3.4 (a) Algorithm for constructing a 1-factorization F = {F0, . . . , F2n−2}.
To obtain a factor Fi, every node is rotated by i positions to the
left. Node 1 remains fixed. (b) Mapping of a 1-factor to unicast
transmissions. Paired nodes concurrently communicate on separate
frequency bands. 65

3.5 Construction of hopping sequences for sequential unicast based on
1-factorization for a group of four nodes. 66

3.6 (a) Splitting algorithm used to obtain the 1-factor Fi+1 from the 1-
factor Fi. The first n nodes of Fi are obtained in a “zigzag” fashion
and are placed on the first column of Fi+1. The last n nodes of Fi are
obtained in an “inverse zigzag” fashion and are placed in the second
column of Fi+1. (b) The first four 1-factors for a group of eight nodes
and the corresponding hopping sequences. 69

3.7 (a) The intra-cluster phase, (b) the inter-cluster phase. 72
3.8 (a) E[Z] as function of the jamming probability p, (b) E[D] as a

function of jamming probability p. (c) E[D] as a function of K when
2n = 10. 76

3.9 (a) E[D] as a function of K when J = 1, for the AB mode of the
worst case. The theoretical value is computed based on (??). (b)
E[D] as a function of p, for the AB mode. The average and worst
case are shown. (c) E[D] as a function of K and for various J . The
asymptotic value is equal to ⌈log2(2n)⌉. 80

3.10 E[D] as a function of the number of compromised nodes for various
values of K, when J = 3. 82

LIST OF FIGURES – Continued

11

3.11 E[D] as a function of the number of compromised nodes for various
values of J , when K = 10. 82

3.12 (a) E[Df] as a function of the jamming probability p, (b) E[De] as
a function of the number of compromised nodes r for various J , (c)
E[DIV] as a function of the number of compromised nodes r for
various NL. 84

4.1 Control channel assignment based on PR activity (idle frequency
channels are indicated between braces). 89

4.2 (a) Connectivity graph of an 8-node CRN, and the lists of idle chan-
nels sensed by various CRs, (b) bipartite graph constructed by CRA. 92

4.3 Two possible bicliques for the bipartite graph GA: (a) Maximum-
edge biclique constructed according to Algorithm 1, (b) maximum
one-sided edge biclique constructed according to Algorithm 2. 92

4.4 Final clustering based on SOC. CRA, CRE, and CRH are the CHs. . . 101
4.5 A realization of the coordination protocol for the CRN of Figure ??. . 108
4.6 Evaluation setup consisting of a cellular PRN and a CRN. Ten chan-

nels are assigned per cell. Adjacent cells do not share any channels. . 109
4.7 Performance of C-SOC as a function of the call duration µ for different

values of γ0: (a) average number of common channels per cluster (ρ),
(b) average cluster size . 111

4.8 Performance of C-SOC as a function of the call duration µ for different
values of γ0: (a)average number of clusters in the CRN, and (b)
number of occupied channels by PR per cell. 111

4.9 Performance of various clustering schemes vs. call duration µ: (a)
average number of common idle channels per cluster, (b) CV of the
number of common channels, (c) fraction of clusters with no common
idle channels, (d) average cluster size, (e) average number of clusters
in the CRN, (f) CV of the cluster size. 112

4.10 Performance of various clustering schemes vs. node density: (a) av-
erage number of common idle channels per cluster, (b) CV of the
number of common channels, (c) fraction of clusters with no common
idle channels, (d) average cluster size, (e) average number of clusters
in the CRN, (d) CV of the cluster size. 114

LIST OF FIGURES – Continued

12

4.11 (a) Fraction of time that at least one cluster exists without a common
idle channel as a function of µ, (b) maximum duration of the control
channel outage as a function of µ, (c) E(ft) as a function of µ, (d) E(ft)
as a function of the number of CRs, (e) maximum outage duration
for inter-cluster communication as a function of µ, and (f) maximum
outage duration for inter-cluster communication as a function of the
number of CRs. 115

4.12 Comparison of Algorithms ?? and ?? with the optimal solution as a
function of the probability of edge existence Pedge: (a) Algorithm ??
for 5 × 5 and 10 × 10 bipartite graphs, (b) Algorithm ?? for 5 × 5
bipartite graphs and for γ0 = 2, 3, (c) Algorithm ?? for 10 × 10
bipartite graphs and for γ0 = 2, 3. 118

4.13 (a) Number of mini-slots versus N for a given PK with Paccess =
1/N , (b) expected number of successful broadcasts after M time slots
versus N (K = 10), (c) the BED as a function of the number of
available channels under a dynamic spectrum scenario with λ = 2
calls/min and µ = 0.5 mins. 119

13

LIST OF TABLES

14

ABSTRACT

Coordination of network functions in wireless networks requires frequent exchange

of control messages among participating nodes. Typically, such messages are trans-

mitted over a universally known communication channel referred to as the con-

trol channel. The location of the control channel, determined by its frequency

band, time slot, or spreading code, is known a priori to all nodes participating in

the network. Due to its critical role, this channel can become a prime target of

Denial-of-Service (DoS) attacks. In this dissertation, we propose several schemes

to preventing control-channel DoS attacks, manifested in the form of jamming. We

propose a control channel allocation scheme for dynamic-spectrum networks (i.e.,

cognitive networks). In our work, we assume a sophisticated adversary, who has

knowledge of the protocol specifics and of the cryptographic quantities used to se-

cure network operations. Such an adversarial model cannot be addressed by classic

anti-jamming techniques that rely on shared secrets (e.g., spread spectrum). New

security metrics are proposed to quantify the ability of the adversary to deny ac-

cess to the control channel. We introduce a randomized distributed scheme that

allows nodes to establish and maintain the control channel in the presence of the

jammer. This scheme uniquely identifies the set of compromised nodes, both when

nodes are acting independently and when they are colluding. To protect broad-

cast communication performed on control channel, we also propose a time-delayed

broadcast scheme (TDBS), which implements the broadcast operation as a series

of unicast transmissions, distributed in frequency and time. Finally, we address

the problem of dynamically assigning the control channel in CRNs based on time-

and space-varying spectrum opportunities. We propose a cluster-based architecture

that allocates different channels for control at various clusters in the network. The

clustering problem is formulated as a bipartite graph problem, for which we develop

15

a class of algorithms to implement. Extensive simulations are conducted to verify

the validity of the proposed mechanisms.

16

CHAPTER 1

Introduction

1.1 Background

1.1.1 Classic jamming approach

The open nature of wireless medium makes the wireless network vulnerable to inten-

tional interference attacks, typically referred to as jamming. In the simplest form of

jamming, the adversary interferes with the signal reception by transmitting a con-

tinuous jamming waveform [73] or several short jamming pulses [59]. By doing this,

the adversary can block the wireless medium and prevents other wireless devices

from communicating. Jamming attack belongs to Denial-of-Service (DOS) attack.

Traditional Denial-of-Service attacks are attacks against availability and attempt-

ing to prevent legitimate users from accessing the network [12]. In the context of

wireless domain, the adversary with jamming device is more powerful in denying

access to the wireless medium and degrading network performance.

Typically, jamming attacks have been analyzed and addressed as a physical-

layer vulnerability. There are many different jamming strategies that a jammer can

perform in order to interfere with wireless communications.

Constant jamming and random jamming: Based on the interval between

the state of jamming and not jamming, jamming can be classified into constant

jamming and random jamming. Constant jammer continually emits a radio signal

without following any specific protocol. Specifically, the constant jammer does not

wait for the channel to become idle before transmitting [90]. Instead of continuously

sending out radio signal, random jamming alternates between sleeping and jamming.

Active jamming and reactive jamming: Based on the status of the channel

when jamming attack happens, there are active jamming and reactive jamming. The

17

node jammerRREQniR A Bpartition
node jammer base station ni njnode jammer base station

A B
(a) (b) (c)

Figure 1.1: (a) The adversary jams route requests (RREQ) broadcasted by node ni

on the control channel, (b) the adversary partitions the network into two components
A and B, by deploying multiple jamming devices, so nodes in A cannot alert their
base station regarding the jamming attack, (c) the adversary forces all traffic from
A to B to pass through the link ni, nj.

difference between the two lies in that a jammer with reactive jamming strategy stays

quiet when the channel is idle, but starts transmitting a radio signal as soon as it

senses activity on the channel, while the active jammer jams no matter the channel

is idle or not.

Selective jamming: According to the content of communication that the jam-

ming targets on, jamming attack will be classified into selective jamming and non-

selective jamming. Selective jamming selectively and adaptively chooses critical

network functions as jamming target. Selective jamming can be further categorized

into channel-selective jamming and data-selective jamming [46]. Channel-selective

jamming launches DOS attack on important channels such as control channel on

which critical control messages are exchanged. To launch a channel-selective jam-

ming attack, the adversary must be aware of the location of the targeted channel,

which is defined by a separate frequency band, time slot, or PN code. To further

improve the energy efficiency of selective jamming, the jammer can target specific

packets of high importance. The important packets can be identified by overhear-

ing the headers of the packets before the transmission is complete, or by anticipate

based on protocol semantics. The adversary has to have inside information of the

network in order to launch selective jamming attack.

The impact of jamming can propagate way beyond the physical jamming range

18

of an adversary, defined as the area within which packets are corrupted due to

jamming. A sophisticated adversary can combine jamming with his knowledge of

protocol specifics to impact different network layers. As an example, consider the

implementation of a reactive routing protocol [40, 62] in multi-channel networks.

Assume that nodes use a predefined channel to broadcast route request (RREQ)

messages for the purpose of route discovery. Consider a jammer that attacks only

RREQ messages, in order to partition the network or to route traffic through specific

paths. In Figure 1.1(a), we show how the adversary can jam RREQ messages so

that node ni is unable to discover routes to any destination. In Figure 1.1(b), the

adversary deploys jamming devices along a cut in the network which partition the

network into two components A and B. In Figure 1.1(c), the jamming attack is

intended to divert traffic to a particular link, thus forcing all traffic from A to B to

flow through that link. This attack is similar to the sinkhole attack [42], in which

a node attracts surrounding traffic by advertising the shortest route to a particular

set of destinations. Once traffic is diverted, the adversary can control the flow of

traffic from A to B by compromising a single node (either ni or nj). Note that

a jamming attack that targets the routing function cannot be prevented by existing

secure routing protocols, as such protocols consider jamming outside the scope of

their adversarial model [37]. Similar intelligent attacks can be launched on critical

network functionalities in other protocol layers. For example, the adversary may

choose to jam the request-to-send (RTS) and clear-to-send (CTS) messages at the

MAC layer so that the medium access delay is significantly increased.

1.1.2 Other attacks in wireless networks

In this section we introduce some well-known attacks in wireless network rather than

jamming attack. The detailed discussion and countermeasures of these attacks are

beyond the scope of this dissertation.

We will use the layered model to describe attacks at different layers of wireless

network.

Physical layer attacks: Jamming is the primary attack at the physical layer.

19

Other than that, node tampering and destruction are the physical layer attacks in

wireless sensor networks.

Link (MAC) layer attacks: Link layer threats include collision and interro-

gation [68]. A collision attack is similar to reactive jamming attack. In IEEE 802.11

protocol network, an adversary can use the NAV information to intentionally corrupt

the ongoing frames. Interrogation attack can exhaust the target nodes’s resource

(e.g., battery) and consume network bandwidth by repeatedly sending handshake

request (e.g., RTS) to elicit responses (e.g., CTS) from the target node.

Network layer attacks: There are many attacks targeting network layer of

wireless network. Among them, spoofed, altered or replayed routing information

(e.g., Hello flood attacks, routing cache poisoning attacks), sinkhole attacks, worm-

holes and homing attacks are well known attacks [41]. Hello flooding is an attack

by broadcasting recorded hello packets from distant nodes in order to make nodes

believe they are in the vicinity of distant nodes. When the victim node uses the dis-

tant nodes as next hop, they will find they can not reliably forward traffic. Routing

cache poisoning attack takes advantage of the property of routing table updating,

which is nodes updating their routing table based on overhearing packets. So when

a malicious node wants to poison the routing table of neighboring nodes, it can

broadcast a spoofed packet with certain nodes as destination and himself as the

next hop, or even nonexistent nodes as next hop. Neighboring nodes overhearing

this packet will add this route to the destination nodes in their route cache, which

will make their routing unsuccessful or manipulated by the attacker.

Sinkhole (black hole) attack [4] makes a compromised node look especially at-

tractive to surrounding nodes, for example by advertising itself having a better route

to a destination, in order to lure the traffic from a particular area through this com-

promised node. Then the adversary can have many opportunities to manipulate

the attracted traffic, such as dropping packets, selective forwarding, or even mod-

ifying packets. One way to combat sinkhole attack is by multipath routing, which

sends the same packets over multiple paths in order to providing higher chance for

destination to receive it. However, multipath routing increases power consumption

20

which is unpractical in energy sensitive applications such as sensor network.

In a wormhole attack, an adversary collects information at one point of the

network (origin point), tunnels it to another point of the network (destination point)

via a low-latency link to replay the information back into the network [64]. The

nodes near the origin point will think they are one hop away from the nodes near

the destination point, although they are out of communication range of each other.

The error will propagate to more nodes near the two points. Then the nodes near

the two points will become sinkhole without even being aware of that they are the

victims of the wormhole attack [64]. The attacker can control and observe the lured

traffic without the need to compromise network nodes.

Homing attack is the attack that identifies and targets the critical nodes (such

as cluster head, node responsible for key management) by analyzing traffic pattern.

The adversary then launch jamming attack or even physically destroy on these key

nodes [68]. Possible solutions to combat homing attack is by using dummy packets

to confuse the traffic pattern analysis [25].

Transport layer attacks: The attacks at transport layer exploit the end-to-end

connection established by TCP like protocols. TCP SYN flood attack is a typical

one. The adversary sends multiple connection requests to the victim node without

completing the connections, in order to overwhelming the victim node’s half-open

connection buffer [68]. When connection is already established between legitimate

nodes, the adversary can interrupt the active connection by sending packets with

bogus sequence numbers [88].

Application layer attacks: The application layer communication is also vul-

nerable in terms of security. In sensor networks, the adversary can overwhelm certain

node (such as the base station) by stimulating sensor nodes forward large volumes

of traffic to it at the same time. This attack consumes network resource and n-

ode energy. Node impersonation or node replication attack is to add nodes with

replicating IDs of existing nodes in the network. In this way the replication nodes

manipulated by the adversary can misroute, corrupt or delete packets passing them.

21

1.2 Motivation of Dissertation

1.2.1 Control channel jamming attack

Organizing a collection of nodes into a wireless network requires cooperative imple-

mentation of critical network functions such as neighbor discovery, channel access

and assignment, routing, and time synchronization. These functions are coordinat-

ed by exchanging messages on a broadcast channel, known as the control channel.

In most network architectures, including mobile ad hoc, vehicular, sensor, cellular,

mesh, and cognitive radio networks (CRNs), the location of the control channel,

determined by its frequency band, time slot, or spreading code, is known a priori to

all nodes participating in the network [3, 76].

From a security standpoint, operating over a globally known control channel

constitutes a single point of failure. Networks deployed in hostile environments are

susceptible to Denial-of-Service (DoS) attacks by adversaries targeting the function-

ality of the control channel [17,47,80]. If the adversary is successful, network service

can be denied even if other available frequency bands remain operational. One of

the most effective ways for denying access to the control channel is by jamming it.

In fact, it was shown that jamming the control channel in GSM networks reduces

the required power for performing a DoS attack by several orders of magnitude

in [17, 80]. Control-channel jamming is particularly devastating for wireless ad hoc

networks due to their cooperative nature. In such networks, the majority of network

functions, including neighbor discovery and authentication, clustering, multiple ac-

cess control, and routing, are actualized through the cooperation of all hosts in the

network. Hence, control messages exchange among nodes within the same vicinity

is frequent.

1.2.2 External adversarial model and internal threat model

Jamming in wireless networks has been primarily analyzed under an external ad-

versarial model, in which the jammer has no knowledge of protocol specifics and

cryptographic secrets [73, 74]. Conventional anti-jamming techniques rely exten-

22

slot 1
 slot 2
 slot 3
 slot m

f
1

f
2

f
3

f
4

l
1

l
4

l
2

l
i
: location of control channel
at slot
i

(a) (b)

Figure 1.2: (a) Direct sequence spread spectrum (DSSSS), (b)frequency hopping
spread spectrum (FHSS).

sively on spread spectrum (SS) communications, such as direct sequence spread

spectrum (DSSS) and frequency hopping spread spectrum (FHSS), as shown in Fig-

ure 1.2. These techniques provide bit-level protection by spreading bits according to

a secret PN code, known only to the communicating parties. An adversary unaware

of this code has to transmit with a power which is several orders of magnitude higher

compared to the SS transmission, in order to corrupt a SS signal. SS can protect

communication from jamming attack as far as the PN code is kept secret from the

adversary. However, if any of the network node gets compromised by the adversary

and the PN code is revealed, a jamming adversary can deny communications by us-

ing very little energy. This can be particularly devastating for the control channel,

which is by design a broadcast channel. In the case of broadcast communications,

the sender’s PN code must be shared by all (potentially non-trustworthy) receivers.

The disclosure of such a secret due to the compromise of any receiver nullifies the

gains due to SS. This situation is treated as the internal threat model, which is more

difficult to address compared with jamming under external threat model.

In this dissertation we consider jamming attack especially control channel jam-

ming attack under internal threat model, as well as the control channel establishment

which is robust to jamming attack. The reasons are as following:

1: Control communication is critical to the subsequent data communication, so

control channel can easily become the target of jamming adversary.

2: Network devices are relatively vulnerable to node capture and compromise in

23

wireless mesh network, sensor network and ad hoc network. The adversary can

thus recovery the information stored in the hardware, such as the location of the

control channel, PN code for spread spectrum, etc.

3: Internal attack can not be mitigated using only cryptographic method because

the adversary already have access to the network secret, which makes this problem

more sophisticated and interesting.

1.3 Main contribution and dissertation organization

The main contributions of this dissertation are listed as follows.

In Chapter 2, We consider a sophisticated adversary who exploits knowledge of

protocol specifications along with cryptographic secrets to efficiently jam the control

channel. This channel can be used by any layer in the protocol stack to broadcast

control traffic, which could include coordination information needed for protocol

operation in upper layers. To quantify the adversary’s ability to deny access to

the control channel, new security metrics are defined. A randomized distributed

channel establishment and maintenance scheme is developed to allow nodes to es-

tablish a new control channel using frequency hopping. Under our scheme, network

nodes are able to temporarily access a control channel until the jammer is removed

from the network. Our method differs from classic frequency hopping in that no

two nodes share the same hopping sequence. This allows for unique identification

of compromised nodes by nearby ones. Our scheme is suitable for networks with

static or dynamic spectrum assignment (e.g., CRNs). For the latter, we propose

a modification of the original scheme to take into account the dynamic nature of

channel availability in time and space. Assuming perfect random number generators,

we analytically evaluate the proposed anti-jamming metrics. We verify our analyt-

ic results via extensive simulations. Both static spectrum and dynamic spectrum

networks are considered and simulated.

In Chapter 3, We study the problem of anti-jamming broadcast communications

24

in the presence of inside jammers. We propose the Time-Delayed Broadcast Scheme

(TDBS) for anti-jamming broadcast communications, based on FHSS communica-

tions. TDBS differs from classical FHSS designs in that two communicating nodes

do not follow the same FH sequence, but are assigned unique ones that have high

correlation properties. Unlike the typical broadcast operation where every receiver is

eventually tuned to a common broadcast channel, TDBS implements the broadcast

operation as a series of unicast transmissions spread both in frequency and time.

To ensure resilience to inside jammers, the locations of the unicast transmissions,

defined by a frequency band/slot pair, are only partially known to any subset of

receivers. Because the jammer can only interfere with a limited set of frequency

bands per time slot, a subset of the unicast transmissions are interference-free, thus

propagating broadcast messages. The problem of FH sequence design, is mapped

to a 1-factorization problem in complete graphs. TDBS is not meant to be a per-

manent replacement of the conventional broadcast mechanism in a benign setting.

Broadcasting on a common frequency band achieves the optimal communication ef-

ficiency (one slot) in the absence of any jammer. TDBS is designed as an emergency

mechanism for temporarily restoring communications until the jammer is physical-

ly removed from the network. Therefore, its primary focus is resilience to inside

jammers and not the communication efficiency of the broadcast operation.

In Chapter 4, We develop cluster-based methods for control-channel assignment

(CCA) in cognitive radio networks (CRN). This is an intuitive approach given the

inherent partitioning of the network into clusters due to the location- and time-

dependent spectrum availability. We formulate the clustering problem as a bipartite

graph problem. In particular, we map the clustering process to the maximum edge

biclique problem [24,61] and the maximum one-sided edge cardinality problem [24].

Our mapping allows us to control the tradeoff between the set of common idle

channels within each cluster and the cluster size. The cardinality of the set of

common channels indicates the robustness to primary radio (PR) activity and jam-

ming attack, since control-channel migration could be triggered when PR activity

or jamming attack is detected on current control channel.

25

In Chapter 5, related work about jamming attacks in wireless network under ex-

ternal adversary model and internal threat model are discussed respectively. Control

channel assignment problem in static spectrum network and dynamic spectrum net-

work (CRN) are described in detail.

Finally, Chapter 5 draws some conclusions of this dissertation and suggests sev-

eral topics for future research.

26

CHAPTER 2

Mitigating Control-Channel Jamming attacks with

randomized distributed channel establishment scheme

2.1 Introduction

2.1.1 Motivation

Typically, jamming attacks have been analyzed and addressed as a physical-layer

vulnerability. Conventional anti-jamming techniques rely extensively on spread

spectrum (SS) [73]. These techniques provide bit-level protection by spreading bit-

s according to a secret PN code, known only to the communicating parties. An

adversary unaware of this code has to transmit with a power which is several or-

ders of magnitude higher compared to the SS transmission, in order to corrupt a

SS signal. However, in packet-radio networks, corrupting a few more bits than the

correction capability of the error correcting code (ECC) (about 13% of the packet

length for WLANs [60]) is sufficient to force the dropping of a data packet. Hence,

the adversary need only stay active for a fraction of the time required for a packet

transmission. Moreover, targeting the control channel, which typically operates at

a low transmission rate, significantly reduces the adversary’s effort. In fact, it was

shown that the power required to perform a DoS attack in GSM networks is reduced

by several orders of magnitude when the attack targets the control channel [17,80].

Moreover, potential disclosure of cryptographic secrets (e.g., PN codes) by com-

promised nodes further reduces the adversary’s effort. Note that because control

information is broadcasted, PN codes must be shared by all intended receivers. The

compromise of a single receiver leaves the network vulnerable to low-effort jamming

attacks [17, 60, 80, 81]. In this article, we address the problem of resisting control

channel jamming in the presence of compromised nodes.

27

In this section, we motivate our approach for establishing and maintaining the

control channel in a cluster based architecture. Our method is based on the ob-

servation that the scope of control messages is typically confined to the range of

the broadcaster (e.g., RTS/CTS messages). For multi-hop networks, broadcasted

control messages can be relayed on the same or on a separate frequency band. Allo-

cating different control channels to different neighborhoods within the same collision

domain can potentially increase the control-channel throughput due to the reduc-

tion in interference between such neighborhoods. Moreover, allocating one unique

channel for control has the following significant disadvantages: (a) a long-range

transmission can jam the control channel for multiple neighborhoods, (b) the con-

trol channel re-establishment process has to be coordinated network-wide, and (c)

the compromise of a single node reveals any shared PN codes used for broadcasting.

The impact of long-range jamming attacks can be significantly reduced by vary-

ing the control channel in space and time. Such a design also reduces the delay and

communication overhead of the control channel re-establishment process, because

it requires only local coordination. To mitigate the impact of jamming, we adopt

a cluster-based architecture, where the network is partitioned into a set of clusters.

Each cluster establishes and dynamically maintains its own control channel. In this

design, it is sufficient to ensure that nodes can receive broadcast control messages

from members of their own cluster, and that nodes at the boundaries of multiple

clusters are aware of the control channels associated with these clusters. The control-

channel establishment and maintenance process is facilitated by a clusterhead (CH)

node within each cluster. CHs are regular nodes that are temporarily assigned with

the responsibility of mitigating jamming, and can be periodically rotated. Several

methods are readily available for organizing a wireless network into clusters and

electing CHs [93].

In Fig. 2.1(a), we show an implementation of the control channel using one

frequency. All nodes within the jammer’s range are denied access to the control

channel. In Fig. 2.1(b), we show a clustered approach where each CH is responsi-

ble for the establishment and maintenance of a separate control channel within its

28control channel
network node jammerRmax control

channel

network node jammer clusterhead

R
m

ax

(a) (b)

Figure 2.1: (a) The adversary blocks all control messages within range Rmax by
jamming a single frequency band, (b) the control channel is located at different
channels within each cluster. The impact of the jammer is now confined to clusters
within Rmax that use the jammed channel.

cluster. The impact of the jammer is now confined to clusters within Rmax that use

the jammed frequency.

2.1.2 Main Contributions and Chapter Organization

We consider a sophisticated adversary who exploits knowledge of protocol specifica-

tions along with cryptographic secrets to efficiently jam the control channel. This

channel can be used by any layer in the protocol stack to broadcast control traffic,

which could include coordination information needed for protocol operation in upper

layers. To quantify the adversary’s ability to deny access to the control channel, new

security metrics are defined. A randomized distributed channel establishment and

maintenance scheme is developed to allow nodes to establish a new control channel

using frequency hopping. Under our scheme, network nodes are able to temporar-

ily access a control channel until the jammer is removed from the network. Our

method differs from classic frequency hopping in that no two nodes share the same

hopping sequence. This allows for unique identification of compromised nodes by

nearby ones. Our scheme is suitable for networks with static or dynamic spectrum

assignment (e.g., CRNs). For the latter, we propose a modification of the original

scheme to take into account the dynamic nature of channel availability in time and

space. Assuming perfect random number generators, we analytically evaluate the

29

proposed anti-jamming metrics. We verify our analytic results via extensive simu-

lations. Both static spectrum and dynamic spectrum networks are considered and

simulated.

The remainder of this article is organized as follows. In Section 2.2, we state the

network and adversarial models, and propose new security metrics for evaluating

control channel jamming. In Section 2.3, we present our randomized distributed

scheme for maintaining control communications when the network is under attack.

Section 2.4 describes the process of identifying compromised nodes. Analytical per-

formance evaluation of our scheme is presented in Section 2.5. Section 2.6 concludes

the chapter.

2.2 Model Description and Problem Formulation

2.2.1 Network Model

We consider a wireless ad hoc network. In the case of a static spectrum assignment,

the network is assumed to operate over K orthogonal frequency bands. We use the

terms frequency, frequency channel, or simply channel interchangeably to denote a

separate frequency band. In the case of dynamic spectrum networks, the number

of idle channels at time t, denoted by K(t), varies according to primary radio (PR)

activity. The maximum number of idle channels is equal to K. Cognitive radio

(CR) nodes are capable of sensing the wireless medium and determining the set

of idle channels at any given time. Various sensing methods can be used for this

purpose [3].

Each node is equipped with a half-duplex transceiver. This is typical for most

wireless devices equipped with a single radio1. We further consider a time-slotted

system. Network nodes are assumed to be capable of slowly hopping between avail-

1Our schemes can benefit from a full-duplex transceiver design by exploiting concurrent trans-

missions/receptions of control information in multiple frequency bands, at the expense of increased

hardware complexity. We leave the investigation of the properties and performance of our methods

under a full-duplex communication model as future work.

30

able frequencies bands. For simplicity, we assume that one frequency hop can occur

per time slot. Several messages may be exchanged during each slot. We assume

that prior trust has been established between network nodes. Neighboring nodes

share pairwise symmetric keys that can be used for secure communication and joint

secret generation.

2.2.2 Adversarial Model

The goal of the adversary is to drop packets that are transmitted over the control

channel. To do so, the adversary deliberately interferes with transmissions on se-

lected frequency bands within a communication range Rmax. Messages received by

any node that is within the jamming range and at the jammed frequency band are

assumed to be irrecoverably corrupted. Network nodes are assumed to be capable

of detecting jamming attacks if they are within distance Rmax from the jammer

and are tuned to the jammed frequency band. Several methods are available for

jamming detection [91], and any of them can be used for our purposes. We further

assume that the adversary can physically compromise network devices and recover

the content of their memory, including cryptographic secrets such as PN codes. He

is also capable of hopping at the same rate as normal network nodes, thus jamming

one channel per time slot (slow hopping jammer). This model is suitable when con-

sidering that the jammer is aware of the PN codes used for broadcasting. Therefore,

he does not need to hop at a faster rate to jam the control channel. Note that with

dedicated hardware, the jammer may be able to hop at a much higher rate than that

of regular nodes. However, the jammer’s hopping rate is limited by the time that

he has to remain on a particular band in order to corrupt a sufficient number of bits

from the targeted packet(s). Taking into account the interleaving function at the

physical layer, this time can represent a significant portion of the slot duration [60].

31

2.2.3 Anti-Jamming Metrics

Numerous metrics have been proposed in the literature for evaluating jamming re-

silience. Traditional anti-jamming metrics such as the jamming-to-noise ratio and

the jamming gain are mostly relevant under an external threat model. These met-

rics capture the amount of power needed by the adversary in order to interfere with

legitimate transmissions at the physical layer [2, 60]. In our context, an adversary

who is aware of a compromised PN code can follow that code in order to jam the

control channel without significantly increasing his transmission power relative to

the transmitted signal.

MAC layer metrics, such as the packet send ratio (PSR) and packet delivery ratio

(PDR), were introduced by Xu et al. [91]. These metrics are useful for detecting a

jamming attack, but are not reflective of the ability of our scheme in resuming the

control channel operation. Our scheme aims at identifying the set of compromised

nodes. This identification is critical for the re-establishment of the control channel.

For this purpose, we define the following security metrics.

Definition 1. Evasion Entropy Ei–Let Ii be a random variable that denotes the

frequency of the control channel during slot i. We define the evasion entropy as:

Ei = H(Ii|Ii−1, Ii−2, . . . I0)

where H(X|Y) is the conditional entropy of the random variable X given the random

variable Y :

H(X|Y)
△
= −

∑
y

∑
x

Pr[y] Pr[x|y] log2 Pr[x|y].

Here, Pr[y] = Pr[Y = y] and Pr[x|y] = Pr[X = x|Y = y].

The evasion entropy measures the uncertainty in the control channel location,

given all previously observed locations and any internal knowledge due to node

compromise.

Definition 2. Evasion Delay D–The evasion delay is defined as the time between

the successful jamming of the control channel and the re-establishment of a new one.

32

Definition 3. Evasion Ratio ER–The evasion ratio is defined as the fraction of

time that the control channel is available for communication, in the presence of the

jammer.

2.3 Control Channel Implementation

Consider a given cluster, where each node is within the range of the CH. Suppose

the current control channel is jammed by an adversary. The main idea behind our

scheme is to have each node in the cluster hop between channels in a pseudo-random

fashion, following a unique hopping sequence not known to other nodes. If the

jammer captures the hopping sequence of a compromised node, then by design this

node can be uniquely identified. After identification, the CH updates the hopping

sequences of all nodes in the cluster except the compromised one. After this update,

the effectiveness of a jammer who exploits knowledge from a compromised node

becomes equivalent to the effectiveness of a jammer who hops randomly between

channels. Note that our method is not a permanent solution for the control channel

allocation, nor can it be used permanently for data communications due to its

high communication overhead and delay. Rather, our scheme temporarily maintains

control communication until the jammer and any compromised nodes are identified.

The hopping sequences assigned to various nodes are designed to overlap at

certain time slots, which represent the control channel. These slots are kept secret.

Given the uncertainty in the control channel location, control transmissions must

be repeated in several slots to (probabilistically) ensure reception by the intended

parties. Our scheme consists of five phases: (a) hopping sequence generation, (b)

hopping sequence assignment, (c) control channel access, (d) compromised node

identification, and (e) hopping sequence update. For dynamic spectrum networks,

an intermediate step is applied to adjust the hopping sequences according to the

current channel availability. We now describe each of the above phases.

33

2.3.1 Hopping Sequence Generation

By design, the hopping sequences assigned to different cluster members overlap

only in a pre-defined number of slots, which are used to implement a broadcast

control channel. In order to protect the secrecy of the control channel, the hopping

sequences must satisfy the following properties: (a) high evasion entropy; knowledge

of previous hops does not reveal any information about future ones, and (b) high

minimum Hamming distance; when interpreted as codewords, any two sequences

should have a high Hamming distance so that a compromised node can be identified.

Suppose that the cluster consists of n nodes plus the CH, and let the set of

available channels be {1, . . . , K}. To construct n hopping sequences of length L+M,

where M denotes the number of slots implementing the control channel, the CH

executes the following steps:

Step 1: Generate n random sequences sj, 1 ≤ j ≤ n, each of length L. For

each sequence sj = {sj(1), . . . , sj(L)}, we have Pr[sj(i) = k] = 1
K
, where

k = 1, 2, . . . , K.

Step 2: Generate a random channel location vector c = {c(1), . . . , c(M)}, where
Pr[c(i)= k] = 1

K
for i = 1, . . . ,M , and k = 1, 2, . . . , K.

Step 3: Generate a random slot position vector v = {v(1), . . . , v(M)}, where v(i) ∈
{1, . . . , L+M}, with v(i) ̸= v(j), ∀i ̸= j.

Step 4: In every sequence sj, insert element c(i) before element sj(v(i)) to generate

a new sequence mj.

In Fig. 2.2, we show an example of the hopping sequence generation phase

for three nodes, with L = 12,M = 5, and K = 8. Here, the indexes {1, . . . , 8}
correspond to eight frequency bands {f1, . . . , f8}. In Step 1, three random sequences

s1, s2, and s3 of length L = 12 are generated, with sj(i) ∈ {1, . . . , 8}. In Step 2, a

random channel location vector c of lengthM = 5 is generated with c(i) ∈ {1, . . . , 8}.
This vector indicates the frequency bands of the control channel. In Step 3, the

34

s1: 1, 2, 5, 3, 8, 2, 5, 2, 4, 6, 7, 1

s2: 2, 4, 3, 1, 1, 2, 6, 2, 3, 4, 7, 5

s3: 7, 5, 8, 2, 3, 4, 8, 1, 5, 2, 6, 7

v: 2, 5, 15, 9, 6, c: f2, f5, f7, f4, f8

slot: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

m1: 1, 2, 2, 5, 5, 7, 3, 8, 4, 2, 5, 2, 4, 6, 8, 7, 1

m2: 2, 2, 4, 3, 5, 7, 1, 1, 4, 5, 6, 2, 3, 4, 8, 7, 5

m3: 7, 2, 5, 8, 5, 7, 2, 3, 4, 4, 8, 1, 5, 2, 8, 6, 7

slot: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

c: f2 f5 f7 f4 f8

Figure 2.2: Hopping sequence generation for L = 12,M = 5 and K = 8. The
control-channel location vector c is interleaved with the random sequences s1, s2,
and s3 at the slot positions indicated by the M -long vector v.

F4 = { f2, f3, f5, f7, f8} F7 = { f2, f5, f6, f7 }

m1: … 5, 5, 7, 3, 8,4,…

m2: … 3, 5, 7, 1, 1, 4,…

m3: … 8, 5, 7, 2, 3, 4, …

slot: … 4, 5, 6, 7, 8, 9, …

m1: … 1, 1, 3, 4, 1,1, …

m2: … 4, 1, 3, 2, 2, 1, …

m3: … 4, 1, 3, 3, 4, 1, …

slot: … 4, 5, 6, 7, 8, 9, …

m1: …f2, f2, f5, f7, f2,f2, …

m2: …f7, f2, f5, f5, f5, f2, …

m3: …f7, f2, f5, f6, f7, f2, …

c: f2, f5, f2

slot: … 4, 5, 6, 7, 8, 9,…

Figure 2.3: Adjusting the hopping sequences to account for dynamic channel avail-
ability.

random slot position vector v is generated. This vector indicates the five slots

where the control channel is implemented. In Step 4, the sequences m1,m2, and

m3 are obtained based on s1, s2, s3, c and v. Note that because the mj’s are a result

of random interleaving of random sequences, they are also random. However, the

sequences mj, 1 ≤ j ≤ n, are not mutually independent, because c is interleaved

in specific slots of all sequences. Despite this fact, it still holds that knowledge of

one sequence does not reveal any information regarding the other. This is due to

the fact that the vector v, which indicates the slot locations where two hopping

sequences overlap by design, is not known to non-CH nodes. Therefore, by knowing

one hopping sequence mj, one cannot predict the other sequence.

35

2.3.2 Generation for Dynamic Spectrum Networks

In dynamic spectrum networks, the set of channels available for use varies tempo-

rally and spatially. Consider a CRN. Suppose that the nodes are assigned hopping

sequences mj’s, generated as in Section 2.3.1. Denote channel availability during

time slot i by Fi = {chi(1), chi(2), . . . , chi(K(i))}, where K(i) is the number of

idle channels during slot i, K(i) ≤ K. Here, chi(j) denotes the index of the jth

idle channel, chi(j) ∈ {f1, . . . , fK}. The set of idle channels in each time slot can

be determined by the underlying channel sensing process [3], with all nodes in a

particular cluster agreeing on the same set [49]. However, two different clusters may

have two different sets of idle channels. To adjust mj to a hopping sequence m′
j for

dynamic spectrum networks, each cluster node executes the following steps.

Step 1: Determine the channel availability set for time slot i : Fi ={chi(1),

chi(2), . . . , chi(K(i))}.

Step 2: Map index mj(i) to index m′
j(i) = mj(i) (mod K(i)) + 1.

Step 3: Access frequency band Fi(m
′
j(i)).

The following example illustrates the above procedure. Consider three CRs that

have been assigned the hopping sequences in Fig. 2.2. Suppose that for slot 4,

the set of idle channels is F4 = {f2, f3, f5, f7, f8} (K(4) = 5). CR1 executes Step

2 above and computes m′
1(4) = [m1(4) (mod K4))] + 1 = [5 (mod 5)] + 1 = 1. In

Step 3, CR1 determines the next hop to be F4(1) = f2. Similarly, CR2 determines

m′
2(4) = [m2(4) (mod K4)] + 1 = [3 (mod 5)] + 1 = 4, which denotes the 4th

channel in the idle channel list, i.e., f7. CR3 hops to the same channel though its

original index m3(4) ̸= m2(4). Suppose now that the set of idle channels for slot 7

has changed to F7 = {f2, f5, f6, f7} (in reality, PR activity varies at a much slower

rate compared to the scale of time slots). The CRs adjust their sequences to the

current set of idle channels. The resulting sequences are shown in Fig. 2.3.

36

2.3.3 Hopping Sequence Assignment

The hopping sequences generated by the CH are assigned to individual cluster nodes

via secure pairwise communication. Using pre-shared pairwise keys, the CH can

establish pairwise shared PN codes with the members of its cluster. Note that the

compromise of a cluster node only reveals the PN code shared between that node

and the CH, while the rest of the pairwise PN codes remain secret. Thus, these codes

can be used for jamming-resistant pairwise communication (but not for broadcasting

of control information). The steps of the hopping sequence assignment for a node

nj are as follows:

Step 1: The CH and node nj establish a pairwise PN code (this code can be either

preloaded or generated based on a pairwise key KCH,nj
).

Step 2: The CH provides nj with the hopping sequence mj, encrypted using the

pairwise key KCH,nj
. Message integrity is achieved through a message authen-

tication code (MAC).

Step 3: Node nj erases from its memory any information regarding the identity of

the CH.

Step 3 ensures that after PN code assignment, the identity of the CH becomes

a secret. Hence, an adversary who may later on compromise nj cannot selectively

target the compromise of the CH. Note that once hopping sequences are assigned,

cluster nodes need not know the CH identity in order to access the control channel.

In any case, the CH can prove his role to various nodes by using his knowledge of

the PN codes that were assigned to individual nodes during the assignment phase.

Any cluster node attempting to impersonate the CH would fail to “authenticate”

itself, because it is not aware of the PN codes originally assigned.

2.3.4 Control Channel Access

The hopping sequences assigned to cluster members are designed to implement the

control channel only during the slots indicated by the random slot position vector

37

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

M/(L + M)

x
(s

lo
ts

)

p0 = 0.8
p0 = 0.9
p0 = 0.95

Figure 2.4: Number of slots required for accessing at least one control channel slot
with probability p0 as a function of the ratio M

L+M
.

v. To prevent an adversary who compromises one cluster node from jamming the

control slots, we require by design that v is not known to cluster nodes. Hence,

nodes are not aware of which time slots solely belong to the control channel. To

broadcast a control message, a node must repeat its transmission over consecutive

slots. The goal here is to ensure that a control-channel slot is accessed at least once

during this repetitive transmission. Let x denote the number of retransmissions of

a control message. An appropriate value for x can be probabilistically computed

based on the design parameters of the hopping sequences. That is, we can tune x

such that a control-channel slot occurs with a desired probability p0. The probability

that the number of occurrences z of a control slot is larger than one in a total of x

slots is

Pr[z ≥ 1] = 1− Pr[z = 0] = 1−
(

L

L+M

)x

. (2.1)

Setting Pr[z ≥ 1] ≥ p0 and solving for x yields

x ≥ ⌈ log (1− p0)

logL− log (L+M)
⌉. (2.2)

Fig. 2.4 depicts x versus M
L+M

for various values of p0. We observe that for

M
L+M

≥ 0.5, fewer than 5 repetitions are required for all three values of p0. For

smaller values of M
L+M

, the required number of slots x increases up to 28 slots when

38

M
L+M

= 0.1 and p0 = 0.95. The ratio M
L+M

controls the tradeoff between the efficiency

of the broadcast communication and resilience to jamming under node compromise.

A higher ratio decreases the necessary number of retransmissions for a successful

broadcast, but also increases the time needed for the identification of a compromised

PN sequence.

Note that several cluster nodes may want to broadcast a control message during

the same control slot. Although we do not specify the MAC mechanism for coordi-

nating access to this common slot, well-known multiple access techniques, ranging

form pure random access to p-persistent CSMA protocols to CSMA with virtual

carrier sensing, can be employed. Broadcast control messages are not acknowledged

so as to avoid an ACK implosion situation [84]. This is in line with typical wire-

less protocols such as the 802.11 family. Therefore, a transmitting node does not

know if its transmission was performed over a control-channel slot or whether the

transmission attempt was successful. For this reason, the node must repeat such a

transmission x times.

Upon the successful transmission of a broadcast control packet on a slot that

belongs to the control channel, all nodes are able to correctly receive that pack-

et. Since packets are transmitted/received in the context of a particular proto-

col/application/network function, they are accordingly passed on to upper layers of

the network stack. Note that cluster nodes may receive multiple copies of the same

control packet, because transmissions are repeated on multiple slots, and multiple

sequences may coincide on slots other than the control channel slots. This replica-

tion of information is indicated by the inclusion of the same sequence number on

the copies of the same packet (e.g., at the MAC layer header). That is, a node

repeating the broadcast of the same control packet on multiple slots, keeps all fields

of the packet identical. Hence, using the sequence number field, cluster nodes can

reject multiple copies of the same control packet.

39

2.3.5 Hopping Sequence Update

Hopping sequences need to be updated when the CH detects that a node has been

compromised. In this case, the CH is responsible for assigning new sequences to all

uncompromised nodes. To do so, the CH synchronizes with the PN code of each

individual node, prove his role as a CH, and assigns a new PN code. In detail, the

following steps are executed:

Step 1: The CH synchronizes with PN code mj (mj is only known to the CH and

nj).

Step 2: The CH communicates to nj a portion of mj, which is meant to prove

the CH’s knowledge of mj. This communication is secured by the pairwise key

KCH,mj
.

Step 3: The CH assigns a new sequence m∗
j to nj. This communication is secured

by the pairwise key KCH,mj
.

Step 4: Node nj erases all information regarding the identity of the CH.

The hopping sequence update phase differs from the initial hopping sequence

assignment phase in the pairwise PN code used for communication. After the initial

assignment, cluster nodes hop according to their mj’s. Hence, the CH has to follow

each mj to individually communicate with each node. Note that the compromise of

node nj does not reveal sequence mℓ, ℓ ̸= j. Hence, the jammer cannot prevent the

update of non-compromised nodes. The case of a CH compromise, which reveals all

hopping sequences to the adversary, is addressed through CH rotation, as detailed

in Section 2.4.3. Once a CH rotation has occurred, the new CH updates the hopping

sequences of all cluster nodes by following the initial hopping sequence assignment

process.

In Step 2, the CH proves his role to every cluster member that is assigned a new

sequence. This step is necessary because information regarding the CH identity

is erased after the initial hoping sequence assignment. Note that the pairwise key

40

shared between the CH and a cluster node nj is not sufficient to authenticate the

role of CH. Other cluster nodes may share pairwise keys with nj. To avoid CH

impersonation, the CH exploits his knowledge of the unique hopping sequences

assigned to each node. When updating node nj, the CH securely communicates

part of the current sequence mj (future hops) to nj. Upon reception of a correct

partial sequence, nj will accept the sequence update performed in Step 3. After the

successful assignment of m∗
j , node nj erases the identity of CH from its memory (nj

is an uncompromised node and hence, will conform to Step 4). Steps 1-4 have to

be repeated by every legitimate node in the cluster, leading to the isolation of the

compromised node(s).

2.4 Identification of Compromised Nodes

In this section, we develop algorithms for the identification of compromised nodes.

We first address the case of one compromised node, and then extend the treatment

to multiple ones.

2.4.1 Compromise of a Single Node

Suppose that one cluster member nj has been compromised. The adversary acquires

the unique hopping sequencemj assigned to this node. Because the slots implement-

ing the control channel are secret, the adversary must follow mj to efficiently jam

the control channel. However, following mj reveals the identity of the compro-

mised node nj. This identification is based on the Hamming distance between the

sequences assigned to nodes and the jamming hopping sequence. In the following

two propositions, we analytically evaluate the expected Hamming distance.

Proposition 1. For two random and independently generated sequences mj and mℓ,

defined over an alphabet A = {1, . . . , K}, the expected Hamming distance E[d(mj

,mℓ)] as a function of the sequence length X is given by

E[d(mj,mℓ)] =
K − 1

K
X. (2.3)

41

Proof. The proof is a direct consequence of the randomness and independence as-

sumptions. Based on the sequence generation process outlined in Section 2.3.1,

Pr[mj(i) = k] = 1
K
, ∀i. Since the two sequences mj and mℓ are assumed to be

independent and random, they differ at slot i with probability

Pr[mj(i) ̸= mℓ(i)] =
K − 1

K
. (2.4)

The expected Hamming distance between two sequences of length X is equal to

the expected number of successes in X such Bernoulli trials, i.e., E[d(mj,mℓ)]=

K−1
K

X.

If the adversary has not compromised any node and is hopping according to a

random sequence mjam, the average Hamming distance between mjam and any of

the assigned sequences mj, 1 ≤ j ≤ n, must increase at a rate of K−1
K

. On the

other hand, if mjam is a subset of the sequence mj of a compromised node nj, the

Hamming distance between mjam and mj is expected to be significantly lower (note

that although the adversary may be aware of mj, he may choose to follow only

a subset of it to avoid being identified). The CH can exploit this observation to

identify the compromised node.

In dynamic spectrum networks, the hopping sequences are not necessarily ran-

dom, because of their adjustment to account for spectrum availability. Randomness

is preserved only when the number of idle channels K(i) is a factor of the alpha-

bet size that was used to generate the original sequences. In the general case, the

expected Hamming distance is expressed by Proposition 3.

Proposition 2. Consider two random and independently generated sequences mj

and mℓ that are defined over an alphabet A = {1, . . . , K}. Suppose that the sequences
are adjusted to m′

j and m′
ℓ, respectively, according to the process outlined in Section

2.3.2. The expected Hamming distance E[d(m′
j,m

′
ℓ)] as a function of the length X

of the sequences is

42

E[d(m′
j,m

′
ℓ)] =

(
1− (K(i)− yK) ·

(xK

K

)2
−yK ·

(
xK + 1

K

)2)
·X (2.5)

where xK
△
= ⌊ K

K(i)
⌋ and yK

△
= [K (mod K(i))].

Proof. According to Step 2 in Section 2.3.2, the hopping sequences are modified by a

modulo K(i) operation. The number of indexes of the original sequence that map to

the same index in the modified sequence depends on the quotient of the division ofK

by K(i), given by xK = ⌊ K
K(i)
⌋, and the remainder, given by yK = [K (mod K(i))] .

In particular, for a modified sequence m′
j, it follows from elementary modulo arith-

metic that

Pr[m′
j(i) = w] =


xK+1
K

, if 1 ≤ w ≤ yk, yk > 0.

xK

K
, if yk + 1 ≤ w ≤ K(i).

(2.6)

Let M be the event that two modified sequences m′
j and m′

ℓ match at slot i.

Based on (2.6), we have

Pr[M] =

K(i)∑
w=1

Pr[m′
j(i) = w,m′

ℓ(i) = w] (2.7a)

=

K(i)∑
w=1

Pr[m′
j(i) = w] Pr[m′

ℓ(i) = w] (2.7b)

=

yk∑
w=1

(
xK + 1

K

)2

+

K(i)∑
yK+1

(
xK

K

)2

(2.7c)

= yK ·
(
xK + 1

K

)2

+
(
K(t1)− yK

)
·
(
xK

K

)2

. (2.7d)

Equation (2.7b) is due to the independence in the generation of the original

sequences mj and mℓ. Equation (2.7c) is due to the probability distribution in (2.6)

43

and Equation (2.7d) follows from the simplification of the sum. Given Pr[M], it is

easy to see that the expected Hamming distance for two sequences of length X is

given by (2.5).

Identification process: For identification purposes, the CH exploits his knowledge

of the subsequences sj, which are unique to individual nodes. Let sjam denote the

subsequence followed by the jammer, excluding the slot positions in vector v. To

identify a compromised node, the CH measures the Hamming distance between sjam

and every assigned sequence sj. Note that the half-duplex transceiver assumption

limits the monitoring capabilities of the CH to a single channel per slot. Because

the hopping sequence sjam is not known in advance, the CH periodically tunes to

sj’s of different nodes to compute the Hamming distance. To do so, the CH needs

only to know if channel sj(i) was jammed at slot i. We now describe the steps for

the identification process for a single compromised node. The pseudo-code is shown

in Algorithm 1.

Step 1: Initialize d(sj, sjam) = 0, ∀j.

Step 2: Synchronize with the hopping sequence mj of a randomly selected node

nj.

Step 3: For each slot i, i /∈ v, ifmj(i) is not jammed, set d(sj, sjam) = d(sj, sjam)+

1.

Step 4: After some number of slots X ≥ γ0, if d(sj, sjam) < E[d(sj, sjam)] − δX ,

then node nj is considered to be compromised.

Step 5: Randomly pick another node and repeat Steps 2-4 for X slots.

In Algorithm 1, each node is monitored for at least γ0 slots to obtain an accurate

estimate of d(sj, sjam).
2. The tolerance margin δX is computed based on the stan-

2Faster identification of the compromised nodes can be achieved if the CH evaluates the Ham-

ming distance of all sequences sk for which sk(i) = sj(i), on slot i, when the CH follows the

sequence sj . This method is expected to speed up the identification process by a factor of 1
K .

44

Algorithm 1 Identification of a Single Compromised Node

1: Initialize : d(sj, sjam) = 0, ∀j; j = 1; i = 0; CN ← ∅
2: while J ==FALSE do

3: for x = 1, x ≤ X, x++ do

4: if mj(i) NOT JAMMED & mj(i) /∈ v then

5: d(sj, sjam) = d(sj, sjam) + 1

6: end if

7: if d(sj, sjam) < E[d(sj, sjam)]− δx && x > γ0 then

8: J =TRUE, CN → n, break

9: else

10: i++

11: end if

12: end for

13: if J ==TRUE then

14: break

15: else

16: j ++

17: end if

18: end whileCN

dard deviation σX of the Hamming distance. For example, considering δX = 3σX

yields a 99.7% chance for the Hamming distance of two random sequences to be

within that margin. The value of δX provides a tradeoff between the speed of iden-

tification (smaller δX yields tighter bounds on E[d(sj, sjam)]) and the false-positive

identification rate In the case of static spectrum assignment, the standard deviation

of d(sj, sjam) is equal to σX =
√

K−1
K2 X. The value of σX for dynamic spectrum

networks can be easily computed based on Equation (2.6).

We emphasize that the value X takes into account only slots that belong to

subsequences sj. In reality, the delay in the identification of compromised nodes

is larger due to the interleaving of common control slots that belong to c. The

45

latter slots do not contribute to the identification process and hence, are excluded

from the computation. As an example, consider the hopping sequences shown in

Fig. 2.2. Let sjam = s2, and γ0 = 10. For X = 10, E[d(sj, sℓ)] = 8.75, δX = 3,

and σX = 3.1. Initially, the CH follows s1 for X = 10 slots. After the first ten

slots, d(s1, sjam) = 8. The CH switches to sequence s2. Because s2 is the jamming

sequence, d(s2, sjam) = 0. Thus, node n2 is declared compromised. For this set of

parameters, the jammer can avoid detection, only if he partially follows s2 for a

fraction α(X) ≤ 40% of the monitoring interval X. As X increases, the fraction

α(X) converges to its expected value in the case of random jamming. This can be

easily shown from the detection condition of Step 4 of the identification algorithm.

Assuming an adversary which is active only for a fraction α(X) of the X slots

corresponding to a compromised sj and setting δX = τσX , where τ denotes some

desirable constant, the detection condition yields

d(sj, sjam) = E[d(sj, sjam)]− δX ⇒

(1− α(X))X =
K − 1

K
X − τ

√
K − 1

K2
X ⇒

α(X) =
1

K
+ τ

√
K − 1

K2X
, (2.8)

where we have used the fact that d(sj, sjam) = (1 − α(X))X, when the jammer is

following only a fraction α(X) of a compromised sequence sj. From (2.8), it is evident

that α(X) → 1
K

when X → ∞. This is a fairly intuitive result that indicates that

with the progression of the monitoring period X, a jammer that partially follows

a compromised PN code, cannot deviate from the behavior of a random jammer

without being detected.

An implicit assumption of our identification process is that the CH is able to

detect when a jamming signal interferes with the reception of a control message

within his cluster. It is possible for the jammer to tune his transmission power

so as to interfere with the reception at a cluster node, but not at the CH. Such a

low-power jammer has a limited impact on the network due to his small jamming

range. We are primarily concerned with the scenario presented in Fig. 2.1, in which

46

a high power jammer attempts to deny the control channel within a large network

area.

2.4.2 Compromise of Multiple Nodes

When several nodes are simultaneously compromised, the jammer can combine the

acquired hopping sequences to reduce the number of jammed slots. Without loss of

generality, assume that nodes n1, . . . , nq, q < n, are compromised. Suppose that the

jamming sequence sjam consists of the (time, frequency) pairs that are common to

compromised sequences {m1, . . . ,mq}, excluding the slots in v. In the case of static

spectrum networks, the expected length of sjam is given by Proposition 4.

Proposition 3. The expected length E[X] of a sequence sjam consisting of the chan-

nel locations common to q random hopping sequences {s1, . . . , sq} of length X is

E[X] =

(
1

K

)q

X. (2.9)

Proof. The probability that q random sequences overlap at slot i is
(

1
K

)q
. For

the random sequences {s1, . . . , sq}, the expected number of overlapping channel

locations is expressed by the expected number of successes in repeating X Bernoulli

trials with parameter
(

1
K

)q
.

Note that the adversary cannot differentiate between the slot positions assigned

to the control channel and the
(

1
K

)q
L slot positions that match due to the sj’s.

Hence, the adversary must jam all slots common to the compromised sequences to

efficiently deny access to the control channel. For the case of dynamic spectrum

networks, the expected length of the sequence sjam is given by Proposition 4.

Proposition 4. The expected length E[X] of a sequence sjam consisting of the chan-

nel locations common to q hopping sequences {s′1, . . . , s′q} of length X is

E[X] =
∑
z

(
yK

(
xK + 1

K

)q

+ (K(z)− yK)
(xK

K

)q)
Xz (2.10)

47

where z denotes the number of channel availability changes over the course of X =∑
z Xz slots, and Xz denotes the number of slots of the sequences sj for which the

number of idle channels is equal to K(z).

Proof. The proof follows similar steps to the proof of Proposition 4 and is omitted.

To identify compromised nodes, the CH correlates the random sequences sj, 1 ≤
j ≤ n, with the jammed channel locations. The CH follows a monitoring sequence

sCH , which is a concatenation of subsequences from the sj’s.

sCH = s1(1 : Y)|| . . . ||sn((n− 1)Y + 1 : nY)

where Y denotes the number of slots that belong to the subsequences sj and are

devoted to monitoring a node. Note here that our computations ignore slots that

belong to vector v. In reality, to monitor a subsequence sj for Y slots, the CH must

monitor nj for (1 +
M

L+M
)Y slots, on average. The CH maintains a matrix

A = {aji|aji ∈ {0, 1}}n×nY (2.11)

where each row j corresponds to node nj and each column i corresponds to the ith

slot. Note that only non-control slots are taken into account in the construction of

matrix A. For A, an element aji = 1 if while residing on channel f during the ith slot,

the CH detects f as jammed and sj(i) = f. Otherwise, aji = 0. Considering each

row A(j) as a codeword, the CH computes the codeword weight W (A(j)) ∀j, and
ranks the weights in a descending order. The weight W (C) of a binary codeword C

is defined as the number of ones in the codeword. Compromised nodes are expected

to have a significantly larger weight than other nodes and their weights will be of the

same order. Assuming q compromised nodes, the expected weight for a codeword

A(j), j = 1, · · · , q is

E[W (A(j))] =

(
1

K

)q

qY (2.12)

48

Algorithm 2 Identification of Multiple Compromised Nodes

1: Initialize : A = 0, W = 0, j = 1, j =FALSE, CN ← ∅
2: v, n;

3: mCH = s1(1 : Y)|| . . . ||sn((n− 1)Y + 1 : nY)

4: while J ==FALSE do

5: if mCH(i) JAMMED & i /∈ v then

6: aji = 1, W (j) + +, ∀i, ∃ sCH(i) = sj(i), i++

7: end if

8: if i > γ1 // sufficient sampling then

9: sort(W) // sort weights in a descending order

10: find j, ∃ W (A(j))− E[W (A(j)) > δq, CN ← j

11: J =TRUE

12: end if

13: end whileCN

where E[W (A(j))] is computed over the qY slots devoted to the monitoring of the

q compromised nodes. The CH identifies the set of nodes with high weights and

compares those weights to their expected value, expressed in (2.12). If the weight

of a codeword exceeds the expected value by some margin δq, i.e., W (A(j)) ≥(
1
K

)q
qY+δq, the corresponding node nj is identified as compromised. The parameter

δq is a tolerance margin related to the standard deviation of W (A(j)). The pseudo-

code for the identification of multiple compromised nodes is shown in Algorithm

2.

During the execution of Algorithm 2, the CH is not aware of the number of

compromised nodes q. Without knowing q, the CH compares the computed weight

of each node with multiple threshold values δq, for different q’s. If any node violates

any threshold value, it is declared compromised and its revocation is initiated via a

hopping sequence update.

49

2.4.3 Compromise of the Clusterhead

By compromising the CH, the adversary can obtain all sequences sj, 1 ≤ j ≤ n,

the corresponding sequences mj, as well as c and v. Using his knowledge of c and v,

the adversary can deny control-channel access to all cluster nodes by jamming only

the control channel locations. To address such a strong attack, the role of the CH

has to be periodically rotated among cluster members. The steps of the hopping

sequence assignment in the case of a CH rotation are as follows:

Step 1 : The new CH randomly hops between channels.

Step 2 : In each slot, the CH attempts to communicate with a cluster node nj

to establish a pairwise shared PN code. Random hopping continues until

the establishment of the PN code is confirmed by both parties (via an ACK

message).

Step 3 : The CH assigns a new hopping sequence m∗
j to nj, using the pairwise

shared PN code. The sequence m∗
j conforms to the design outlined in Section

2.3.1.

Step 4 : Node nj erases all information regarding the identity of the new CH.

Step 5 : Steps 1-4 are repeated until all legitimate nodes are assigned new hopping

sequences, except for the previous CH.

When a CH rotation occurs, the new CH ni has to update all cluster nodes

except the previous CH with new PN codes. Because the new CH is not aware of

the current PN sequences followed by each cluster node nj, it randomly hops to

different channels in order to meet each node and assign it a new hopping sequence.

If ni meets a node nj, it first establishes a pairwise PN code with nj (via a commonly

derived seed) and then updates that node with m∗
j . For simplicity, we have made

the assumption that one slot is sufficient for communicating m∗
j to nj. In reality,

several packets may be needed to do that. The communication between the new

CH and any cluster node is still susceptible to jamming activity. However, because

50

the PN code used by the two parties is not known to the jammer, the transmission

will eventually be successful. The reception of m∗
j is acknowledged by nj via an

acknowledgement message. The new CH repeats this process until all cluster nodes

are assigned new PN codes and have acknowledged their reception.

Note that initiation of a CH rotation has to be invoked by the individual cluster

nodes, since the current CH is compromised. Nodes can declare the CH to be

compromised if they cannot access the control channel for a prolonged period of

time (computed in Section 2.5.4). Any cluster node other than the current CH may

decide to become the CH and initiate the CH rotation process. If more than one

nodes decide to become CHs, a cluster may be partitioned to smaller clusters.

2.5 Performance Evaluation

In this section, we analytically study the anti-jamming metrics introduced in Section

2.2, and validate our analysis via simulations. We evaluate both static and dynamic

spectrum networks.

Simulation Setup: For static spectrum networks, we construct the hopping se-

quences mj according to the process described in Section 2.3.1. Under an external

jammer model, the adversary jams channels in a random fashion. Under an inter-

nal jammer model, the adversary jams only those slots in which the compromised

sequences overlap, and remains silent in all other slots. The simulations are run for

5,000 slots.

For dynamic spectrum networks, we simulate PR activity to obtain temporally

varying spectrum availability. We consider a cellular network as the primary network

(PRN), operating over K = 10 frequency bands. The call arrival process at the

PRN follows a Poisson distribution with an arrival rate of λ = 2 calls/min. The

call duration is assumed to be exponentially distributed with parameter µ. For each

value of µ, we run the simulation until 5,000 calls are completed. The set of idle

channels is updated each time a new call arrives, or when a call is terminated. The

jammer is assumed to be aware of the set of idle channels at every slot. The slot

51

duration is set to 100 msec. Each secondary node (e.g., CR node) dynamically

adjusts its hopping sequence according to the process described in Section 2.3.2.

2.5.1 External Jammer

We first consider the case of an external jammer. In this scenario, the hopping

sequences followed by each cluster node remain secret. Before we compute the

metrics of interest, we derive the optimal jamming strategy for an external jammer.

Without any inside information, the jammer must guess the location of the control

channel. The optimal jamming strategy is obtained from the following proposition.

Proposition 5. The optimal strategy of an external jammer is to continuously jam

the most frequently visited channel.

Proof. Let cjam denote the subsequence of mjam corresponding to the locations of

control channel slots; i.e., cjam = {mjam(i) : i ∈ v} (v denotes the random slot

position vector). Let also P = {p1, p2, . . . , pK} and Q = {q1, q2, . . . , qK} denote

the probability distribution functions from which values c(i) and cjam(i) are drawn,

respectively. Q is optimal when the expected Hamming distance E [d(c, cjam)] is

minimized, i.e., the jammer is able to overlap with c in the maximum number of

slots. Suppose that π = {π(1), . . . , π(k)} is a permutation of the set of channels

{1, . . . , K} such that pπ(1) ≥ . . . ≥ pπ(K). That is, the discrete probabilities of

Pr[c(i) = k] are arranged in descending order. The probability that c and cjam

overlap at index i (which corresponds to slot v(i)) is

Pr[c(i) = cjam(i)] =
K∑
j=1

Pr[c(i) = π(j), cjam(i) = π(j)]

=
K∑
j=1

pπ(j)qπ(j) (2.13)

For a sequence of length X, the expected Hamming distance between c and cjam

is E[d(c, cjam)] = (1 − Pr[c(i) = cjam(i)])X (overlapping in two different slots are

52

independent events). Hence, the expected Hamming distance is minimized when

(2.13) is maximized.

Maximization of (2.13) can be shown as follows. Consider two distributions

P = {p1, p2, . . . , pK} and Q = {q1, q2, . . . qK}, and also consider two cases for the

distributionQ: {qπ(1), qπ(2), . . . , qπ(K)}= {1, 0, . . . , 0} and {q′π(1), q′π(2), . . . q′π(K)} with
q′π(1) < 1. Let S =

∑K
j=1 pπ(j)qπ(j) and S ′ =

∑K
j=1 pπ(j)q

′
π(j). Then,

S ′ − S =
K∑
j=1

pπ(j)q
′
π(j) −

K∑
j=1

pπ(j)qπ(j)

=
K∑
j=1

pπ(j)q
′
π(j) − pπ(1) · qπ(1)

≤
K∑
j=1

pπ(1)q
′
π(j) − pπ(1)

= pπ(1)

K∑
j=1

q′j − pπ(1)

= 0.

Hence,
∑K

j=1 pπ(j)qπ(j) is maximized when the distribution {qπ(1), qπ(2), . . . qπ(K)}=
{1, 0, . . . , 0}.

When the channel location vector c is random, the jammer is expected to have

the same likelihood of success, regardless of how he constructs mjam. This can be

easily seen from (2.13), when p1 = . . . = pK = p. Note that for the subsequence

cjam which is of interest, it holds that Pr[c(i) = cjam(i)] = p, irrespective of the

values of qi’s. If c is not random (this is true for dynamic spectrum networks where

the modulo operation reduces the randomness in c), the optimal jamming strategy

is to continuously jam the most probable channel. Based on equation (2.6), in the

case of dynamic networks channels {1, . . . , yK} (yK = [K (mod K(i))] > 0) occur

in the hopping sequences m′
j with the highest probability. Therefore, the optimal

jamming strategy is to continuously jam any of the channels in {chi(1), . . . , chi(yK)},
yielding a success probability of

⌊ K
K(i)

⌋+1

K
per slot. In fact, choosing any probability

53

distribution which distributes the probability mass on the set {chi(1), . . . , chi(yK)}
yields the same probability of success. Given the optimal jamming strategy, we now

evaluate the proposed anti-jamming metrics for an external jammer.

Evasion Entropy

The elements mj(i) of a sequence mj are generated independently for each slot.

Hence, knowledge of previous control channel locations does not reveal any infor-

mation about future ones. In this case, Ei = H(Ii). For static spectrum networks,

mj(i) is drawn from a uniform distribution, yielding the maximum value for the

evasion entropy, i.e., Ei = log2K bits. For dynamic spectrum networks, Ei depends

on the number of idle channels K(i). Using the probability distribution of eq. (2.6),

it can be shown that

Ei =
1

K

(
log2

(
KyK−K(i)xK

(xK + 1)(xK+1)yKx
(K(i)−yK)xK

K

))
(2.14)

where xK
△
= ⌊ K

K(i)
⌋ and yK

△
= [K (mod K(i))] > 0.

Evasion Delay

Proposition 6. In static spectrum networks, the expected evasion delay E[D] for

re-establishing the control channel when no node has been compromised is

E[D] =
K

K − 1
· L+M

M
. (2.15)

Proof. E[D] is equal to the expected number of required slots N before the control-

channel slot occurs for the first time, times the number of tries R needed to evade

jamming. Thus,

E[D] = E[RN] = E[R]E[N]. (2.16)

Note that R and N are independent random variables. The probability of evading

jamming for random hopping sequences, assuming an optimal jamming strategy, is

equal to K−1
K

. Thus, E[R] = K
K−1

. By construction, slot i is a control-channel slot

54

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

M/(L + M) ratio

E
[D

]
(s

lo
ts

)
K = 3
K = 5
K = 10

0 0.2 0.4 0.6 0.8
0

5

10

15

20

M/(L + M) ratio

E
[D

]
(s

lo
ts

)

K(i) = 3
K(i) = 6
K(i) = 9

0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

M/(L+M) ratio

E
va

si
o
n

R
a
ti
o

µ=0.1 min
µ=2.6 mins
µ=3.8 mins
µ=0.1 min (theoretical)
µ=2.6 mins (theoretical)
µ=3.8 mins (theoretical)

(a) (b) (c)

Figure 2.5: (a) E[D] as a function of the ratio M
L+M

for static spectrum networks,

(b) E[D] as a function of the ratio M
L+M

for dynamic spectrum networks, (c) E[ER]

as a function of M
L+M

for dynamic spectrum networks.

20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Hamming distance

P
ro

b
a
b
ili

ty
 p

K=5

3 x std = 12

0 200 400 600 800 1000
0

200

400

600

800

Length of sequence L

H
a
m

m
in

g
 d

is
ta

n
c
e

K = 3
K = 5
K = 10

900

0 200 400 600 800 1000
0

200

400

600

800

1000

Length of sequence L

H
a
m

m
in

g
d
is
ta

n
ce

µ=0.1 min
µ=2.6 mins
µ=3.8 mins
µ=0.1 min (theoretical)
µ=2.6 mins (theoretical)
µ=3.8 mins (theoretical)

(a) (b) (c)

Figure 2.6: (a) pmf of the Hamming distance between two random sequences of
length 100, (b) expected Hamming distance as a function of a sequence of length L
for static spectrum networks (error margins denote 99.7% confidence intervals), (c)
expected Hamming distance as a function of L for dynamic spectrum networks.

with probability M
L+M

. Therefore, the first re-occurrence of the control channel fol-

lows a geometric distribution with parameter M
L+M

, and E[N] = L+M
M

. Substituting

E[R] and E[N] into (2.16) completes the proof.

For the case of dynamic spectrum networks, the probability of evading jamming

in slot i is equal to (1 − Pr[M]), where Pr[M] is given in eq. (2.7d). Therefore,

E[R] = 1
1−Pr[M]

, whereas E[N] remains the same as in static networks. Substituting

E[R] and E[N] yields

E[D] =
1

1− Pr[M]
· L+M

M
. (2.17)

55

Evasion Ratio

The evasion ratio reflects the communication efficiency of the control channel. It

measures the fraction of slots used for control communication in the presence of a

jammer. The expected value of the evasion ratio E[ER] can be directly derived by

taking the inverse of the evasion delay.

Simulation and Numerical Examples

In Fig. 2.5(a), we show the expected evasion delay as a function of the ratio M
M+L

for

static spectrum networks. The ratio M
M+L

denotes the fraction of time devoted to the

control channel. It can be observed that the evasion delay drops with the increase

in M
M+L

. This is due to the fact that the control channel occurs more frequently

and hence, the jammer will be unsuccessful in guessing the location of the control

channel in fewer slots. However, in the event of a node compromise, fewer slots are

available to identify compromised sequences when M
M+L

increases. In Fig. 2.5(b),

we show the expected evasion delay as a function of M
M+L

for various values of K(i)

and for dynamic spectrum networks. This graph corresponds to equation (2.17).

For a fixed value of K(i), a behavior similar to the case of static spectrum networks

is observed.

The evasion ratio can be obtained by inverting the values of the evasion de-

lay. E[ER] increases linearly with M
M+L

. To take into account temporal variations

in spectrum availability in the case of CRNs, we compute the evasion ratio under

simulated PRN activity. In Fig. 2.5(c), we show the evasion ratio as a function of

M
L+M

for dynamic spectrum networks. Solid lines correspond to the simulation val-

ues, while dashed lines correspond to the theoretical ones. To obtain the theoretical

values, we used Equation (2.17) to calculate the evasion delay and then computed

its inverse value. For the calculation of Pr[M], the mean value of the number of idle

channels E[K], obtained via simulation, was used. For the simulation results, we

assumed the adversary is aware of the set of idle channels Fi in each slot i. Based

on the optimal jamming strategy, the adversary jams the most probable channel in

56

each slot. If the adversary succeeds in jamming the control channel in slot i, we

measure the delay until the control channel is re-established. The evasion ratio is

computed as the inverse value of the average evasion delay. From Fig. 2.5(c), we

observe that the simulated values closely match the theoretical ones. As expected

from the theoretical analysis, the evasion ratio is a linear function of the fraction of

time that the control channel is available.

2.5.2 Compromise of a Single Node

When a single node nj is compromised, its hopping sequence mj is revealed to the

adversary. By followingmj, the adversary can jam all slots implementing the control

channel. In this case, Ei = 0 and E[ER] = 0, for as long as the compromised

node is undetected. The evasion delay is equal to the time required to identify

the compromised node. Under a single compromised node scenario, we evaluate

the properties of the Hamming distance between randomly hopping sequences and

correlated ones, that lead to the identification of the compromised node.

In Fig. 2.6(a), we show the pmf of the Hamming distance between two random

sequences when an alphabet A = {1, . . . , 5} is used for random sequence generation.

The pmf is concentrated in a small region around the mean. For a sequence of length

100, 99.7% of possible random sequences are expected to have a Hamming distance

of at least 68. If a jammer overlaps with mj in more than 32 slots per 100, the CH

will declare mj to be compromised.

In Fig. 2.6(b), we show the expected Hamming distance as a function of the

sequence length L for static spectrum networks. Error margins indicate the 99.7%

confidence interval (three standard deviations). We observe that the event of node

compromise can be easily identified by comparing the hopping sequence of the jam-

mer to those assigned to cluster nodes. The Hamming distance must fall within

well-confined margins, allowing fast identification of the compromised node.

In Fig. 2.6(c), we show the expected Hamming distance as a function of L for

dynamic spectrum networks. Both theoretical and simulation values are shown.

Note that the temporal variations in channel availability do not significantly affect

57

1 2 3 4 5

10
2

10
3

10
4

10
5

10
6

no. of compromised nodes

E
[D

]
(s

lo
ts

)
K=2
K=5
K=10

1 1.5 2 2.5 3 3.5 4
10

2

10
3

10
4

10
5

10
6

No. of compromised nodes (q)

E
[D

]
(s

lo
ts

)

µ=1 min
µ=2.6 mins
µ=3.8 mins

2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

Number of available channels K

W
ei

gh
t

Weight of comp. node
Maximum weight of uncomp. nodes

(a) (b) (c)

Figure 2.7: (a) E[D] as a function of the number of compromised nodes for static
spectrum networks, (b) E[D] as a function of the number of compromised nodes for
dynamic spectrum networks, (c) weight of the compromised node compared to the
maximum weight of uncompromised ones.

the expected Hamming distance, which increases linearly with the length of the

hopping sequences. The allowable deviation from the expected value remains small,

leading to fast identification if a jammer follows a compromised sequence.

2.5.3 Compromise of Multiple Nodes

When multiple nodes are compromised, the jammer can combine their hopping

sequences to obtain the channel locations of the slots in which these sequences

overlap. This reduces the adversary’s effort to jam the control channel (fewer slots

need to be jammed) and makes the identification process more difficult. As in the

case of a single compromised node, Ei = 0 and E[ER] = 0. To evaluate the evasion

delay, we compute the time required to identify the set of compromised nodes, assign

new sequences to uncompromised ones, and re-establish the control channel.

Suppose that q nodes are compromised in a cluster of n nodes. According to

Algorithm 2, each of the q nodes is expected to have a weight of
(

1
K

)q
qY, where Y

is the time in slots that the CH uses to monitor each of the q compromised nodes.

Let γ0 be the number of jammed slots that are required for identification of the

compromised nodes. To observe γ0 jammed slots, the CH needs to monitor channels

according tomCH for an average time of qX = Kqγ0 slots. Upon identification of the

compromised nodes, the CH must assign new hopping sequences to the remaining

58

(n− q) uncompromised nodes, yielding an additional delay of (n− q)Xc slots, where

Xc is the number of slots needed to assign a new sequence. Once sequences are

assigned, a delay equal to the first occurrence of the control channel under a random

jammer is incurred. Thus, the total expected evasion delay is:

E[D] = Kqγ0 + (n− q)Xc +
K

K − 1
· L+M

M
. (2.18)

In Fig. 2.7(a), we show E[D] as a function of q for static spectrum networks.

For simplicity, we take Xc = 1 and γ0 = 100 slots. We observe that for large values

of K, E[D] is very large when q ≥ 3. This is due to the fact that the probability

of overlapping among the q sequences at random becomes very small for large K.

Thus, a much longer observation period is required to identify compromised nodes.

For faster identification, the CH may limit the assigned hopping sequences to a

subset ofM.

Fig. 2.7(b) shows E[D] as a function of q for dynamic spectrum networks. We

observe a low value of E[D] when the PR activity is high. This behavior can be

explained as follows. High values of µ translate into a smaller number of idle channels

K(i). Therefore, CRs hop between a smaller set of channels. The probability of

compromised sequence overlap in a slot i, i /∈ v, a necessary condition for their

identification, increases with the reduction in K(i). This is also evident from (2.18).

Hence, the CH is able to identify compromised nodes faster using Algorithm 2.

To verify the effectiveness of Algorithm 2, we perform the following simulation

experiment. We consider a cluster of 10 nodes and generate 10 hopping sequences,

each of length 5,000. q of those sequences are assumed to be compromised. The jam-

mer computes the jamming sequence mjam as the intersection of the compromised

sequences, and jams only the slots in which the q sequences overlap. Algorithm 2 is

executed to compute the weight of each hopping sequence. The CH monitors the K

channels according to sequence mCH , following each sequence in a round-robin man-

ner for 100 slots. In Fig. 2.7(c), we show the average weight E[W] of a compromised

node compared with the maximum weight obtained from the set of uncompromised

sequences, as a function of K. We observe that compromised nodes have a con-

59

sistently higher weight than uncompromised nodes, leading to identification of the

former ones. Fig. 2.8 shows a comparison between the weight of compromised nodes

and the maximum weight of uncompromised nodes, as a function of q.

1 2 3 4
0

100

200

300

400

No. of compromised nodes (q)

W
ei

gh
t

Weight of comp.,K=5
Weight of comp.,K=10
Max weight of uncomp.,K=5
Max weight of uncomp.,K=10

Figure 2.8: Average weight of compromised nodes and maximum weight of uncom-
promised ones versus q.

When the number of compromised nodes is small (less than 4), the weight of

a compromised node is sufficiently distinct from the weight of an uncompromised

node. However, for higher values of q, compromised sequences have less probability

to coincide in each slot except the control channel slots. In this scenario, the CH

must monitor each node for a large number of slots, in order to measure disparities

in the weights of different sequences.

2.5.4 Compromise of the Clusterhead

If the CH is compromised, the adversary knows the hopping schedules of all nodes

in the cluster as well as the slots of the control channel. Hence, the evasion entropy

and the evasion ratio are equal to zero. The evasion delay E[D] is equal to the sum of

three components: (a) the delay E[D1], until the compromise of the CH is detected,

(b) the delay E[D2], of assigning new hopping sequences to cluster members, and

(c) the delay E[D3]. for re-establishing the control channel.

Cluster nodes consider the CH compromised when E[ER] falls below a threshold

value ρ0 for an extended period of time. The parameter ρ0 is fixed and depends on

60

the expected delay under a fixed number of compromised nodes. Let q0 be the

maximum tolerable number of compromised nodes within a cluster, before the CH

is assumed to be compromised. The evasion delay when q0 nodes are compromised

(E[D1] in the calculation of E[D]) is given by equation (2.18), with q = q0. The

computation of E[D1] is based on fixed system parameters such as γ0, K, L,M, and

Xc. Taking the inverse of E[D1] when q = q0, yields the threshold value ρ0 that

triggers a CH rotation. To detect the compromise of the CH, individual nodes

compare E[ER] with ρ0.

Proposition 7. The expected delay until the new CH assigns new hopping sequences

to n− 1 cluster nodes (excluding the compromised CH) is

E[D2] =
K2

K − 1
(n− 1)Xc. (2.19)

Proof. Once the CH is considered compromised, all cluster nodes hop according to

self-generated random sequences. Let mCH denote the hopping sequence of the new

CH. The CH succeeds in communicating with node nj at slot i if mCH(i) = mj(i)

and mCH(i) ̸= mjam(i). Given that the sequences mj and mCH are random,

Pr[mj = mCH ,mj ̸= mjam] =
1

K

K − 1

K
=

K − 1

K2
. (2.20)

The number of slots until the first success is geometrically distributed with mean

of K2

K−1
. The CH has to repeat the same process for all n − 1 cluster nodes (the

compromised CH is excluded from the hopping sequence update process). Assuming

that Xc time slots are needed for the assignment of the new sequence, the expected

delay E[D2] until all cluster nodes have received a new hopping sequence is equal

to K2

K−1
(n− 1)Xc.

With the assignment of new sequences, the adversary’s success becomes equiv-

alent to that of an external jammer. An additional delay E[D3] is incurred until a

slot implementing the control channel occurs in the new hopping sequences. This

delay is equal to the evasion delay in the case of the external jammer. The values

61

of E[D2] and E[D3] are negligible compared with E[D1], given that E[D1] grows ex-

ponentially with the number of compromised nodes, whereas E[D2] and E[D3] are

constant. Hence, the expected value for the evasion delay under CH compromise

approximates the expected evasion delay as calculated in (2.18) for the maximum

acceptable value of q.

2.6 Conclusions

We addressed the problem of control-channel jamming attacks from insider nodes.

We proposed a randomized distributed scheme for maintaining and establishing a

broadcast channel using frequency hopping. Our method differs from classical fre-

quency hopping in that the communicating nodes are not synchronized to the same

hopping sequence. Instead, each node follows a unique hopping sequence. We fur-

ther proposed a mechanism for adjusting hopping sequences to dynamic spectrum

conditions without incurring any extra overhead. Our scheme can identify compro-

mised nodes through their unique sequences and exclude them from the network.

We evaluated the performance of our scheme both in static- and dynamic-spectrum

networks, based on the metrics of evasion entropy, evasion delay, and evasion ratio.

We further evaluated the Hamming distance between the jamming sequence and

those assigned to compromised and uncompromised nodes. Our proposed scheme

can be utilized as a temporary solution for re-establishing the control channel until

the jammer and the compromised nodes are removed from the network.

62

CHAPTER 3

Thwarting Inside Jamming Attacks on Wireless Broadcast

Communications

3.1 Introduction

3.1.1 Motivation

Wireless communications are vulnerable to intentional interference attacks, typical-

ly referred to as jamming. In the simplest form of jamming, the adversary interferes

with the signal reception by transmitting a continuous jamming waveform [73] or

several short jamming pulses [59]. Conventional anti-jamming techniques rely ex-

tensively on spread spectrum (SS) communications, such as direct sequence spread

spectrum (DSSS) and frequency hopping spread spectrum (FHSS) [2, 73]. SS pro-

vides bit-level protection by spreading bits according to a secret pseudo-random

noise (PN) code, known only to the communicating parties. In the case of broad-

cast communications, the sender’s PN code must be shared by all (potentially non-

trustworthy) receivers. The disclosure of such secrets due to the compromise of any

receiver nullifies the gains due to SS [54,65].

Several researchers have studied the problem of anti-jam-ming broadcast com-

munications under an internal threat model [8, 22, 48, 54, 65, 66, 80, 81]. Methods

in [8, 48, 54, 66] eliminate the dependency of broadcast on shared secrets. Baird et

al. proposed the encoding of “indelible marks” at specific locations within each

broadcasted message [8]. Assuming that an active jamming attack cannot flip a bit

‘1’to a bit ‘0’, it was shown that a jammer cannot erase packets from the wireless

channel (but can inject arbitrary packets). Pöpper et al. [65] proposed a method

called Uncoordinated DSSS (UDSSS), in which broadcast transmissions are spread

according to a PN code, randomly selected from a public codebook. At the receiving

63

end, nodes decode received messages by exhaustively applying every PN code in the

public codebook. Liu et. al. proposed RD-DSSS, a randomized differential DSSS

scheme that also relies on randomly selected PN codes [54]. Compared to UDSSS,

the RD-DSSS scheme provides resilience to reactive jammers.

Note that when the spreading PN code is not known a priori, broadcast trans-

missions must be repeated several times to synchronize the receiver [65]. Moreover,

DSSS exhibits a threshold behavior to interference. It rejects the interfering signal

as long as the interference remains below the jamming margin, but the throughput

becomes practically zero if this margin is surpassed [63, 73]. On the other hand,

FHSS exhibits a graceful degradation in performance with the increase of interfer-

ence. Due to this dual behavior, DSSS and FHSS find applications on different

domains. The former is typical in the commercial domain (e.g., [31, 32]) where

moderate interference levels are caused by users operating on the same spectrum,

while the latter finds applications in adversarial settings where the interference is

likely caused by a powerful jammer. Because the adversarial model assumed in this

work is of a powerful jammer, we develop anti-jamming methods that adopt a FHSS

design.

3.1.2 Main Contributions and Chapter Organization

We study the problem of anti-jamming broadcast communications in the presence of

inside jammers. We propose the Time-Delayed Broadcast Scheme (TDBS) for anti-

jamming broadcast communications, based on FHSS communications. TDBS differs

from classical FHSS designs in that two communicating nodes do not follow the same

FH sequence, but are assigned unique ones that have high correlation properties.

Unlike the typical broadcast operation where every receiver is eventually tuned to a

common broadcast channel, TDBS implements the broadcast operation as a series

of unicast transmissions spread both in frequency and time. To ensure resilience to

inside jammers, the locations of the unicast transmissions, defined by a frequency

band/slot pair, are only partially known to any subset of receivers. Because the

jammer can only interfere with a limited set of frequency bands per time slot, a

64

subset of the unicast transmissions are interference-free, thus propagating broadcast

messages.

The problem of FH sequence design, is mapped to a 1-factorization problem

in complete graphs. While a broad class of scheduling algorithms are known to

employ 1-factors (perfect matchings) (e.g., [18, 35, 71, 72, 82]), they are, in general,

concerned with unicast communications in a hostile setting. They also typically

require coordination via the exchange of broadcast messages [18, 35]). TDBS is

specifically designed to facilitate broadcasting in the presence of jammers and in the

absence of a coordination channel.

Note that TDBS is not meant to be a permanent replacement of the convention-

al broadcast mechanism in a benign setting. Broadcasting on a common frequency

band achieves the optimal communication efficiency (one slot) in the absence of any

jammer. TDBS is designed as an emergency mechanism for temporarily restoring

communications until the jammer is physically removed from the network. There-

fore, its primary focus is resilience to inside jammers and not the communication

efficiency of the broadcast operation.

Paper Organization: The remainder of the paper is organized as follows. In

Section 3.2, we state the system and adversarial model assumptions. In Section

3.3 we present an overview of TDBS. Section 3.4 describes TDBS for single-hop

networks. In Section 3.5, we extend the TDBS operation to multi-hop networks.

The security and performance of TDBS are evaluated in Section 3.6. In Section 3.7,

we conclude the paper.

3.2 Problem Statement and System Model

3.2.1 Network topologies

We consider two types of network topologies. In the topology of figure 3.1(a), a

set of nodes form a single-hop broadcast group. Any node may initiate a broadcast

transmission to its neighbors. This single-hop topology is typical in wireless LAN

and wireless personal area networks, where a group of devices is assumed to be in

65

jammer jammer

(a) (b)

Figure 3.1: (a) A WPAN architecture in which devices located within one-hop form
a broadcast communication group, (b) a multi-hop architecture in which communi-
cating nodes span several hops.

close range (e.g., bluetooth devices), and in military scenarios where a set of mobile

nodes move in a team-coordinated fashion.

In figure 3.1(b), we consider a multi-hop network connected in ad hoc mode.

To make TDBS scalable with the network size, we assume that the network is

partitioned to clusters which form cliques [38,83]. Broadcast transmissions occurring

under this architecture may be limited within a cluster, or may propagate to other

clusters.

3.2.2 System Model

Nodes communicate over a set C = {f1, . . . , fK} of K distinct frequency bands (e.g.,

K = 11 − 13 for 802.11 networks, K = 79 for 802.145 (bluetooth)). Each node is

equipped with a single half-duplex transceiver. Hence, a node can only listen to or

transmit over one band at a time. Note that if communicating devices are assumed

to be equipped with more complex hardware such as multiple transceivers, the

communication efficiency of TDBS and its resilience to jamming can be improved.

We assume that all nodes are synchronized to a time-slotted system. Nodes are

capable of hopping between frequency bands. Without loss of generality, we assume

that frequency hopping occurs on a per-slot basis, i.e., nodes reside in a frequency

band for at least one time slot. For simplicity, the duration of one time slot is

assumed sufficient for the transmission of one message unit.

The network is initialized by a trusted authority, which is responsible for pre-

66

loading relevant parameters such as PN FH sequences and other cryptographic se-

crets. For multi-hop topologies, we assume a static network topology, known to the

trusted authority. Broadcast communications can be either public (transmitted in

an unencrypted form) or private. In the latter case, confidentiality and authenticity

of the communication is achieved via resource-efficient public key operations. Once

the network is initialized, the trusted authority is no longer needed.

3.2.3 Adversary Model

The goal of the adversary is to prevent the sender(s) from communicating with all,

or a subset of the intended receivers. For this purpose, the adversary deploys a set

of jamming devices at locations of his own choosing, which can be centrally coordi-

nated. These devices are capable of collectively jamming any J frequency bands of

the adversary’s choosing, by adding interfering signals to the selected frequencies.

Wireless transmissions over any of the jammed frequency bands are assumed to be

“irrecoverably” corrupted. We do not impose any particular power constraint on the

adversary, but assume that the jammed frequency bands become unavailable in the

entire network (single-hop, or multi-hop) The jamming devices can switch between

frequency bands on a per-slot basis.

The adversary is capable of physically compromising network devices and recov-

ering stored information including cryptographic keys, PN codes, certificates, etc.

Moreover, the adversary is aware of the methods used to protect broadcast transmis-

sions (in our case the specifics of the PHY layer implementation and the TDBS al-

gorithm). Note that similar adversary models have been considered in [48,52,54,65].

3.3 Overview of TDBS

To achieve jamming-resistant communications in the presence of insiders, TDBS

realizes broadcast as a series of unicast transmissions distributed in frequency and

time, thus avoiding the convergence of all nodes to a common frequency band. The

locations of the unicast transmissions, defined by a frequency band/slot pair (f, s),

67

jammer

(f2, 1)

n1

n2

n4

n3
n5

n6

(f3, 2) (f4, 4)

(f3, 5)

(f1, 3)

f1

1 2 3 slot

f2

f3

f4

n1 n2

n1 n3

n1 n6

4 5

n1 n5

n1 n4

(a) (b)

Figure 3.2: (a) Operation in the SU mode. Broadcast is realized as a series of
unicasts. The pair (f, s) denotes the frequency band and time slot where the unicast
takes place. (b) The timeline of the unicast transmissions of n1 for the SU mode.
The “x” marks denote frequencies jammed by the adversary.

are only partially known to each node (every node is aware of his own schedule).

Therefore, the compromise of a node reveals only the set of locations assigned to

that node, while keeping the locations of other communicating nodes secret.

For this purpose, nodes are divided into pairs scheduled to communicate over

frequency bands which are selected at random. It is possible to partition the set of

nodes to groups of size larger than two for more efficient broadcast communication

at the expense of reduced resilience to node compromise. Because we are primarily

concerned with the jamming-resistance property, we consider the case of node pairs.

The communicating pairs and assigned frequency bands change on a per-slot basis

thus realizing a FH system. TDBS differs from traditional FH designs in that:

(a) communicating nodes do not synchronize to the same FH sequence, but follow

unique hopping patterns and, (b) these patterns have a high correlation to lower the

number of slots required to complete a broadcast transmission. Moreover, TDBS

differs from rendezvous systems that have been proposed for coordinating multi-

channel access (e.g. [6,11]), in that it focuses on the broadcast operation as opposed

to rendezvous for unicast communications.

Two modes of operation are proposed for TDBS: the sequential unicast mode

(SU) and the assisted broadcast mode (AB). In the SU mode, the sender sequentially

relays information to intended receivers. This more inefficient mode is appropriate

when receivers do not have relaying capabilities, or are not trusted to relay the

broadcast message. In the AB mode, any node that receives a broadcast message

68

jammer

(f2, 1)

n1

n2

n4

n3

n5

n6
(f1, 2)

(f3, 2)

(f1, 3)

(f4, 3)(f3, 3) f
1

1
 2
 3
 slot

f
2

f
3

f
4

n
1
 n
2

n
2
 n
3

n

3

n

4

n
1
 n
5

n
1
 n
6

n
6
 n
2

(a) (b)

Figure 3.3: (a) Operation in the AB mode. A broadcast transmission is relayed
by several nodes at separate frequency bands. (b) The timeline of the unicast
transmissions for the AB mode. The “x” marks denote frequencies jammed by the
adversary.

can act as a relay for that message.

Figure 3.2 and Figure 3.3 shows an example of the two modes. In figure 3.2(a),

node n1 operates in the SU mode. It sequentially unicasts a broadcast message to

nodes n2 − n6. Figure 3.2(b), depicts the timeline of transmissions of figure 3.2(a).

The broadcast is completed after five slots. The “x” marks denote the frequency

band jammed by the adversary at each time slot. Figure 3.3(a), shows the operation

in the AB mode. Node n1 initiates a broadcast in slot 1, by transmitting a message

m to n2. In slot 2, n1 and n2 relay m to n6 and n3, respectively, using frequency

bands f1 and f3 in parallel. In slot 3, the broadcast is completed with the relay of m

from n1, n3 and n6 to n5, n4 and n2, respectively. The timeline of the transmissions

taking place in the AB mode is shown in figure 3.3(b). Observe that in this scenario

the broadcast is completed despite the jamming of the transmission between n6 and

n2 in slot 3.

The main challenge of TDBS is to design the FH sequences of individual nodes

such that the following requirements are met: (a) hopping sequences are pseudo-

random, (b) compromise of a subset of nodes (insiders) limits the information leakage

relevant to the sequences of uncompromised nodes, and (c) every node has the same

opportunity to perform a broadcast (fairness). In the next section, we develop

algorithms for constructing hopping sequences for TDBS-SU and TDBS-AB that

satisfy the above requirements. We first illustrate our algorithms for single-hop

topologies and then extend our results to multi-hop topologies.

69

3.4 TDBS for Single-hop Topologies

To achieve resilience to jamming, we randomly distribute unicast transmissions both

in frequency and in time. This problem can be viewed as a link scheduling problem

for avoiding collisions in multi-channel networks, under the node-exclusive interfer-

ence model. A large body of literature treats this type of scheduling as various

instances of a matching problem in general graphs [18, 35, 71, 72, 82]. However,

pre-existing methods are not immediately applicable to our setup for the following

reasons.

In link scheduling problems, the goal is to maximize the aggregate network

throughput, realized as the sum of individual traffic flows. We are concerned with

the dissemination of one message to a specified set of receivers (the members of a

broadcast group) over unpredictable frequency band/slot locations, and in the pres-

ence of adversaries. This desired property is not necessarily satisfied by maximum

throughput designs, which optimally schedule link transmissions in the entire net-

work (centralized approaches) [82]. Moreover, decentralized solutions implementing

distributed matching algorithms require the local exchange of coordination messages

between nodes, over a commonly agreed channel [18, 35]. Clearly, such a channel

cannot be available in our setup due to the presence of an inside jammer.

To ensure the broadcast property, we map the problem of constructing FH

sequences to the problem of producing 1-factorizations in complete graphs. 1-

factorizations realize a series of perfect matchings (1-factors), which span the all

edges of a complete graph [86]. Hence, a broadcast from any node will be communi-

cated to all other nodes. We first present relevant preliminaries from graph theory.

Interested readers are referred to [57, 86] for an in-depth treatise of the problem of

1-factorization.

3.4.1 Definitions and Useful Theorems

Consider a graph G(V , E), where V denotes the vertex set and E denotes the edge

set. Assume that |V| = 2n where n is a positive integer (a dummy node can be

70

1

2n

2

3

n - 1

n n + 1

n + 2

2n - 2

2n - 1

1

2 3

4

5

67

8

f2f3

f5 f8

Fi

1 3

2 5

4 6

7 8

(a) (b)

Figure 3.4: (a) Algorithm for constructing a 1-factorization F = {F0, . . . , F2n−2}. To
obtain a factor Fi, every node is rotated by i positions to the left. Node 1 remains
fixed. (b) Mapping of a 1-factor to unicast transmissions. Paired nodes concurrently
communicate on separate frequency bands.

added otherwise).

Definition 4. Complete Graph: G(V , E) is said to be complete if each pair of

vertices is connected by an edge. We denote such a graph by K2n, where |V| = 2n.

Definition 5. 1-factor: A 1-factor or a perfect matching F of a graph G is a subset

of E that partitions V, i.e., F is a set of pairwise disjoint edges of G that covers all

vertices of V .

Definition 6. 1-factorization: A 1-factorization F2n = {F0, F1, . . . , F2n−2} of a

graph G is a partition of its edge set E to (2n− 1) 1-factors.

Theorem 1. 1-factorization of K2n: A complete graph K2n is 1-factorable [86].

Construction of 1-factorizations of K2n: 1-factoriza-tions of K2n can be

systematically constructed using well-known algorithms (e.g., [27,57,85,86]). These

methods typically rely on the selection of a “starter” 1-factor, based on which

the entire 1-factorization can be derived. A simple method for constructing a 1-

factorization of K2n is to select a starter 1-factor and apply a shift-and-rotate op-

eration to it [86]. This method is illustrated in figure 3.4(a). A 1-factorization is

initialized by the 1-factor F0. Node 1 remains fixed. To obtain the 1-factor Fi, nodes

in the perimeter are rotated clockwise by i steps.

71

1
 2

3
 4

F

0

:

F
1
:

F
2
:

Slot: 0 1 2 3 4 5 . . .

h

1

:
f

2

f

3

f

1

f

4

f

5

f

3

. . .

h
2
:
f
2
 f
4
 f
5
f
4
 f
3
 f
1
. . .

h
3
:
f
3
 f
4
 f
1
f
2
 f
3
 f
3
. . .

h
4
:
f
3
 f
3
 f
5
f
2
 f
5
 f
1
. . .

1
 2

3
 4

1
 2

3
 4

Figure 3.5: Construction of hopping sequences for sequential unicast based on 1-
factorization for a group of four nodes.

3.4.2 Mapping to the 1-factorization Problem

In this section, we map the problem of constructing hopping sequences for TDBS

into the problem of generating 1-factorizations of complete graphs. In our mapping,

the vertex set V of K2n represents the node set N of the single-hop network, and an

edge (x, y) ∈ E represents a unicast transmission between nodes x and y. A 1-factor

corresponds to partitioning of the 2n nodes into n communicating pairs. These

pairs are scheduled to communicate in parallel over separate frequency bands. A 1-

factorization F2n partitions the set of edges E into (2n− 1) disjoint 1-factors, where

each edge appears exactly once. In a schedule constructed according to F2n, every

node has the opportunity to communicate with all remaining (2n − 1) nodes, thus

achieving the sequential relay of a broadcast message.

An example of the mapping to the 1-factorization problem is shown in figure

3.4(b). A group of eight nodes is partitioned into four pairs, which are scheduled

to communicate over four frequency bands. According to the 1-factor Fi, the com-

municating pairs during slot i are {(1, 3), (2, 5), (4, 6), (7, 8)}, communicating over

frequency bands f3, f2, f8 and f5, respectively. Figure 3.5 shows a feasible set of

hopping sequences hj for four nodes, j = 1, . . . , 4, based on the 1-factorization of

K4. Communication of all pairs of nodes is completed in three slots. We now present

algorithms for constructing FH sequences.

72

Algorithm 3 TDBS-SU: Sequential Unicast Mode

1: Generate F2n of K2n

2: repeat

3: for i = 0 to (2n− 2) do

4: for j = 1 to ⌈ n
K
⌉ do

5: π = rand(perm(C))
6: for w = 1 to min{n,K} do
7: hF ((j−1)K+w,1) = hF ((j−1)K+w,2) = π(w)

8: end for

9: end for

10: end for

11: end repeat

3.4.3 TDBS-SU: Sequential Unicast Mode

In the SU mode, a sender sequentially unicasts the broadcast message to (2n − 1)

intended receivers. The hopping sequences are constructed as follows.

Step 1: Construct a 1-factorization F2n of K2n, where F2n = {F0, F1, . . . , F2n−2}.
Step 2: For all Fi ∈ F2n, 0 ≤ i ≤ 2n− 2, repeat Steps 3 to 5.

Step 3: Obtain a random permutation π of the set of frequency bands C.
Step 4: Assign frequency bands in π to min{n,K} edges of Fi in the order of

occurrence of the edges.

Step 5: Repeat Steps 3 and 4 until all pairs in Fi are assigned a frequency band.

Step 6: Repeat Steps 1-5.

The pseudo-code of the hopping sequence construction for the SU mode is shown

in Algorithm 3. In figure 3.5, we show an example of the application of Algorithm

3 to a group of four nodes. The set of available channels is C = {f1, . . . , f5},
(K = 5). Because K ≥ n, the n pairs corresponding to a 1-factor can communicate

in parallel in one slot. In slot 0, pairs communicate according to factor F0. The

random permutation of C is π = {f2, f3, f5, f1, f4}. Pair (1, 2) is assigned band

73

π(1) = f2 and pair (3, 4) is assigned band π(2) = f3. The process is repeated for

factors F1, and F2. Note that condition K ≥ n is not necessary for the correct

operation of our algorithm. When the number of frequency bands is smaller than

the pairs of communicating nodes, transmissions corresponding to one factor are

split in multiple slots, as shown in Steps 3-5. However, for single hop networks, it

is expected that K >> n (e.g., K = 79 in 802.11 and 802.15). We now show that

Algorithm 3 constructs random FH sequences.

Proposition 8. The FH sequences constructed by Algorithm 3 are random.

Proof. Let hj = {X1, X2, . . .} denote a FH sequence constructed by Algorithm 3 for

a node j, where Xi is a random variable denoting the frequency band used at slot i.

Random variables Xi form an i.i.d. with each variable being randomly distributed

(frequency bands at Step 4 are randomly and independently selected). Hence, h is

random.

3.4.4 TDBS-AB: Assisted Broadcast Mode

Algorithm 4 TDBS-AB: Assisted Broadcast Mode

1: Generate random F0 of K2n

2: initialize i = 0

3: repeat

4: for j = 1 to ⌈ n
K
⌉ do

5: π = rand(perm(C))
6: for w = 1 to min{n,K} do
7: hFi((j−1)K+w,1) = hFi((j−1)K+w,2) = π(w)

8: end for

9: end for

10: Fi+1 = split(Fi)

11: i++

12: end repeat

74

1

Fi

2

3

n - 1 n

n + 1 n + 2

2n2n - 1

1

Fi+1

2

n

n + 2

2n

n + 1

2n - 1

4

n - 1

F
0

1 2

3 4

5 6

7 8

p
0
(
C
)

f
2

f
4

f
1

f
3

F
1

1 6

2 5

3 8

4 7

p
1
(
C
)

f
1

f
3

f
5

f
2

F
2

1 8

6 3

2 7

5 4

p
2
(
C
)

f
4

f
1

f
5

f
6

F
3

1 7

8 2

6 4

3 5

p
3
(
C
)

f
3

f
5

f
2

f
4

h
1
:
f
2
 f
1
 f
4
 f
3
…
h
2
:
f
2
 f
3
 f
5
 f
5
…
 h
3
:
f
4
 f
5
 f
1
 f
4
…
h
4
:
f
4
 f
2
 f
6
 f
2
…

h
5
:
f
1
 f
3
 f
6
 f
4
…
h
6
:
f
1
 f
1
 f
1
 f
2
…
 h
7
:
f
3
 f
2
 f
5
 f
3
…
h
8
:
f
3
 f
5
 f
4
 f
5
…

(a) (b)

Figure 3.6: (a) Splitting algorithm used to obtain the 1-factor Fi+1 from the 1-factor
Fi. The first n nodes of Fi are obtained in a “zigzag” fashion and are placed on
the first column of Fi+1. The last n nodes of Fi are obtained in an “inverse zigzag”
fashion and are placed in the second column of Fi+1. (b) The first four 1-factors for
a group of eight nodes and the corresponding hopping sequences.

In the AB mode, any node that has already received a broadcast message op-

erates as a broadcast relay. To construct hopping sequences for the AB mode, the

1-factors Fi are selected and arranged in such a way that the number of nodes that

can relay a broadcast transmission in each 1-factor is maximized. This property

minimizes the delay until the broadcast is completed, while increasing resilience to

jamming. We first define the notion of the relay set.

Definition 7. The Relay Set Ri
j of node j in a 1-factor Fi is defined as the set

of nodes that can relay a transmission that originated from j.

The main idea of our hopping sequence construction algorithm is to maximize

the size of the relay set Ri
j, for every node j and in every 1-factor Fi. Note that in

the AB mode, it is not necessary that the series of 1-factors form a 1-factorization

(i.e., that all pairs of nodes communicate directly), because nodes can receive the

broadcast transmission via multiple hops. The hopping sequences assigned to each

node are constructed as follows.

Step 1: Obtain an arbitrary 1-factor F0 of K2n. Set i = 0.

Step 2: Obtain a random permutation π of the set of frequency bands C.
Step 3: Assign frequency bands in π to min{n,K} edges of Fi in the order of

occurrence of the edges.

75

Algorithm 5 Splitting Algorithm split

1: Fi+1(1, 1) = Fi(1, 1)

2: if n even then

3: Fi+1(1, 2) = Fi(
n
2
+ 1, 2)

4: else

5: Fi+1(1, 2) = Fi(⌈n2 ⌉, 2)
6: end if

7: for j = 2 to n do

8: Fi+1(j, 1) = Fi(⌈ j2⌉, 2), if j even

9: Fi+1(j, 1) = Fi(⌈ j2⌉, 1), if j odd

10: if n even then

11: Fi+1(j, 2) = Fi(⌈n+j
2
⌉, 1), if j even

12: Fi+1(j, 2) = Fi(⌈(n+j
2
⌉, 2), if j odd

13: else

14: Fi+1(j, 2) = Fi(⌈n+j
2
⌉, 2), if j even

15: Fi+1(j, 2) = Fi(⌈(n+j
2
⌉, 1), if j odd

16: end if

17: end for

Step 4: Repeat Steps 2 and 3 until all pairs in Fi are assigned a frequency band.

Step 5: Construct 1-factor Fi+1 according to the splitting algorithm. Set i = i+ 1.

Step 6: Repeat Steps 2 and 5.

The pseudo-code of TDBS-AB is shown in Algorithm 4. The pseudo-code of the

splitting algorithm employed to generate Fi+1 from Fi is shown in Algorithm 5, and

illustrated in figure 3.6(a). Every pair of nodes that communicate according to the

1-factor Fi are placed in adjacent rows in the 1-factor Fi+1. The propagation of this

property in subsequent 1-factors minimizes the broadcast delay by maximizing the

size of the relay set Ri
j for any j and for every 1-factor.

To illustrate the application of Algorithm 4, consider a network of eight nodes.

The first four 1-factors that are generated by our algorithm and the corresponding

76

hopping sequences assigned to various nodes are shown in figure 3.6(b). Node 1

initiates a broadcast transmission of message m following the 1-factor F0. The cir-

cles mark the nodes that receive message m after the completion of the unicasts

corresponding to various 1-factors. In fact, one can verify from the 1-factors shown

in Fig. 3.6(b) that any broadcast transmission initiated under 1-factor F0 is com-

pleted by 1-factor Flog2(8)−1 = F2. In section 3.6, we prove that this property holds

for any broadcast initiated at any time slot. Note that TDBS-AB uses the same

mechanism as TDBS-SU (Steps 2-4) for assigning frequency bands to communicat-

ing pairs. Therefore, Proposition 8 holds for the hopping sequences generated by

TDBS-AB. These sequences are uniformly distributed over the set of available chan-

nels, thus minimizing the success of an external jammer in guessing the frequency

bands of future communications based on past observations. Moreover, compromise

of sequences limits the information leakage regarding other sequences.

3.5 TDBS in Multi-hop Networks

In this section, we extend the operation of TDBS to multi-hop networks. In this

scenario, the FH sequence design can be viewed as a global scheduling problem.

While several distributed methods have been proposed for distributed scheduling

(e.g., [18, 35]), we note that these methods require coordination via a commonly

accessible channel. However, such a channel can be blocked by an inside jammer.

We, therefore, develop a scalable solution based on clustering, that does not require

node coordination.

We partition the network into clusters where each cluster forms a clique [38,83].

Clique clustering produces a network partition where every node belongs to a single

cluster and the members of each cluster are within one hop. We then divide the

broadcast operation into two phases: (a) the intra-cluster phase, and (b) the inter-

cluster phase. During the intra-cluster phase, communication is limited within each

cluster. In the inter-cluster phase, messages are exchanged between border nodes of

adjacent clusters. The two phases are interleaved in time.

77

6

1

2

2

4

0

5

6

3

H

B

C

D I
G

F

E
hB: . . f2 . . .

Slot:

Inter-cluster slot

Intra-cluster slot

hC: . . f2 . . .

hD: . . f5 . . .

hE: . . f0 . . .

hF: . . f2 . . .

hG: . . f2 . . .

hH: . . f6 . . .

hI: . . f5 . . .
A

0 1 2 3 . .
Slot:

Inter-cluster slot

Intra-cluster slot

1

2

6

4

3

B

E

DG

F

I

H C

hB: . . f2 f1. . .

hC: . . f2 f2. . .

hD: . . f5 f2. . .

hE: . . f0 f4. . .

hF: . . f2 f4. . .

hG: . . f2 f6. . .

hH: . . f6 f6. . .

hI: . . f5 f2. . .A

1 7

0 1 2 3 . .

(a) (b)

Figure 3.7: (a) The intra-cluster phase, (b) the inter-cluster phase.

3.5.1 Intra-cluster Phase

In the intra-cluster phase, a broadcast message propagates to all nodes within a

cluster. Because the nodes of a cluster form a clique, the SU or AB operation

modes for single-hop networks are employed. To avoid interference between adjacent

clusters, the set of available frequency bands C is divided into four mutually exclusive

sets which are assigned to each cluster according to the four color theorem [5].

One such assignment is shown in figure 3.7(a). The shading pattern of each

cluster denotes a separate set of frequency bands. In this example, 10 frequency

bands are assigned to each cluster, yielding a K = 40. Note that the number of

available frequency bands K is expected to be be much larger than the number of

nodes within the same collision domain (i.e., cluster size). In any case, the algorithms

outlined in Sections 3.4.3 and 3.4.4, produce FH sequences for any relation between

K and n. The steps for deriving FH sequences for the intra-cluster phase are as

follows.

Step 1: Color each cluster based on the four-color theorem.

Step 2: For each distinct cluster size 2n, construct a 1-factorization F2n of K2n.

Step 3: For each cluster, pick the 1-factorization corresponding to its cluster size

and construct FH sequences for the cluster nodes following the SU mode or the AB

mode.

78

Step 4: Repeat Steps 2 and 3 until all clusters are processed.

In Step 2, it is sufficient to produce distinct 1-factorizations for every possible

cluster size. Two clusters of the same size can use the same 1-factorization, dictating

the rendezvous of its cluster members, respectively. However, due to the random

permutation assignment of frequency bands in Step 3, the pairs of nodes of each

cluster will communicate at different frequency bands, thus ensuring the randomness

of the pairwise communication among pairs.

3.5.2 Inter-cluster Phase

In the inter-cluster phase, border nodes in adjacent clusters relay broadcast messages

that are intended to propagate beyond the boundaries of each cluster. To do so, while

avoiding collisions between adjacent transmissions, we exploit the cluster labeling

produced by the application of the four-color theorem. During this phase, every

time-slot is marked with one of the four colors indicating the set of clusters that are

allowed to transmit on that slot. As an example, in figure 3.7, clusters A and D are

allowed to transmit on slot 0, clusters C and F on slot 1, clusters B and E on slot

2 and cluster G on slot 3, with this sequence repeating modulo four (slot numbers

indicate assignment before the interleaving with the intra-cluster phase) . After the

slot coloring, the FH sequences of individual nodes are generated as follows.

Step 1: For each cluster x, find the nodes in x bordering adjacent clusters. Place

this nodes to a set A.
Step 2: For each node i ∈ A, find the neighbors of i in adjacent clusters. If a

neighbor is common to two nodes in x, assign it to the node with the fewer neighbors.

Break ties arbitrarily (e.g., considering the node with the lowest id). Merge nodes

assigned to the same i to a single vertex and place vertices to set B. Create a

bipartite graph G(A∪B,E), where an edge (x,y) exists if nodes corresponding to y

are assigned to x. G forms a 1-factor Fx.

Step 3: For each slot colored with x’s color, obtain a random permutation π of the

set of frequency bands C.

79

Step 4: Assign frequency bands in π to min{n,K} edges of Fx in the order of

occurrence of the edges.

Step 5: Repeat Steps 3 and 4 until all pairs in Fx are assigned a frequency band.

Step 6: Repeat Steps 1-5, until all clusters are processed.

The inter-cluster phase is illustrated in Figure 3.7(b). According to their color,

clusters A and D are scheduled to broadcast during slot 0. Nodes 2,3, and 4 belong

to set A of cluster A since they can communicate with nodes of adjacent clusters.

For slot 0, the communicating pairs are {2− 9, 10} {3− 11, 12} and {4− 7, 8}, and
are assigned frequency bands f11, f22, and f2, respectively. Similarly, for cluster D

and slot 0, the communicating pairs are {5−6, 13} {14−15} and {16−17}, and are

assigned frequency bands f8, f33, and f25, respectively. Note that during the inter-

cluster phase, all channels in C are available for assignment to the communications

of adjacent pairs of nodes.

The intra-cluster and inter-cluster slots are interleaved in the FH design, to allow

for both single hop and multi-hop broadcast transmissions are achieved.

3.6 Performance and Security Evaluation

In this section, we evaluate the performance of TDBS and analyze its security prop-

erties. As a performance/security metric, we use the broadcast delay, defined as

follows.

Definition 8. The Broadcast Delay D is the number of slots required for the

completion of a broadcast operation, i.e., until all intended recipients have received

a copy of the broadcasted message.

3.6.1 Performance in the Absence of Jammers

In this section, we evaluate the broadcast delay for the two TDBS modes in the

absence of jammers. This analysis is provided to facilitate the evaluation of the

broadcast delay when jammers are assumed to be present.

80

Proposition 9. The broadcast delay of TDBS-SU is D = ⌈ n
K
⌉(2n− 1) slots.

Proof. To complete a broadcast in the SU mode, the sender must unicast the broad-

cast message to 2n−1 receivers. The 2n−1 transmissions correspond to the (2n−1)
1-factors of F2n (each node is scheduled to communicate once per 1-factor). Each

factor requires ⌈ n
K
⌉ time slots to be completed (here, all transmissions of a 1-factor

are completed before transmissions of other 1-factors can proceed, in order to avoid

schedule conflicts). Hence, the broadcast delay is equal to ⌈ n
K
⌉ times the number of

factors of F2n.

Next, we evaluate the broadcast delay in the AB mode.

Proposition 10. The broadcast delay for TDBS-AB is D = ⌈ n
K
⌉⌈log2(2n)⌉ slots.

Proof. We first prove that any broadcast transmission in the AB mode is completed

after ⌈log2(2n)⌉ 1-factors. Without loss of generality, assume that a broadcast is

initiated by node Fi(k, 1), located in the kth row of Fi. With the completion of Fi,

the relay set is Rj
i = {Fi(k, 1), Fi(k, 2)}. After the execution of Algorithm 5, nodes

Fi(k, 1) and Fi(k, 2) appear in adjacent rows (due to the cyclic nature of Algorithm

5, rows 1 and 8 are considered to be adjacent) on the 1-factor Fi+1. This can be

easily verified by reversing the mapping from Fi+1 to Fi in lines 8-15 of Algorithm 5.

Because the pair (Fi(k, 1), Fi(k, 2)) appears on separate rows on Fi+1, each node will

relay the broadcast message to two new nodes, thus increasing Rj
i+1 to four nodes.

Further execution of Algorithm 5 divides the nodes in the relay set Rj
i+1 to four

adjacent rows. Since none of the nodes in Rj
i+1 appears on the same row, the relay set

after the completion of factor Fi+1 increases to eight nodes. Following the recursive

application of the splitting algorithm, the relay set after the completion of ⌊log2(2n)⌋
1-factors has a size of 2⌊log2 2n⌋. If ⌊log2(2n)⌋ = log2(2n), the broadcast is complete

since 2log2(2n) = 2n. Otherwise, one extra 1-factor is needed to relay the broadcast to

the remaining 2n− 2⌊log2(2n)⌋ nodes. Because 2⌊log2(2n)⌋ > n, the splitting algorithm

places n nodes from the relay set into the n rows of the ⌊log2 2n⌋+1 = ⌈log2(2n)⌉th
1-factor. These n relays complete the broadcast operation. Combining the two

81

cases yields a required number of 1-factors that is equal to ⌈log2(2n)⌉. Proposition
10 follows by noting that every 1-factor requires ⌈n

k
⌉ slots to be completed.

3.6.2 Security Analysis

We first analyze the resilience of TDBS to external and internal jammers for single-

hop networks.

Resilience to External Jammers

Under an external threat model, the hopping sequences assigned to various nodes

remain secret. For this scenario, we assume that the adversary deploys multiple

jamming devices that can jam up to J frequency bands per time slot, with J < K.

For convenience, we assume K ≥ n so that all node pairs corresponding to a 1-

factor can communicate in parallel in one time-slot. This is typical in wideband

communications where K is much larger than the expected number of nodes within

the same collision domain. Our results can be extended to the K < n case in a

straightforward manner. Suppose that a jammer attempts to jam the broadcast of

a single node j. To compute D, we evaluate the average number of 1-factorizations

needed to complete the broadcast, in the presence of the external jammer, and for

each mode.

Proposition 11. In the presence of an external jammer, the expected number E[Z]

of 1-factorizations needed to complete a broadcast operation in the SU mode is

E[Z] = (1− p)2n−1 +
∞∑
i=2

i(1− pi−1)2n−1 ×

2n−1∑
k=1

(
2n− 1

k

)(
pi−1(1− p)

1− pi−1

)k

, (3.1)

where p = J
K

denotes the jamming probability.

Proof. Suppose that an arbitrary node j attempts a broadcast transmission in

the presence of an external jammer. This broadcast is completed in a single 1-

factorization if the jammer is unsuccessful in jamming the communication of j for

82

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

Jamming probability (p)

E
[Z

]
2n=8 (theoretical)
2n=8 (simulation)
2n=32 (theoretical)
2n=32 (simulation)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

Jamming probability (p)

E
[D

]
(s

lo
ts

)

2n=8 (simulation)
2n=8 (theoretical)
2n=10 (simulation)
2n=10 (theoretical)
2n=16 (simulation)
2n=16 (theoretical)

5 10 15 20 25
0

10

20

30

40

50

K

E
[D

]
(s

lo
ts

)

J=1
J=2
J=3
Asymptotic value

(a) (b) (c)

Figure 3.8: (a) E[Z] as function of the jamming probability p, (b) E[D] as a function
of jamming probability p. (c) E[D] as a function of K when 2n = 10.

2n−1 consecutive slots. Because hj is random, a transmission of node j is successful

with probability
(
1− J

K

)
. Moreover, the events of a successful transmission of node

j at slot i and slot w, i ̸= w are independent. Hence,

Pr[Z = 1] =

(
1− J

K

)2n−1

= (1− p)2n−1 .

The broadcast is completed in two 1-factorizations if every receiver is jammed at

most one time, and at least one receiver is jammed on the first 1-factorization.

Taking into account all possible combinations,

Pr[Z = 2] =
2n−1∑
k=1

(
2n− 1

k

)
(1− p)2n−1−kpk(1− p)k.

Generalizing to the case of Z = i, it follows that

Pr[Z = i] =
2n−1∑
k=1

(
2n− 1

k

)
(1− pi−1)2n−1−k

p(i−1)k(1− p)k,

= (1− pi−1)2n−1

2n−1∑
k=1

(
2n− 1

k

)
(
pi−1(1− p)

1− pi−1

)k

.

Proposition 11 follows from the definition of the expectation, i.e., E[Z] =∑
i iPr[Z = i].

83

In figure 3.8(a), we compare the theoretical value of E[Z] with the simulated one.

For our simulations, we generated sequences of size 1, 000 hops for different values

of n and K according to Algorithm 3. We also randomly selected J channels to be

jammed per time-slot. All results were averaged over 100 runs. We measured E[Z]

as a function of the jamming probability p = J
K
. We observe that the simulation

values agree with the theoretical ones.

Based on Proposition 11, the expected broadcast delay E[D] is equal to the ex-

pected number of 1-factorizations needed for the completion of a broadcast, times

the number of slots needed for the completion of each 1-factorization. The first

(E[Z] − 1) 1-factorizations require (2n − 1) slots, while the last 1-factorization

requires, on average, 2n−1
2

slots (the last successful transmission takes place on

any of the 1-factors of the last 1-factorization with equal probability). Therefore,

E[D] = (2n− 1)
(
E[Z]− 1

2

)
.

Figure 3.8(b), shows the theoretical and simulated value of E[D] as a function of

the jamming probability p. We observe that even when the adversary jams 80% of

the available channels, nodes are still capable of completing their broadcast trans-

missions at the expense of some delay. Nevertheless, the broadcast communication

is maintained. In figure 3.8(c), we show E[D] as a function of the number of avail-

able channels K for various values of J. E[D] decreases with K, approaching the

asymptotic value of K, obtained in the absence of a jammer, i.e., E[D] = 2n− 1.

For the AB mode, E[D] does not have a simple closed-form expression but in-

volves complex summation formulas. However, we can derive a useful formula for

J = 1.

Proposition 12. After the first successful relay of a broadcast message m, the

broadcast delay until m is received by (2n− 2) nodes (all nodes, but one) is bounded

by

⌈log2(2n)⌉ − 1 ≤ D ≤ ⌈log2(2n)⌉. (3.2)

Proof. The lower bound immediately follows from Proposition 10. The broadcast

delay in the absence of a jammer is equivalent to the delay in the presence of

84

an external jammer who is unsuccessful in jamming any communicating pair for

⌈log2(2n)⌉ − 1 slots. Hence, after the first successful relay, the lower bound on D

follows.

To compute the upper bound on D, assume that an arbitrary node j wants to

broadcast a message m to the remaining (2n − 1) nodes. Let ai denote the size of

the relay set in slot i. Initially, a0 = 2, i.e., node j has completed its first successful

relay. Once ai ≥ 2, the adversary can jam at most one of the pairs relaying m. The

size of the relay set in this worst-case scenario grows according to the formula.

ai = 2ai−1 − 1 = 2i + 1, i ≤ ⌈log2(2n)⌉ − 1, (3.3)

where ai is computed recursively with a0 = 2. To show the validity of (3.3), we

refer to the proof of Proposition 10, where we showed that for ai ≤ n, the size of

the relay set doubles with the increment of i. Because the adversary jams at most

one frequency band per time slot, in the worst case, ai = 2ai−1 − 1. This is true

until ai ≥ n, in which case the size of the relay set can no longer double. In slot i,

i ≤ ⌈log2(2n)⌉− 1, the relay set becomes larger than n for the first time. That is, it

takes i = ⌈log2(2n)⌉ − 1 slots until more than half the nodes can relay message m.

These ai ≥ n relay nodes communicate with the remaining 2n − 2i − 1 ≤ n nodes

that have not yet received m. Since the adversary can only jam one frequency

band, the number of nodes that have received m at the end of slot (i + 1) is equal

to (2n − 2). That is, in the worst case, only one node has not received m after

⌈log2(2n)⌉ slots.

Proposition 12 allows us to estimate the expected broadcast delay for the AB

mode. Let D1 denote the expected delay until the first success, D2 the delay until

(2n− 2) nodes receive message m and D3 the delay until the last node receives m.

The expected broadcast delay is bounded by

E[D] = E[D1 +D2 +D3]

≤ K

K − 1
+ ⌈log2(2n)⌉+

K

K − 1
. (3.4)

85

8 12 16 20 24 28
0

1

2

3

4

5

6

7

8

K

E
[D

]
(s

lo
ts

)

2n=8 (simulation)

2n=8 (theoretical)

2n=16 (simulation)

2n=16 (theoretical)

0 0.17 0.33 0.50 0.67 0.83
0

10

20

30

40

Jamming probability (p)

E
[D

]
(s

lo
ts

)

Average
Worst case

2n=16
K=12

5 10 15 20 25
0

2

4

6

8

10

12

K

E
[D

]
(s

lo
ts

)

J=1
J=2
J=3
Asymptotic value

(a) (b) (c)

Figure 3.9: (a) E[D] as a function of K when J = 1, for the AB mode of the worst
case. The theoretical value is computed based on (3.4). (b) E[D] as a function of p,
for the AB mode. The average and worst case are shown. (c) E[D] as a function of
K and for various J . The asymptotic value is equal to ⌈log2(2n)⌉.

In (3.4), we have used the fact that it takes, on average, K
K−1

slots for the first

successful relay when p = 1
K
. Moreover, after the first success, ⌈log2(2n)⌉ slots are

needed in the worst case until 2n − 2 nodes receive m. The last node receives m

after K
K−1

slots, on average.

We also studied the performance of the AB mode via simulations. For our

simulations, we generated sequences of size 1, 000 hops for different values of n and

K according to Algorithm 4. We also randomly selected J channels to be jammed

per time-slot. All results were averaged over 100 runs. Figure 3.9(a) shows the value

of E[D] as a function of K for J = 1. We observe that the theoretical value derived

using Proposition 12 agrees with the value obtained via simulation. In figure 3.9(b),

we show the average and worst-case broadcast delay, as a function of the jamming

probability p. We observe that even when p is as high as 0.83, the average and

worst-case delays differ by less than six slots. This is due to the “relay explosion”

effect of the splitting algorithm.

The AB mode is significantly more resilient to jamming than the SU mode, due

to the larger number of nodes relaying the broadcast message. Even when 83% of

the frequency bands are jammed, the AB mode requires only 38 slots to complete

a broadcast, compared to 228 slots needed with the SU mode. In figure 3.9(c),

we show E[D] as a function K for different values of J . We observe that with the

increase of K, E[D] asymptotically approaches the performance of the AB mode in

86

the absence of jammers.

Resilience to Internal Jammers

Assume now that the adversary has compromised r nodes and recovered their FH

sequences. We are interested in determining the broadcast delay until the remaining

(2n − r − 2) legitimate nodes receive a broadcast message m from a legitimate

source. Knowledge of the r hopping sequences reduces the adversary’s uncertainty

with respect to the frequency bands where unicast transmissions between legitimate

nodes take place. This is because at a given time slot, communications take place

in orthogonal frequency bands. Thus knowing r FH sequences reduces the space

of C for the selection of the uncompromised FH sequences. The exact value of

E[D] depends on the selection of the 1-factorization that is used to construct the

hopping sequences and the specific arrangement of the compromised nodes on that

1-factorization. The jamming probability p varies on a slot-by-slot basis and is given

in the following proposition.

Proposition 13. Under the compromise of r nodes, the jamming probability p is

bounded by

min{1, J

K − ⌈ r
2
⌉
} ≤ p ≤ min{1, J

K − r
}. (3.5)

Proof. Let x be the number of frequency bands over which the r compromised nodes

are scheduled to communicate according to the 1-factor F . The number of bands

over which legitimate communications take place in each slot is reduced to K − x.

Hence, the jamming probability is increased to p = J
K−x

. To derive bounds on p, we

consider the lowest and highest values of x. If the compromised nodes are scheduled

to communicate with each other at 1-factor F, then x = xmin = ⌈ r
2
⌉, where the

ceiling function is used to account for an odd value of r. This value of x yields the

lower bound on p. On the other hand, if all r nodes are scheduled to communicate

with legitimate nodes (appear on separate rows in F), then x = xmax = r. In this

case, p attains its maximum value. Note that p ≤ 1 and hence, r ≤ K − J. When

87

0 2 4 6 8 10 12
0

100

200

300

400

No. of compromised nodes

E
[D

]
(s

lo
ts

)

K=10
K=12
K=20

2n=16
J=3

0 2 4 6 8 10 12
0

10

20

30

No. of compromised nodes

E
[D

]
(s

lo
ts

)

K=10
K=12
K=20 2n=16

J=3

(a) SU mode (b) AB mode

Figure 3.10: E[D] as a function of the number of compromised nodes for various
values of K, when J = 3.

r is larger than K − J , there are 1-factors where all legitimate transmissions are

jammed with certainty.

We further used simulation to investigate the impact of node compromise on

the broadcast delay. For our simulations, we generated FH sequences of size 1, 000

hops for different values of n and K. We randomly selected r of these sequences

to be exposed to the adversary. At each time slot, the adversary randomly selected

J frequency bands to be jammed, excluding the ones already known due to node

compromise. A broadcast was assumed to be completed, when all legitimate nodes

were able to obtain a broadcast message. All results were averaged over 100 runs.

Figures. 3.10(a) and 3.10(b) show E[D] as a function of the number of compromised

nodes when J = 3 and K = 10, 12, 20, for the SU and AB modes, respectively. We

observe that legitimate nodes are able to complete their broadcast transmissions

even when more than 50% of the nodes are compromised. The AB mode exhibits

significantly lower delay compared to the SU mode, due to the use of multiple

nodes as relays. Note that when K is small and several nodes are compromised,

the jammers have very high chance to hit legitimate pairs. This fact can be seen

from the sharp increase of E[D] when K = 10 and more than half of the nodes are

compromised. A slightly increase of K will alleviate the situation greatly.

In figure 3.11(a) and 3.11(b), we show E[D] as a function of the number of

compromised nodes when K = 10 and for various values of J , under the SU and

AB modes, respectively. Even with the increase of J , legitimate nodes are able to

88

0 2 4 6 8 10 12
0

100

200

300

400

No. of compromised nodes

E
[D

]
(s

lo
ts

)

J=1
J=2
J=3 2n=16

K=10

0 2 4 6 8 10 12
0

10

20

30

No. of compromised nodes

E
[D

]
(s

lo
ts

)

J=1
J=2
J=3

2n=16
K=10

(a) SU mode (b) AB mode

Figure 3.11: E[D] as a function of the number of compromised nodes for various
values of J , when K = 10.

complete their broadcast transmissions in both modes, with the AB mode being

the most efficient. Note that E[D] starts to decrease when a large number of nodes

is compromised. This is due to the fact that with the compromise of more nodes,

fewer legitimate nodes need to receive a broadcast transmission, thus reducing the

number of unicast transmissions that need to be completed.

3.6.3 Evaluation of Multi-hop Scenarios

In this section, we evaluate TDBS for multi-hop networks. We focus on the jamming-

resistance of the inter-cluster phase, since for the intra-cluster phase, the security

analysis for single-hop networks holds. We define the following performance metrics

for the inter-cluster phase:

- Flooding Delay Df : the number of slots needed until all clusters adjacent to a

cluster i, have received a broadcast that originated in i, directly from a node

in i.

- Escape Delay De: the number of slots needed until a broadcast message m

originating at a cluster i, reaches any node in any adjacent cluster.

Escape diversity DIV : the fraction of adjacent clusters that receive the broad-

cast message m directly from a cluster i, when some border nodes in i are

compromised.

89

0 0.2 0.4 0.6 0.8
0

5

10

15

Jamming probability (p)

E
[D

f
]

N
L
=1 (simulation)

N
L
=1 (theoretical)

N
L
=2 (simulation)

N
L
=2 (theoretical)

0 2 4 6
1

2

3

4

5

No. of compromised nodes

E
[D

e
]

J=3 (simulation)
J=3 (theoretical)
J=5 (simulation)
J=5 (theoretical)

8 border nodes
K=20

0 2 4 6
0.5

0.6

0.7

0.8

0.9

No. of compromised nodes

E
[D

I
V

]

NL = 2 (simulation)

NL = 2 (theoretical)

NL = 3 (simulation)

NL = 3 (theoretical)

(a) (b) (c)

Figure 3.12: (a) E[Df] as a function of the jamming probability p, (b) E[De] as
a function of the number of compromised nodes r for various J , (c) E[DIV] as a
function of the number of compromised nodes r for various NL.

We first analytically evaluate the average flooding delay E[Df] in the presence

of external jammers. Assume a cluster with NC adjacent clusters. Let NL denote

the number of “bridge links” between two adjacent clusters.

Proposition 14. In the presence of an external jammer, E[Df] is equal to

E[Df] = (1− p̃)NC +
∞∑
i=2

i(1− p̃i−1)NC ×

NC∑
k=1

(
NC

k

)(
p̃i−1(1− p̃)

1− p̃i−1

)k

, (3.6)

where p̃ =
(
J
K

)NL denotes the probability that all NL links to an adjacent cluster are

jammed at a particular slot

Proof. The proof of Proposition 14 follows the same steps as the proof of Proposition

11, by substituting p = J
K

with p̃ =
(
J
K

)NL . Due to space limitations we refer to the

proof provided in Proposition 11.

We also verified Proposition 14 via simulations. In our setup, we generated a

multi-hop topology consisting of 50 nodes, organized in clusters. We then generated

FH schedules for all nodes in the network for the inter-cluster phase, according to

the algorithm described in Section 3.5.2. At each time slot, the jammer was assumed

able to block J random frequency bands across the entire network. Results were

averaged over all clusters in the network.

90

Figure 3.12(a) shows E[Df] as a function of the jamming probability p. We

denote the number of “bridge links” between two adjacent clusters to be NL. We

observe that, even when 80% of the available frequency bands are jammed, only

13 inter-cluster slots are needed for all neighboring clusters to directly receive a

broadcast message. Once the message is received by nodes in adjacent clusters, it

can propagate within adjacent clusters during the intra-cluster phase.

We also evaluate the expected escape delay E[De] under the compromise of r

border nodes.

Proposition 15. Under the compromise of r border nodes of a cluster i, E[De] is

given by

E[De] =
1

1−
(
PNL
c +

∑NL

i=1

(
NL

i

) (J(1−Pc)
K−r

)i)NC
, (3.7)

where Pc =
r

NC×NL
denotes the compromise probability.

Proof. At each time slot, the probability that an adjacent cluster fails to receive a

broadcast is due to: (a) all NL links are shared with compromised border nodes, and

(b) the links shared with uncompromised border nodes are jammed by the adversary.

So the probability that a neighboring cluster fails to receive a broadcast is

Pfail = PNL
c +

NL∑
i=1

(
NL

i

)(
J(1− Pc)

K − r

)i

.

The probability that at least one of the neighboring clusters successfully receive the

broadcast at a time slot is

Psuccess = 1− PNC
fail.

The broadcast among adjacent nodes forms a Bernoulli trial with a success proba-

bility Psuccess, so the average delay until the first success is 1/Psuccess, which leads

to our result.

The expected escape diversity E[DIV] is evaluated in the following proposition.

Proposition 16. Under the compromise of r nodes, E[DIV] is given by

E[DIV] = 1− PNL
c . (3.8)

91

Proof. For any neighboring cluster, the probability that it can not receive a broad-

cast is that all NL links are shared with compromised border nodes. This probability

is PNL
c . So the expected number of neighboring clusters that can get a broadcast is

NC · (1− PNL
c). Dividing this value with NC , yields E[DIV].

Figures 3.12(b) and 3.12(c) evaluate E[De] and E[DIV] as a function of the

number of compromised border nodes. In our setup, compromised border nodes

do not assist in the broadcast relay and their FH sequences are revealed to the

adversary. From figure 3.12(b), we observe that even when most of the border

nodes are compromised, a small number of slots is sufficient for the first copy of a

broadcast message to reach one adjacent cluster. From figure 3.12(c), we observe

that more than 90% of neighboring clusters are guaranteed to receive the message

when NL = 3, while this value being reduced to 50% when NL = 2.

3.7 Conclusions

We proposed TDBS, a scheme for jamming-resistant broadcast communications in

the presence of inside jammers. In TDBS, broadcast is realized as a series of u-

nicast transmissions distributed in frequency and time. Because the adversary is

limited in the number of channels he can jam, several unicast transmissions remain

interference-free. We mapped the problem of constructing hopping sequences for T-

DBS to the problem of 1-factorization of complete graphs. We analytically evaluated

the security properties of TDBS under an external and an internal threat model and

showed that TDBS maintains broadcast communications even when multiple nodes

are compromised. We verified our theoretical analysis using extensive simulations.

92

CHAPTER 4

Spectrum Opportunity-Based Control Channel Assignment

in Cognitive Radio Networks

4.1 Introduction

4.1.1 Motivation

Fixed spectrum allocation policies address interference between different wireless

technologies by isolating their operation in frequency. This fixed allocation policy

has led to spectrum scarcity. As a consequence, new wireless services and tech-

nologies have strived to co-exist in overcrowded unlicensed bands with poor radio

propagation characteristics. At the same time, it has been lately observed that

portions of the licensed spectrum are highly underutilized [3, 28].

To address the emerging need for higher spectral efficiency, an alternative pol-

icy that allows unlicensed users to opportunistically access vacant portions of the

licensed spectrum is currently being examined [3,28]. In this so-called opportunistic

spectrum access (OSA) paradigm, users are classified as primary if they are licensed

to operate on a particular frequency band, and secondary otherwise. Secondary

users can operate in licensed frequency bands only if the do not interfere with pri-

mary radio (PR) activity. Cognitive Radios (CRs) are intended as an enabling

technology for OSA [3]. These devices are capable of sensing the spectrum for fre-

quency holes and adapting their radio parameters to exploit spectrum opportunities

without interfering with PRs.

Establishing a self-organizing cognitive radio network (CRN) requires extensive

exchange of control messages, needed to coordinate various network functions such

as cooperative sensing, channel access, topology management, and routing, to name

a few. In many wireless networks architectures, control messages are broadcasted

93

over a channel known to all nodes, commonly referred to as the control channel. This

channel can be realized in a number of ways. For example, in multi-channel system,

it can be a frequency band dedicated to control traffic (e.g., [76]). It can also be a

designated time slot in a TDMA system, or a frequency hopping sequence (or CDMA

code) in spread spectrum systems. In an opportunistic CRN, spectrum availability

exhibits the temporal and spatial variations due to PR activity. Therefore, there is

no guarantee that a given frequency band will be available for exchanging control

information, either locally (one-hop neighborhood) or over multiple hops [94]. We

refer to the problem of defining a channel for control purposes as the control-channel

assignment (CCA) problem.

One possible solution to the CCA problem is to license a slice of the spectrum for

control purposes [15]. However, such a design conflicts with the opportunistic nature

of CRNs. Alternatively, the control channel can reside within an unlicensed band,

such as the Industrial, Scientific and Medical (ISM) band, or the unlicensed ultra-

wide band (UWB) [13, 15]. The use of unlicensed bands jeopardizes the reliability

of the control channel, given that such bands are already overcrowded and can

experience uncontrollable interference from other unlicensed users. In the absence of

a dedicated frequency band, control traffic has to be carried in-band. In such a case,

the control channel is subject to PR dynamics, and hence its allocation has to vary in

frequency and time according to the locally perceived spectrum availability [7,48,94].

4.1.2 Main Contributions and Chapter Organization

We develop cluster-based methods for CCA in CRNs. This is an intuitive approach

given the inherent partitioning of the network into clusters due to the location-

and time-dependent spectrum availability. We formulate the clustering problem

as a bipartite graph problem. In particular, we map the clustering process to the

maximum edge biclique problem [24,61] and the maximum one-sided edge cardinality

problem [24]. Our mapping allows us to control the tradeoff between the set of

common idle channels within each cluster and the cluster size.

Based on our graph theoretic formulations, we develop a distributed cluster-

94

Figure 4.1: Control channel assignment based on PR activity (idle frequency chan-
nels are indicated between braces).

ing algorithm called Spectrum Opportunity-based Clustering (SOC). SOC clusters

neighboring CRs with similar channel availability. We show that such a criterion

reduces the frequency of reclustering due to PR dynamics. Under SOC, nodes reach

a mutual agreement with respect to cluster memberships after the local exchange

of a small number of messages. Finally, to account for PR dynamics in the time

domain and to enable inter-cluster coordination, we propose a periodic channel ro-

tation mechanism. By rotating the control channel among the list of common idle

channels in the cluster, nodes in that cluster can communicate with a neighboring

cluster as long as the two clusters have at least one common idle channel.

The remainder of this paper is organized as follows: we formalize the CCA

problem and present our system model in Section 4.2. Section 4.3 shows the mapping

of the CCA problem to a bipartite graph problem. In Section 4.4, we describe the

spectrum opportunity clustering (SOC) algorithm. A CCA mechanism that adapts

to the spectrum dynamics is presented in Section 4.5. In Section 4.6, we develop

a coordination protocol for CRNs for the initial exchange of information before a

control channel is established. In Section 4.7, we evaluate the performance of SOC

and compare it with other methods. In Section 4.8, we summarize our contributions.

4.2 Problem Statement and System Model

Problem Statement–The CCA problem addressed in this paper is illustrated in

Figure 4.1, where a cellular network that acts as a PRN co-exists with an ad hoc

network of CRs. CRs opportunistically use any of the four cellular channels that is

95

sensed idle in its vicinity. For example, the idle channel list of CR node A, denoted

as CRA consists of channels {2, 3, 4}. Our goal is to allow CRs to agree on a CCA

according to their spectrum vacancies. In the example in Figure 4.1, none of the idle

channels is common to all CRs. Hence, different channels have to be assigned for

control in different neighborhoods. This assignment leads to a natural partitioning

of the CRN into clusters, each with at least one common idle channel. To assign

the control channel, we investigate clustering algorithms that take into account the

spatial and temporal PR activity dynamics.

SystemModel–We consider a CRN that co-exists with one or more PRNs in the

same geographical area. PRs are licensed to operate on a fixed spectrum, which can

be divided into a set of M non-overlapping frequency bands. LetM = {1, 2, . . . ,M}
be such a set. For simplicity, it is assumed that these bands are of equal capacity,

and that the CRN maintains the channelization structure of the PRNs. We also

assume that CRs have the same communication range over every channel in M.

Hence, the connectivity graph is not impacted by which channel is used for control.

This property can be achieved, for example, by adjusting the transmission power.

CRs sense spectrum opportunities using energy detectors, cyclostationary feature

extraction, or pilot signals. They may exchange their sensed data and cooperate in

identifying spectrum opportunities [3, 33, 34, 58]. Spectrum sensing is conducted at

a sufficient rate such that the list of available channels at each CR is up-to-date.

However, the sensing process is assumed to be imperfect due to multipath fading

and/or severe shadowing [33,34,58]. Such phenomena are typical in the bands that

are likely to be open for CRN use (e.g., digital TV bands [29,58]).

For the ith CR denoted by CRi, its list of idle channels is denoted by Ci =

{f (i)
1 , f

(i)
2 , . . . , f

(i)
Ki
}, where Ki = |Ci|. Here, f (i)

j refers to the index of the jth chan-

nel in Ci, i.e., f
(i)
j ∈ M. Finally, we assume a time-slotted system for CRN com-

munications. Time synchronization for the purpose of maintaining a single time

reference can be achieved using any of the methods in [30, 44, 87], or by periodic

synchronization to PR signals.

96

4.3 Cluster-based Channel Assignment

To account for space- and time-dependent spectrum availability, we propose a

cluster-based CCA scheme. In this scheme, the CRN is partitioned into cluster-

s. Nodes in a given cluster observe highly similar spectrum opportunities. The

control channel within each cluster is selected from the set of common idle channels.

Ensuring a large set of common idle channels in each cluster has several advantages.

First, if the current control channel becomes occupied by a PR user, CRs can mi-

grate to a new one. Second, grouping neighboring CRs with similar idle channels

implicitly implements hard-decision cooperative sensing [33, 34, 58]. Third, multi-

ple concurrent data transmissions can take place within each cluster. On the other

hand, if spectrum opportunities are highly heterogeneous, requiring a large number

of common idle channels per cluster may lead to small cluster sizes and a large num-

ber of clusters. In this case, cluster management and inter-cluster communications

involve significant overhead.

To provide a graceful tradeoff between cluster size and the number of cluster-

wide idle channels, we formulate the clustering problem as a bipartite graph prob-

lem. Specifically, our clustering algorithms, called Spectrum-Opportunity Clustering

(SOC) and Constrained-SOC (C-SOC), utilize two instances of a biclique construc-

tion problem: the maximum edge biclique graph problem [24,61], and the maximum

one-sided edge biclique graph problem [23]. We first present the mapping from the

clustering problem to a biclique construction. Then, we show how bicliques can be

utilized for distributed clustering.

4.3.1 Mapping to Biclique Graphs

Figure 4.2(a) shows the connectivity graph of an example CRN. Following neigh-

borhood discovery and the exchange of idle channels, each CRi becomes aware of

its one-hop neighbors CRj and the channel list Cj,∀ CRj ∈ NBi. This information

can be represented as a bipartite graph. A graph G(V , E) is called bipartite if the

set of vertices V can be partitioned into two disjoint sets A and B with A∪B = V ,

97

B
 C
A
 G
 H
D

1
 2
 3
 4
 5
 6
 10

(a) (b)

CA = {1, 2, 3, 4, 5, 6, 10}, CB = {1, 2, 3, 5, 7}, CC = {1, 2, 3, 4, 10}, CD =
{1, 2, 3, 5, 7}, CE = {2, 3, 5, 7}, CF = {2, 4, 5, 6, 7, 10}, CG = {1, 2, 3, 4, 8}, CH =
{1, 2, 5, 8}.

Figure 4.2: (a) Connectivity graph of an 8-node CRN, and the lists of idle channels
sensed by various CRs, (b) bipartite graph constructed by CRA.

QA(XA, YA)

XA

YA

1 2

B CA GD H

(a) (b)

CA = {1, 2, 3, 4, 5, 6, 10}, CB = {1, 2, 3, 5, 7}, CC = {1, 2, 3, 4, 10}, CD =
{1, 2, 3, 5, 7}, CE = {2, 3, 5, 7}, CF = {2, 4, 5, 6, 7, 10}, CG = {1, 2, 3, 4, 8}, CH =
{1, 2, 5, 8}.

Figure 4.3: Two possible bicliques for the bipartite graph GA: (a) Maximum-edge
biclique constructed according to Algorithm 1, (b) maximum one-sided edge biclique
constructed according to Algorithm 2.

such that every edge in E connects a vertex in A to a vertex in B. For CRi, the set

A corresponds to its neighborhood set NBi plus CRi itself, while B corresponds to

the set of idle channels Ci. An edge (x, y) exists between vertices x ∈ Ai and y ∈ Bi
if y ∈ Cx, i.e., channel y is in the channel list of CRx. In Figure 4.2(b), we show

the bipartite graph GA(AA ∪BA, EA) constructed by CRA. By construction, CRA is

connected to all vertices in BA.
A bipartite graph Q(V = X ∪ Y, E) is called a biclique if for each x ∈ X and

y ∈ Y there exists an edge between x and y, i.e., E = {(x, y) | ∀ x ∈ X and ∀ y ∈ Y }.
The edge set E is completely determined by X and Y , and hence, is omitted

98

from the biclique notation. For CRi, a biclique graph Qi(Xi, Yi) can be extract-

ed from its bipartite graph Gi. This biclique represents a cluster of nodes Xi that

have channels Yi ⊆ Ci in common. In Figures 4.3(a), and 4.3(b) we show two

possible bicliques for the bipartite graph GA. The first biclique (Figure 4.3(a))

represents the cluster XA = {CRA,CRB,CRC ,CRD,CRG} with common chan-

nels YA = {1, 2, 3}. The second biclique (Figure 4.3(b)) represents the cluster

XA = {CRA,CRB,CRC ,CRD,CRG,CRH} with common channels YA = {1, 2}. The
algorithms for obtaining both bicliques will be given shortly.

To organize the CRN into clusters, we are interested in forming bicliques that

satisfy certain performance criteria. We choose to: (a) maximize the set of edges

of the biclique graph, or (b) maximize the cluster size under a constraint on the

number of common idle channels in the cluster. We now describe both criteria in

detail.

4.3.2 Maximum Edge Biclique Graphs

The first clustering criterion is to maximize the number of edges in the biclique

graph. This corresponds to maximizing the product of the cluster size and the

number of common channels. We show that this criterion gracefully adapts to

spatial heterogeneity in spectrum availability. It also provides a tradeoff between

cluster size and the number of idle channels in a cluster.

To illustrate, consider the biclique Qi(Xi, Yi) associated with CRi. Suppose

that there is another biclique Q∗
i (X

∗
i , Y

∗
i), where |X∗

i | = |Xi| + ∆|Xi| and |Y ∗
i | =

|Yi|+∆|Yi|. Note that an increase in the number of common channels by ∆|Yi| > 0

will result in ∆|Xi| change in the cluster size, where ∆|Xi| ≤ 0. According to the

maximization criterion, Q∗
i should be selected over Qi if

|Xi||Yi| < (|Xi|+∆|Xi|)(|Yi|+∆|Yi|). (4.1)

The above inequality translates into:

−
(
∆|Xi|
|Xi|

+
∆|Yi|
|Yi|

)
<

∆|Xi|∆|Yi|
|Xi||Yi|

(4.2)

99

under the constraints

|Yi|+∆|Yi| ≤ |Ci| and |Xi|+∆|Xi| ≤ |Ni|.

Inequality (4.2) states that the fractional change in the number of edges has to

be larger than the fractional change in the number of vertices of the biclique. The

effect of the maximum-edge biclique construction on the clustering process can be

explained as follows. If the CRs in a given neighborhood have similar channels lists,

our clustering rule will be fairly inclusive, resulting in large clusters. On the other

hand, if the channel lists of neighboring CRs vary significantly, the clustering rule

will reduce the cluster size in favor of the common channels within each cluster.

Note that in general, the maximum edge biclique may contain any subset of vertices

of the original bipartite graph. Our construction guarantees that: (a) any channel

common to all neighbors of CRi will be part of the maximum-edge biclique Q∗
i , and

(b) CRi will also be part of Q∗
i . This is shown in the following lemma.

Lemma 1. Let a vertex x ∈ A of a bipartite graph G(A ∪ B, E) be connected to all

vertices in the set B. Then, x belongs to the maximum-edge biclique Q∗(X∗, Y ∗).

Proof. We prove Lemma 1 by contradiction. Let x ∈ A be a vertex of a bipartite

graph G(A ∪ B, E) such that there exists an edge (x, y), ∀y ∈ B. Let Q∗(X∗, Y ∗)

be the maximum edge biclique, and assume that x /∈ X∗. By adding x to the graph

Q∗, we obtain graph Q′(X∗∪ x, Y ∗), which is still a biclique since x is connected

to every vertex in B, and hence, every vertex in Y ∗. The number of edges of the

biclique Q′ is (|X∗|+ 1)×|Y ∗| > |X∗|×|Y ∗|. This contradicts our initial assumption

that Q∗ is a maximum-edge biclique. The same result can be shown for any vertex

y ∈ B that is connected to all vertices in A.

Finding the maximum-edge biclique of a bipartite graph is an NP-complete prob-

lem [61]. For small bipartite graphs, an exhaustive search is possible. However, the

search space grows exponentially with the cardinality of the vertex set. Accordingly,

we develop a greedy heuristic (6) that produces a biclique with a large number of

edges. In each iteration, Algorithm 6 examines one CR node. The vector Si holds

100

Algorithm 6 Greedy Heuristic for Computing the Maximum Edge Biclique Graph

1: INPUT Gi(Ai ∪ Bi, Ei) // bipartite graph of CRi

2: Yi ← Bi
3: for j = 1 to |Ai| do
4: Find CRk ∈ Ai that maximizes |Yi

∩
Ck| over all nodes in Ai

5: if Yi

∩
Ck = ∅ then

6: break

7: else

8: Si[j] = k

9: Ai ← Ai− CRk, Xi ← Xi

∪
CRk, Yi ← Yi

∩
Ck

10: Pi[j] = |Xi| × |Yi|
11: end if

12: end for

13: Find j∗ = argmaxj Pi[j]

Q∗(X∗
i , Y

∗
i); X

∗
i = {CRSi[1], . . . ,CRSi[j∗]}; Y ∗

i =
∩k=j∗

k=1 CSi[k]

the indices of CRs that have already been examined, whereas Yi holds the list of

common channels for the CRs in Si. Initially, Si is empty and Yi = Bi. In each

iteration, we find a node CRk whose channel list Ck has the highest overlap with Yi.

We then remove CRk from Ai, add k to Si, and repeat the process until either Ai is

empty or until the intersection of the common channel list with the remaining CRs

is null. Note that in each iteration, Q(Xi, Yi) is a biclique. We record the number of

edges of each constructed biclique in the vector Pi, and then find the biclique with

the maximum number of edges. Algorithm 6 guarantees that a CRx with Ci ⊆ Cx

will be included in the biclique Q∗
i . This is formalized in the following lemma.

Lemma 2. Any x ∈ Ai with Ci ⊆ Cx will be included in the biclique Q∗
i (X

∗
i , Y

∗
i)

computed by Algorithm 6.

Proof. Let x ∈ Ai be a vertex of a bipartite graph Gi(Ai∪Bi, Ei). Suppose that there
exists an edge (x, y) ∀y ∈ Bi. Assume that the maximum edge biclique Q∗

i (X
∗
i , Y

∗
i)

is computed during the jth iteration of Algorithm 1. Then any CR added to Xi in

101

the previous iterations will be part of Q∗
i . Hence, it is sufficient to show that x will

be added to X∗
i before or during the jth iteration. If Y ∗

i = Ci then x ∈ X∗
i , since

the addition of x increases the number of edges of Q∗
i by |Ci|. If Y ∗

i ⊂ Ci, there

exists some x′ ∈ X∗
i such that Cx′

∩
Ci ⊂ Ci. Since on initialization Yi = Ci and

Cx

∩
Ci = Ci according to line 4 of Algorithm 6, x will be added to X∗

i before x′.

Hence, Q∗
i must contain x.

We illustrate the steps of Algorithm 6 when executed at node A of Figure 4.2(a).

The bipartite graph GA for CRA is shown in Figure 4.2(b). In the first iteration,

node A is selected, as it has the highest overlap with YA = CA. The number of

edges of the biclique is PA[1] = 7. In the second iteration, CRC is selected, resulting

in cluster XA = {CRA,CRC}, YA = {1, 2, 3, 4, 10}, and PA[2] = 10. Subsequent

iterations result in the addition of CRD,CRB,CRG, and CRH , in this order, and

corresponding numbers of edges PA[3] = 9, PA[4] = 12, PA[5] = 15, and PA[6] = 12.

The biclique Q∗
A with the maximum number of edges is eventually obtained. The

final outcome is the cluster {CRA,CRB,CRC ,CRD,CRG} with common channels

{1, 2, 3}, depicted in Figure 4.3(a).

4.3.3 Maximum One-Sided Edge Biclique Graphs

When maximizing the number of edges in the biclique, no requirement is imposed on

the cluster size |Xi| or the set of common channels |Yi|. If there are large differences
between the channel lists of neighboring CRs, this approach may result in clusters

of very small sizes. To avoid this outcome, we examine a constrained version of the

maximum-edge biclique problem, which aims at maximizing the cluster size while

satisfying a lower bound on the number of common channels. Such a formulation is

related to the maximum one-sided edge biclique problem [23], which can be stated

as follows. Given a bipartite graph G(A∪B, E) and a positive integer k, we wish to

find a maximum-edge biclique with at least k nodes on one side of the bipartition.

In our problem, this corresponds to imposing a lower bound on |Yi| and maximizing

|Xi|.

102

Algorithm 7 Greedy Heuristic for Computing the Maximum One-sided Edge Bi-

clique Graph

1: INPUT Gi(Ai ∪ Bi, Ei); t0
2: Yi = ∅, Xi = Ai, k = 1

3: while |Yi| < γ0 and |Xi| > 0 do

4: Find y∗k = argmaxy∈Bi\Yi
deg(y)

5: if y∗k connects to no CR then

6: break

7: else

8: Xi ← Xi

∩
Si; Si = {CRj ∈ Ai | y∗k ∈ Cj}

9: Yi ← Yi

∪
y∗k

10: end if

11: k = k + 1

12: end while

Q∗(X∗
i , Y

∗
i)

The maximum one-sided edge biclique problem is known to be NP-complete [23].

We provide a greedy algorithm (Algorithm 7) that yields clusters with |Yi| ≥ γ0 idle

channels in common, where γ0 is a desired threshold. Algorithm 7 examines one

channel in each iteration. The set Xi is initialized to all one-hop neighbors of CRi.

The set Yi is initially empty. At the kth iteration, CRi finds channel y∗k ∈ Bi\Yi

that is common to the largest number of one-hop neighbors, i.e., the channel with

the highest connectivity degree deg(y) in the bipartite graph Gi(Ai ∪ Bi, Ei). Any
neighbor that has not sensed y∗k as idle is removed from Xi. Then, y

∗
k is added to

Yi. If several channels have the same degree, the decision of selecting y∗k is deferred

to the next iteration. All values of y∗k are stored and for each one we find channel

y∗k+1 ∈ Bi\Yi + y∗k with the highest degree. Assuming y∗k+1 is unique, then y∗k and

y∗k+1 are added to Yi; else we proceed to the next iteration1. Note that at each step,

1To simplify the exposition, the details of breaking the tie are not shown in the pseudo-code of

Algorithm 7.

103

the graph Q(Xi, Yi) is a biclique, because y∗k is connected to all CRs in Xi. The

number of required iterations in Algorithm 7 is equal to or less than γ0.

We illustrate the application of Algorithm 7 to the CRN of Fig-

ure 4.2(a). Let γ0 = 2. For node A, we initially have YA=∅ and

XA={CRA,CRB,CRC ,CRD,CRH ,CRG}. Channels 1 and 2 have the highest de-

gree of six, so both of them are included in YA. The cluster member-

ship XA remains intact. In the next round, we start with YA={1} and

XA={CRA,CRB,CRC ,CRD,CRH ,CRG} and add channel 2 to YA. XA remains

the same. For YA={2} and XA={CRA,CRB,CRC ,CRD,CRH ,CRG}, channel 1 is

selected. So the two (XA, YA) pairs form the same biclique, given by YA={1, 2} and
XA={CRA,CRB,CRC ,CRD,CRH ,CRG}. Since |YA| satisfies γ0 ≥ 2, the algorithm

terminates and returns QA(XA, YA). This biclique is depicted in Figure 4.3(b).

4.4 Spectrum-Opportunity Clustering

In this section, we develop the spectrum-opportunity clustering (SOC) algorithm

which utilizes the clustering criteria based on the biclique mapping, as presented in

Section 4.3. The SOC algorithm follows four steps:

Step 1: Biclique computation–In step 1, each CRi is aware of its one-hop neighbors

along with the channel availability at each CRj ∈ NBi. Using this information, CRi

constructs a bipartite graph and computes the “best” biclique Q1
i (X

1
i , Y

1
i). Here

the superscript is used to denote the obtained biclique after a given iteration. The

“best” biclique is computed using Algorithm 6 or Algorithm 7, as described in

Section 4.3. We refer to the clustering method that uses Algorithm 6 as SOC, and

to the clustering method that uses Algorithm 7 as Constrained SOC (C-SOC). Once

the optimal bicliques are computed, CRi broadcasts its biclique info Q1
i (X

1
i , Y

1
i) to

its neighbors.

Step 2: Updating cluster memberships–In step 2, each CRi checks if there is a

biclique Q1
j with CRi ∈ X1

j that provides better clustering than Q1
i . That is, it

checks if Q1
j > Q1

i with CRi ∈ X1
j . The inequality operator for two bicliques is

104

defined as follows.

Definition 9. For two bicliques Qi(Xi, Yi) and Qj(Xj, Yj) constructed using Algo-

rithm 1, we say Qi < Qj if:

(a) |Xi| × |Yi| < |Xj| × |Yj|, or

(b) |Xi| × |Yi| = |Xj| × |Yj| and |Xi| < |Xj|, or

(c) |Xi| = |Xj|, |Yi| = |Yj|, and i < j.

In Definition 9, we first compare the number of edges in the two bicliques. If two

bicliques have the same number of edges, we then compare their cluster sizes. If the

cluster sizes are also equal, we break the tie by selecting the biclique of the CR with

the highest id. Definition 9 imposes a total ordering between two bicliques (i.e., two

bicliques can never be equal). Now for the C-SOC case, the inequality operator is

defined as follows.

Definition 10. For two bicliques Qi(Xi, Yi) and Qj(Xj, Yj) constructed using Algo-

rithm 7, we say Qi < Qj if:

(a) |Xi| < |Xj|, or

(b) |Xi| = |Xj| and |Yi| < |Yj|, or

(c) |Xi| = |Xj|, |Yi| = |Yj|, and i < j.

In Definition 10, given that both Qi and Qj satisfy the constraint on the number

of idle channels, we select the biclique that leads to a larger cluster size. If cluster

sizes are equal, we compare the number of idle channels per cluster. If those are

equal as well, we break the tie by selecting the biclique of the CR with the higher

id. CRi selects biclique Q1
j(X

1
j , Y

1
j) with CRi ∈ X1

j , that is best according to the

relation operator given in Definitions 9 or 10, and updates its maximum edge biclique

to Q2
i = Q1

j . After computing Q2
i , CRi informs its neighbors of the updated cluster

membership X2
i and the common channel list Y 2

i .

105

We illustrate the execution of step 2 for the CRN in Figure 4.2(a). CRA receives

the following updates from its neighbors: (a) Q1
B with XB = {CRA,CRB,CRH}

and YB = {1, 2, 5}, (b) Q1
C with XC = {CRA,CRB,CRC ,CRD} and YC = {1, 2, 3},

(c) Q1
D with XD = {CRA,CRC ,CRD,CRE,CRG} and YD = {2, 3}, (d) Q1

G

with XG = {CRA,CRD,CRG,CRH} and YG = {1, 2}, and (e) Q1
H with XH =

{CRA,CRB,CRG,CRH} and YH = {1, 2}. Ordering the bicliques according to Def-

inition 9 yields Q1
G < Q1

H < Q1
B < Q1

D < Q1
C < Q1

A. Then A sets Q2
A = Q1

A since

Q1
A has the maximum number of edges. Similarly, Q2

B = Q1
A, Q

2
C = Q1

A, Q
2
D = Q1

A,

Q2
G = Q1

A, and Q2
H = Q1

A.

Step 3: Finalizing cluster membership–In step 3, each CRi examines the cluster

membership X2
i . For each CRj ∈ X2

i , if CRi /∈ X2
j then CRi removes CRj from its

biclique Q2
i . At the completion of this step, the final bicliques Q3

i are obtained for all

nodes that were not removed from the biclique of their choice in step 2. If a CRi has

adopted the clustering of CRj during step 2, it may be the case thatX2
j contains CRs

not within the range of CRi. For those CRs, CRi will not have biclique information.

To provide this information, every CRj must replay all received biclique information

if its biclique is selected by any of its neighbors in step 2.

For illustration, consider the CRN in Figure 4.2(a). CRA checks if it is included

in the bicliques of all CRs in X2
A. Given that all neighboring CRs have adopted

Q1
A, CRA concludes that X3

A = X2
A and Y 3

A = Y 2
A . Similarly, B goes through its list

X2
B = {CRA,CRB,CRC ,CRD,CRG}. Because CRD and CRG are not neighbors of

CRB, the only way that CRB can know about Q2
D and Q2

G is if CRA relays their

updates. According to our algorithm, CRA relays Q2
D and Q2

G, because both CRD

and CRG have adopted Q1
A. CRB can now see that it is included in the bicliques of

CRD and CRG, so it sets X3
B = {CRA,CRB,CRC ,CRD,CRG}. Note that CRH is

excluded from the biclique updates of CRA,CRB, and CRG, and therefore continues

to step 4.

Step 4: Unclustered CRs–CRs that did not join any clusters because they were

removed from the biclique they chose in step 3 repeat steps 1-3, but exclude already

106YE= {2, 5, 7}
Figure 4.4: Final clustering based on SOC. CRA, CRE, and CRH are the CHs.

clustered neighbors. For example, CRH in Figure 4.2(a) was excluded by the biclique

of CRA and hence, has to join another cluster. CRH deletes CRA,CRB and CRG

from its neighbor list, and exchanges information with the remaining neighbors to

construct a cluster. If there are no remaining one-hop neighbors, as in the case of

CRH , then a single CR cluster is formed. The final clustering and the list of common

channels are shown in Figure 4.4.

4.4.1 Correctness of the SOC Algorithm

We now prove that the SOC algorithm leads to consistent cluster memberships, i.e.

all CRs distributively reach the same clustering outcome. The correctness proof

follows the logic of the clique clustering method in [79]. Several modifications are

made to the use of bicliques with cluster memberships that possibly do not form

cliques. To show the correctness of SOC, we prove that at the end of step 3, Q3
i = Q3

j

for any CRj that belongs to cluster X3
i . Because step 4 is a repetition of steps 1-3,

it follows that SOC converges to the same cluster memberships. We first prove a

series of lemmas leading to our main proof.

Lemma 3. If CRi ∈ X2
j and CRj ∈ X2

i , then Q2
i = Q2

j .

Proof. After step 1, CRi and CRj will have received the updates of their neighbors.

Suppose that CRi selects Q2
i = Q1

k, where CRk is a neighbor of CRi, or is CRi

itself. Given that CRj ∈ X2
i , then CRj ∈ X1

k , and hence, CRj is a neighbor of

CRk. Following a similar argument, we can show that for the decision Q2
j = Q1

m

107

to be made, the selected Q2
j must be constructed by a node CRm ∈ NBi , given

that CRi ∈ X2
j . Because CRk and CRm are neighbors of both CRi and CRj, CRi

and CRj must have received both Q1
k and Q1

m in step 1, before updating their own

bicliques. Due to the imposed total ordering, CRi concludes that Q1
m < Q1

k, and

CRj concludes that Q
1
k < Q1

m. This is true only if k = m.

According to Lemma 3, two CRs that include each other in their respective

bicliques after step 2 must have agreed on the same bicliques. We utilize this result

in Lemma 4.

Lemma 4. Suppose that for three nodes CRi, CRj, and CRk, we have CRk ∈ X2
i

and CRk ∈ X2
j with Q2

i = Q2
j . Then if CRi /∈ X2

k , it must also hold that CRj /∈ X2
k .

Proof. Lemma 4 can be proved by contradiction. Assume that CRj ∈ X2
k . Because

CRj ∈ X2
k and CRk ∈ X2

j , then Q2
j = Q2

k by Lemma 3. However, by assumption we

also have Q2
i = Q2

j , and hence Q2
i = Q2

k. Since CRk ∈ X2
i and Q2

i = Q2
k, this also

means that CRi ∈ X2
k , which leads to a contradiction. Hence, CRj /∈ X2

k .

Based on Lemmas 3 and 4, we now show that SOC guarantees that CRs will

have consistent cluster membership information. It also follows that CRs will agree

on the set of common channels.

Theorem 2. For any CRj ∈ X3
i , Q

3
i = Q3

j .

Proof. Q3
i is a pruned version of Q2

i , i.e., X
3
i ⊆ X2

i . Therefore, any CRj ∈ X3
i must

also be a member of X2
i . Also for any CRj ∈ X3

i , we have CRi ∈ X2
j , since otherwise,

CRj would have been removed from X3
i . Using Lemma 3, it follows that Q2

i = Q2
j .

Now consider any CRk ∈ X2
i that is removed from X2

i in step 3, i.e., CRk /∈ X3
i .

This happens only if CRi /∈ X2
k , which also means (by Lemma 2) that CRj /∈ X2

k ,

and CRk will also be removed from X2
j in step 3. Hence, every CR that is removed

from X2
i will also be removed from X2

j , making X3
i = X3

j . For two bicliques with

the same membership, it follows that Y 3
i = Y 3

j , and hence Q3
i = Q3

j .

108

Based on Theorem 2, at the end of step 3, CRs that have not been excluded

from their cluster choice in step 2 agree on the same clusters. For any CRs that

are removed (CRH in our example), steps 1-3 are repeated with the exclusion of

any already clustered members. Hence, the new clusters formed at step 4 lead to

consistent cluster formation.

4.4.2 Clusterhead Election

SOC is a cluster-first algorithm, so clusterheads (CHs) are elected after clusters are

formed. CHs are used to facilitate operations such as cooperative sensing, routing,

and topology management. A typical requirement for a CH is that it must be

connected to all members of its cluster. In SOC, though CRs of a cluster are not

guaranteed to form a clique (for example in Figure 4.3(a), CRB,CRD are not within

each other’s communication range even though they belong to the same cluster), in

the following lemma we prove that at least one CR in the cluster is guaranteed to

be within range of every member of its cluster. This CR can be identified in the

last step of cluster formation.

Lemma 5. In every cluster produced by SOC, at least one CR is one-hop away from

all other CRs of that cluster.

Proof. Consider a cluster that is represented by the biclique Q3
i (X

3
i , Y

3
i). According

to Theorem 2, all CRj ∈ X3
i converge to the same cluster membership in step 3.

For any CRi and CRj ∈ X3
i , it holds that CRi ∈ X2

j and CRj ∈ X2
i . Otherwise, CRi

would have removed CRj from X2
i in step 2, and similarly CRj would have removed

CRi from X2
j . According to Lemma 3, if CRi ∈ X2

j and CRj ∈ X2
i , it holds that

Q2
i = Q2

j . This means that all members of a cluster formed after step 3 must have

computed the same biclique in step 2. However, the biclique Q2
i of any CR in step 2

is the best biclique Q1
j with CRj ∈ NBi or j = i. Hence, the only way that all CRs

of a cluster would choose Q1
j as the best biclique in step 2 is if CRj is a neighbor to

all. Therefore, at least one CR is one hop away from all CRs of the cluster.

For the CRN in Figure 4.4, CRA,CRE, and CRH can be selected as CHs.

109

4.5 Dynamic Control Channel Assignment

Once clusters are formed, control channels must be selected from the common idle

channel list within each cluster. This assignment can be facilitated by CHs. From

an architectural standpoint, the assignment of different control channels to various

clusters poses two major challenges.

Inter-cluster coordination problem–Consider the clustering in Figure 4.4.

Suppose that CRA, CRE, and CRH serve as CHs. For the three formed clusters,

supposed that channels 1, 7 and 8 are selected for control respectively. Assume now

that CRG wants to send a control message to CRF . Since channel 7 is not in the idle

list of CRG, the two CRs cannot exchange control messages despite the fact that

channels {2, 4} are common to both of them.

Control channel migration problem–For the CRN in Figure 4.4, suppose

that a PR starts transmitting over channel 1, and only CRB senses this PR activity

(other CRs may be out of range of the transmitting PR or may not be sensing

the channel). CRB needs to notify the other CRs in its cluster that channel 1 is no

longer idle. Since channel 1 is used for control, a notification sent on this channel will

interfere with the PR transmission. Even if this interference is considered negligible

due to its short duration, CR communication on channel 1 may not be possible

due to the PR activity. To migrate the control channel, the CH node CRA has to

correctly receive the notification from CRB and determine a new control channel for

the nodes in its cluster.

4.5.1 Periodic Control-Channel Rotation

To allow for inter-cluster communication and to coordinate control-channel mi-

gration, we propose the following periodic channel-rotation mechanism. Rather

than selecting one channel for control until PR activity appears on it, the con-

trol channel is rotated among the common idle channels within each cluster.

Let Wi = {f (i)
1 , f

(i)
2 , . . . , f

(i)
|Wi|} denote the set of common channels in cluster i.

For time slots t = 1, 2, . . . , CRs within cluster i use channel f
(i)
j where j =

110

[(t− 1) (mod |Wi|)] + 1. The channel hopping mechanism is similar to the hop-

ping used in the neighbor discovery mechanism. However, CRs hop only through

the list of common channels within their cluster and channel schedules between clus-

ters may be different. To illustrate, consider the CRN of Figure 4.4. For the cluster

{CRA,CRB,CRC ,CRD,CRG}, the set of common channels is WA = {1, 2, 3}. The
(slot, control channel) pairs for the first few slots are (1,1), (2,2), (3,3), (4,1)... Simi-

larly, for cluster {CRE,CRF}, the (slot, control channel) pairs are (1,2), (2,5), (3,7),
(4,2)...

When a CR senses PR activity on the current control channel, it waits until the

control channel is migrated to an idle one before notifying other CRs within the

same cluster. For example, in Figure 4.4, suppose that CRB senses PR activity on

channel 1. When the control channel hops to channel 2, CRB notifies its CH (CRA)

of its new idle channel list. Then, CRA updates the list of common channels to

W ′
A = {2, 3} and broadcasts W ′

A, using either channel 2 or 3. The control channel

now rotates only between channels 2, and 3.

The rotation of the control channel also addresses the problem of inter-cluster

coordination. Two neighboring CRs that belong to two different clusters can com-

municate with each other as long as the two clusters have at least one idle channel in

common. For example, if CRG is aware of the common channel list WE = {2, 5, 7} of
the cluster {E,F}, it can use time slots t, where (t−1) ≡ 1 (mod 3)+1, to commu-

nicate control information on channel 2. To enable inter-cluster coordination, CRs

use the broadcast of Q3
j from their neighbors to obtain the common channel list of

adjacent clusters and derive their channel schedule. The above rotation mechanism

implements an always-on virtual channel for control, located at different frequency

bands in various time slots and clusters. The location of the control channel is

known to all CRs within each cluster.

4.5.2 Reclustering

Although SOC converges after only a few messages are exchanged, it is desirable

to limit frequent recomputation of clusters in order to reduce the communication

111

overhead for forming new clusters, the traffic relay, and temporary disconnections. In

SOC, the availability of multiple idle channels reduces the need for reclustering. The

set of common idle channels is updated in accordance with PR activity. However,

it may happen that a cluster is left without any common channel for some time,

due to low idle channel availability. If this time is small, cluster members may

temporarily switch to the coordination protocol until sufficient channels are freed

again. A reclustering operation can be triggered periodically to account for the

long-term dynamics of PR activity and changes in the CRN topology. In Section

4.7.3, we show that in SOC, only a small fraction of clusters are left without any

common idle channel.

4.6 Coordination Without a Control Channel

During the execution of the SOC algorithm, neighboring CRs need to exchange

their lists of idle channels. This exchange has to occur in the absence of a common

control channel, because such a channel is not yet established. In this section, we

propose a coordination protocol for CRNs that facilitates the exchange of broadcast

information. Our mechanism relies on a combination of well established principles

of multiple access such as time division and random access. Note that several

coordination mechanisms that do not require the existence of a control channel are

known for fixed spectrum networks (e.g., [6, 76]), but their adaptation to CRNs is

not straightforward. The work most relevant to ours is the quorum channel hopping

(QCH) system proposed in [11]. We compare the performance of our protocol with

the scheme in [11], in Section 4.7.6.

4.6.1 Protocol Overview

Consider an arbitrary node CRi. The steps of our coordination protocol are as

follows:

1. CRi determines Ci using spectrum sensing.

112

2. CRi broadcasts its list Ci on channel f
(i)
j ∈ Ci during slots t = 1, 2, ..., if

the following relation is satisfied: f
(i)
j = [(t− 1) (mod M)] + 1. Broadcasting

is done according to a random access protocol. Any CRℓ that hears CRi’s

transmission places CRi in its neighbor list, denoted as NBℓ.

3. CRi exchanges clustering information (explain in Section 4.4) with every neigh-

bor CRℓ ∈ NBi using the channel schedule derived from Cℓ (e.g. on channel f
(i)
j

at time slot kM + f
(i)
j , k = 0, 1, ..., if they both see channel f

(i)
j as available),

until a common control channel is set up.

In Step 2, a universal time schedule for channel access is followed, regardless

of nodes’ individual views of channel availability. Each time slot t is mapped to a

channel j ∈ M by a modulo-M operation. For example, for the CRN in Figure

4.1, the (slot, channel) pairs during which the broadcast in Step 2 is allowed to take

place are (1,1), (2,2) (3,3), (4,4), (5,1),... CRA can communicate with CRC and

CRD on channel 3 at time slots t = 3, 7, 11,... Using this universal schedule, CRs

can discover their neighbors and exchange channel information.

Our neighbor discovery protocol requires all CRs to be time-synchronized. For

the purpose of neighbor discovery, a time slot corresponds to the time that CRs

operate on one idle channel. The length of a time slot can be made appropriately

large, to allow for the discovery of all CRs that are tuned to the same channel.

Access to each frequency band can occur in a random fashion following a CSMA

model [1]. Though random access protocols have relatively low throughput, they

are preferred here because they do not require any node coordination.

Each time slot is divided into mini-slots. Each mini-slot is long enough to allow

CRi to broadcast its list of idle channels. CRs tuned to the same channel broadcast

their channel lists at each mini-slot with probability Paccess. If a CR chooses to stay

silent in a given mini-slot (with probability 1−Paccess), it will listen to other trans-

missions and record their announced channel lists. If more than one CR chooses

the same mini-slot for transmission, a collision occurs. Note that in typical wireless

communications, broadcast messages are not acknowledged in order to avoid the

113

Channel 1

Channel 2

Channel 3

Channel 4

t=1 t=2 t=3 t=4 Time slot

E D AC A

D B D
C

B
E

AABE

C
A

C
CC

A

C

A

C

Figure 4.5: A realization of the coordination protocol for the CRN of Figure 4.1.

ACK implosion problem. Because of the absence of feedback regarding the recep-

tion of a broadcast message, contending nodes continue to access mini-slots with

probability Paccess, regardless of the success of their transmission.

One realization of the above coordination process for the CRN of Figure 4.1 is

shown in Figure 4.5. There are four available channels. Each time slot is divided

into 12 mini-slots. For time slot 1, we have [(1− 1) (mod 4)] + 1 = 1, so nodes

whose channel lists include channel 1 (CRD, CRB and CRE) tune to this channel.

These nodes contend at various mini-slots in slot 1. Even though a collision occurs

during the 9th mini-slot, CRD, CRB and CRE are still able to successfully broadcast

their available channels in mini-slots 1,3,6,11 of slot 1. During time slot 2, CRA,

CRB and CRE tune to channel two, and announce their available channels without

any collision. All of them identify each other as neighbors. This channel access

mechanism is maintained until a control channel is established.

4.7 Performance Evaluation

In this section, we demonstrate the agility of our clustering algorithms in adapting to

PR dynamics. We first investigate the performance of C-SOC for different threshold

values. Then, we demonstrate the advantages of SOC and C-SOC over clustering

methods that do not take into account PR activity. Moreover, we evaluate the

rate of reclustering due to PR activity for various clustering methods. We then

evaluate the performance of the periodic control-channel rotation mechanism, and

study the effectiveness of Algorithms 6 and 7 in finding bicliques that are close to

the optimal ones. Finally, we evaluate the performance of the coordination protocol,

and compare it with the QCH system proposed in [11].

114

4.7.1 Evaluation Setup

5 Km
5 Km

PR CR
Figure 4.6: Evaluation setup consisting of a cellular PRN and a CRN. Ten channels
are assigned per cell. Adjacent cells do not share any channels.

In our evaluation, we consider a CRN that co-exists with a cellular PRN. The pa-

rameters for each of the two networks as well as the evaluation metrics are described

below.

Cellular primary network setup–The cellular network consists of nine cell

towers covering an area of 5Km×5Km, as shown in Figure 4.6. 40 frequency channels

are assigned to the PRN, according to the four-color theorem [69]. Accordingly,

each cell is assigned 10 channels, with adjacent cells operating over non-overlapping

channels. This is illustrated in Figure 4.6 by the different shading on the various

cells. The communication range for each cell tower is set to 1.25 Km. For each cell,

calls arrive at each channel according to a Poisson process of rate λ calls/min. We

assume an exponentially distributed call holding time with parameter µ minutes.

CRN Setup–CRs are randomly deployed in the area covered by the cellular

network. They are assumed to be fixed. The CR communication range is set to 500

m. Each CRi senses the set of idle channels Ci based on the cell it is located in. A

CR is not allowed to access channels occupied by the cell it resides in or by adjacent

cells. An imperfect sensing process is assumed, whereby the status of a channel at

each CR is misdetected with probability pf . The lists of idle channels are updated

at each CR every time a new event (call arrival or call termination) occurs in a cell.

115

Clustering Schemes–We compare SOC and C-SOC against three clustering

schemes: (a) the distributed clustering algorithm (DCA) [10], (b) the lowest-id clus-

tering algorithm (LCA) [9], and (c) the distributed coordination scheme proposed

in [94]. We will refer to the latter as DCRN. In DCA, a node is elected as a CH

if it has the highest weight among its neighbors. Each CR associates itself with a

neighboring CH that has the highest weight. We set the weight of a CR to its degree

on the connectivity graph. In LCA, a node becomes a CH if it has the lowest id

within its neighborhood. Finally, in DCRN, CRs select the channel common to the

largest number of neighboring CRs for control. CRs may belong to multiple clusters

at the same time, if they utilize more than one control channel to connect to their

neighbors.

Evaluation Metrics:

- Average number of common idle channels per cluster–This metric, denoted by

ρ, captures channel availability in a cluster. A larger value of ρ enables control-

channel migration (in case of PR activity) with less likelihood of reclustering.

It also implies that higher bandwidth is available for intra-cluster communi-

cations.

- Coefficient of variation (CV) for the number of common idle channels–The

CV is defined as the ratio of the standard deviation over the mean value. This

metric captures the uniformity on the availability of common idle channels per

cluster. A low CV implies more uniformity among clusters.

- Percentage of clusters with no common idle channels–Poor clustering decisions

can lead to clusters with no common idle channels. This metric captures the

percentage of clusters whose members do not share any channels.

- Number of clusters in the network–The partitioning of the CRN into a large

number of clusters increases the overhead for inter-cluster coordination.

- Average cluster size–This metric represents the average number of CRs that

belong to a cluster.

116

4 5 6 7 8
0

2

4

6

8

10

µ (mins)

ρ

C−SOC (γ
0
=1)

C−SOC (γ
0
=2)

C−SOC (γ
0
=4)

C−SOC (γ
0
=7)

4 5 6 7 8
0

2

4

6

8

10

µ (mins)

A
vg

. C
lu

st
er

 S
iz

e

C−SOC (γ
0
=1)

C−SOC (γ
0
=2)

C−SOC (γ
0
=4)

C−SOC (γ
0
=7)

(a) (b)

Figure 4.7: Performance of C-SOC as a function of the call duration µ for different
values of γ0: (a) average number of common channels per cluster (ρ), (b) average
cluster size

4 5 6 7 8
0

50

100

150

200

µ (mins)

C

lu
st

er
s

in
 th

e
C

R
N

C−SOC (γ
0
=1)

C−SOC (γ
0
=2)

C−SOC (γ
0
=4)

C−SOC (γ
0
=7)

4 5 6 7 8
0

2

4

6

8

9.4

µ (mins)

O

cc
up

ie
d

C
ha

nn
el

s
pe

r
C

el
l

PR occupied channel

(a) (b)

Figure 4.8: Performance of C-SOC as a function of the call duration µ for different
values of γ0: (a)average number of clusters in the CRN, and (b) number of occupied
channels by PR per cell.

- CV of the average cluster size–This metric captures the uniformity of the

constructed clusters in terms of number of nodes per cluster.

4.7.2 Evaluation of the C-SOC Algorithm

In this set of experiments, 600 CRs are deployed. We fix λ at 1.5 calls/min, and

vary µ from µ = 4 mins to µ = 8 mins. We first investigate the effect of the

threshold value γ0 on the number of common idle channels per cluster. As shown in

Figure 4.7(a), ρ is larger than γ0 for every value of µ. This effect can be explained

by two factors. For small µ’s, nodes within the same neighborhood share many

more channels than γ0. The threshold γ0 does not have a significant effect on the

117

4 5 6 7 8
0

2

4

6

8

10

12

µ (mins)

ρ

LCA
DCA
DCRN
SOC
C−SOC

4 5 6 7 8

40

60

80

100

120

140

160

µ (mins)

C
V

 o
f #

 C
ha

nn
el

s
pe

r
C

lu
st

er
(%

)

LCA
DCA
DCRN
SOC
C−SOC

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

µ (mins)

F
ra

ct
io

n
of

 C
lu

st
er

s

LCA
DCA
DCRN
SOC
C−SOC

(a) (b) (c)

4 5 6 7 8
0

2

4

6

8

10

µ (mins)

A
vg

. C
lu

st
er

 S
iz

e

LCA
DCA
DCRN
SOC
C−SOC

4 5 6 7 8
0

50

100

150

200

µ (mins)

C

lu
st

er
s

in
 th

e
C

R
N

LCA
DCA
DCRN
SOC
C−SOC

4 5 6 7 8
60

80

100

120

140

160

µ (mins)

C
V

 o
f C

lu
st

er
 S

iz
e

(%
)

LCA
DCA
DCRN
SOC
C−SOC

(d) (e) (f)

Figure 4.9: Performance of various clustering schemes vs. call duration µ: (a)
average number of common idle channels per cluster, (b) CV of the number of
common channels, (c) fraction of clusters with no common idle channels, (d) average
cluster size, (e) average number of clusters in the CRN, (f) CV of the cluster size.

clustering process. Thus, the neighborhood size is the limiting factor in cluster size.

Indeed, in Figure 4.7(b), we observe very small differences in the cluster sizes for

different γ0. The impact of γ0 becomes apparent when γ0 is large (e.g., γ0 = 7) or

when µ is large. As µ increases, fewer channels become available for CR user, and

hence, the common idle channel availability within each cluster drops. Nonetheless,

ρ remains above γ0 for all values of µ.

The threshold requirement in C-SOC has adverse impact on the cluster size

and the number of clusters. To maintain ρ above γ0, C-SOC creates smaller size

clusters, leading to a partitioning of the CRN into a large number of clusters. This is

depicted in Figure 4.8(a). In fact, for γ0 = 7, the number of clusters is almost twice

as large when µ = 8 mins compared to µ = 4 mins. This increase can be explained

in conjunction with Figure 4.8(b), which shows the PR channel occupancy as a

function of µ. We observe that for large µ, there are not enough idle channels to

118

satisfy a high γ0. This leads to the creation of many single-node clusters.

4.7.3 Comparison of SOC/C-SOC with Other Schemes

Variation in PR activity

In this set of experiments, we vary the PR activity by varying the average call

duration µ. In Figure 4.9(a), we depict ρ as a function of µ. The threshold for

C-SOC is set to γ0 = 2. We observe that SOC and C-SOC maintain a larger value

of ρ for all µ’s. This advantage is demonstrated in the CV for the number of idle

channels, and the fraction of clusters with no common channels. Figure 4.9(b)

shows this CV as a function of µ. We observe a much smaller variation in channel

availability for SOC and C-SOC compared with the other schemes. This behavior

is essential to guarantee sufficient idle channels for migration when a PR appears

on the current control channel. Hence, frequent reclustering is avoided.

When PR activity is high, clustering methods that do not take into account

channel availability create many clusters with no common idle channels. This is

illustrated in Figure 4.9(c), which shows the fraction of clusters with no common

idle channels as a function of µ. We observe that for µ = 8 mins, 35% of the clusters

created using LCA and DCA do not share any common idle channels. SOC, C-SOC,

and DCRN mitigate this problem, due to their spectrum-aware nature.

To increase ρ, SOC and C-SOC adjust the cluster size. This is verified in Figures

4.9(d) and 4.9(e), which depict the average cluster size and the number of clusters

in the CRN as a function of µ, respectively. We observe that the average cluster

size decreases with µ to compensate for the reduction in idle channel availability. In

turn, this leads to the creation of more clusters, as shown in Figure 4.9(e). Figure

4.9(f) shows the CV for the cluster size under various schemes. A higher variation

is observed for SOC, C-SOC and DCRN. This is due to the spatial adaptation of

the cluster size to PR activity. One critical observation is that C-SOC behaves like

DCA for low µ, yielding large cluster sizes and low CV values. when PR activity is

low.

119

400 500 600 700 800
0

2

4

6

8

10

Number of CRs

ρ

LCA
DCA
DCRN
SOC
C−SOC

400 500 600 700 800
40

60

80

100

120

140

160

Number of CRs

C
V

 o
f #

 C
ha

nn
el

s
pe

r
C

lu
st

er
 (

%
)

LCA
DCA
DCRN
SOC
C−SOC

400 500 600 700 800
0

0.05

0.1

0.15

0.2

Number of CRs

F
ra

ct
io

n
of

 C
lu

st
er

s

LCA
DCA
DCRN
SOC
C−SOC

(a) (b) (c)

400 500 600 700 800
0

5

10

15

Number of CRs

A
vg

. C
lu

st
er

 S
iz

e

LCA
DCA
DCRN
SOC
C−SOC

400 500 600 700 800
0

50

100

150

200

250

Number of CRs

C

lu
st

er
s

in
 th

e
C

R
N

LCA
DCA
DCRN
SOC
C−SOC

400 500 600 700 800
60

80

100

120

140

160

Number of CRs

C
V

 o
f C

lu
st

er
 S

iz
e

(%
)

LCA
DCA
DCRN
SOC
C−SOC

(d) (e) (f)

Figure 4.10: Performance of various clustering schemes vs. node density: (a) average
number of common idle channels per cluster, (b) CV of the number of common
channels, (c) fraction of clusters with no common idle channels, (d) average cluster
size, (e) average number of clusters in the CRN, (d) CV of the cluster size.

Variation in Node Density

In this set of experiments, we vary the node density by varying the number of

deployed CRs. The call arrival rate is set to λ = 1.5 calls/min per cell, with the

mean call duration fixed to 6 mins. Higher node density leads to more flexibility in

clustering, which can be potentially exploited to maintain a large number of common

idle channels per cluster. In Figure 4.10(a), we depict ρ as a function of the number

of CRs. Observe that for spectrum-aware solutions, ρ is almost insensitive to changes

in node density, while decreasing for LCA and DCA. As shown in Figure 4.10(b),

the CV for the common channels under SOC and C-SOC remains constant with

variations in node density. Moreover, Figure 4.10(c) shows that for the same PR

activity, the fraction of clusters with no common idle channels increases with the

number of deployed CRs for LCA and DCA, up to about 18%. SOC, C-SOC, and

120

4 5 6 7 8
0

0.1

0.2

0.3

0.4

µ (min)

E
(f

t
)

LCA
DCA
DCRN
SOC
C−SOC (γ

0
=1)

C−SOC (γ
0
=3)

4 5 6 7 8
0

1

2

3

4

5

6

7

µ (min)

M
ax

im
um

 O
ut

ag
e

D
ur

at
io

n
(m

in
s)

LCA
DCA
DCRN
SOC
C−SOC (γ

0
=1)

C−SOC (γ
0
=3)

4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

µ (min)

E
(f

t
)

SOC

C−SOC (γ
0
=1)

C−SOC (γ
0
=3)

(a) (b) (c)

400 500 600 700 800
0.5

0.6

0.7

0.8

0.9

1

Number of CRs

E
(f

t
)

SOC
C−SOC (γ

0
=1)

C−SOC (γ
0
=3)

4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

µ (min)

M
a
x
im

u
m

O
u
ta

g
e

D
u
ra

ti
on

(m
in

s)

SOC
C−SOC (γ

0
=1)

C−SOC (γ
0
=3)

400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

Number of CRs

M
ax

im
u
m

O
u
ta

ge
D

u
ra

ti
on

(m
in

s)

SOC
C−SOC (γ

0
=1)

C−SOC (γ
0
=3)

(d) (e) (f)

Figure 4.11: (a) Fraction of time that at least one cluster exists without a common
idle channel as a function of µ, (b) maximum duration of the control channel outage
as a function of µ, (c) E(ft) as a function of µ, (d) E(ft) as a function of the number
of CRs, (e) maximum outage duration for inter-cluster communication as a function
of µ, and (f) maximum outage duration for inter-cluster communication as a function
of the number of CRs.

DCRN do not produce any cluster with no common idle channels.

In Figures 4.10(d),(e),(f), we respectively show the average cluster size, the num-

ber of clusters in the CRN, and the CV for the cluster size, all as functions of the

number of deployed CRs. Under SOC and C-SOC, the number of clusters increases

almost linearly with the number of deployed CRs, in order to maintain a stable

value of ρ. Moreover, our algorithms exhibit a larger variability in cluster size, as

they adapt to variations in spectrum opportunities.

Frequency of Reclustering

In this set of experiments, we investigate the rate of reclustering due to PR activ-

ity. We first partition the CRN into clusters based on a snapshot of the channel

121

availability. We then fix λ to 1.5 calls/min and vary the value of µ.

In Figure 4.11(a), we show the average fraction of time E(ft) where at least one

cluster with no common idle channels exists. We observe that as the PR activity

increases, several clusters created based on a snapshot of PR activity stay without a

control channel. SOC and C-SOC provide the best performance out of all clustering

algorithms. Even when µ = 8 mins, every cluster created using SOC has at least one

common idle channel 86% of the time, in contrast to a 63% for LCA and DCA, and

75% for DCRN. C-SOC with γ0 = 1 behaves almost as DCRN since only one idle

channel is required per cluster. C-SOC yields a significant improvement for γ0 = 3,

for which 83% of the time clusters have at least one common idle channel.

Reclustering is greatly impacted by the outage duration of the control channel,

defined as the period of time that cluster stays without a common idle channel. Fig-

ure 4.11(b) shows the maximum outage duration as a function of µ. We observe that

SOC and C-SOC have much shorter outage durations compared with other schemes,

thus avoiding reclustering. Note that for µ = 8 almost all channels within each cell

are occupied by the PR, as shown in Figure 4.7(d). Hence, the outage is mainly

caused by the lack of available channels, rather than poor clustering decisions.

4.7.4 Periodic Control-Channel Rotation

In this set of experiments, we evaluate the periodic control-channel rotation mech-

anism which is employed for inter-cluster communications. In Figure 4.11(c), we

show the average fraction of time E(ft) that a cluster is reachable by CRs in ad-

jacent clusters, as a function of µ when λ = 2 calls/min. We observe that when

the PR activity is low (small values of µ), our rotation mechanism can maintain

inter-cluster communication more than 90% of the time. This is because under low

PR activity, the majority of the channels used for channel rotation within a cluster

are also idle in adjacent clusters. On the other hand, under high PR activity (large

values of µ), the heterogeneity between the sets of idle channels of neighboring CRs

increases. To adjust to this change, SOC creates clusters of smaller size in order

to maintain a larger set of common idle channels within each cluster. In this case,

122

the overlap between the set of common idle channels of a cluster and the set of

idle channels of CRs in adjacent clusters tends to be smaller. Nevertheless, over

78% of the time, inter-cluster communication is still feasible. Note that when µ is

large, there are periods of time where inter-cluster communication is not possible

simply because all available channels are occupied by PRs. For such periods of high

activity, inter-cluster communication is limited by the opportunistic nature of the

CRNs and is not related to the channel rotation mechanism.

From Figure 4.11(c), we also observe that C-SOC with γ0 = 1 yields a higher

value of E(ft) compared to the case of γ0 = 3 and to SOC. This difference can be

explained as follows. For small values of γ0, the network partitioning is primarily

decided by its physical topology. To maximize the cluster size, C-SOC produces

clusters with a small number of common idle channels. These channels are, therefore,

likely to be seen idle by a large number of CRs, including CRs in adjacent clusters.

Restricting channel rotation to those widely available channels increases the fraction

of time that inter-cluster communication is possible. On the other hand, in SOC, it

is more likely that during channel rotation, a channel is common among the cluster

members but is not available to CRs in adjacent clusters (this is the reason why these

members were excluded from that cluster in the first place). In Figure 4.11(d), we

show E(ft) as a function of the number of CRs in the network We observe that E(ft)

almost remains constant with the increase of the number of CRs. This is due to

the fact that the spatial variation in PR activity is not affected by the number of

deployed CRs.

Figures 4.11(e) and 4.11(f) show the maximum outage duration in inter-cluster

communications, measured as the maximum time (in minutes) that any two adjacent

clusters are unable to communicate during the course of the simulation. Outages

in inter-cluster communications can occur when: (a) a cluster is left without any

common idle channels due to PR activity, or (b) the set of common idle channels

used for channel rotation does not overlap with the sets of idle channels for CRs

in an adjacent cluster. In our simulations, we only measured outages due to sce-

nario (b), since outages due to (a) are already evaluated in Section 4.7.3. From

123

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

P
edge

M
ax

im
um

 N
um

be
r

of
 E

dg
es

Optimal (5x5)
Algorithm 1 (5x5)
Optimal (10x10)
Algorithm 1 (10x10)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

P
edge

M
ax

im
um

 C
lu

st
er

 S
iz

e
(5

x5
)

Optimal (γ
0
=2)

Algorithm 2 (γ
0
=2)

Optimal (γ
0
=3)

Algorithm 2 (γ
0
=3)

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

P
edge

M
ax

im
um

 C
lu

st
er

 S
iz

e
(1

0x
10

)

Optimal (γ
0
=2)

Algorithm 2 (γ
0
=2)

Optimal (γ
0
=3)

Algorithm 2 (γ
0
=3)

(a) (b) (c)

Figure 4.12: Comparison of Algorithms 6 and 7 with the optimal solution as a
function of the probability of edge existence Pedge: (a) Algorithm 6 for 5 × 5 and
10×10 bipartite graphs, (b) Algorithm 7 for 5×5 bipartite graphs and for γ0 = 2, 3,
(c) Algorithm 7 for 10× 10 bipartite graphs and for γ0 = 2, 3.

Figure 4.11(e), we observe that the maximum outage time is limited to small val-

ues (<1.5 minutes) even when µ = 8 min. Moreover, Figure 4.11(f) illustrates a

slightly increasing maximum outage time when the CR density is increased. This is

because the probability of finding a CR that does not share common channels with

an adjacent cluster increases with the increase of the number of border nodes.

4.7.5 Performance of Algorithms 6 and 7

In this section, we evaluate the performance of our greedy heuristics. Because

the problems of finding the maximum edge biclique and the maximum one-sided

node cardinality are NP-complete, we obtain optimal solutions via exhaustive search

for small bipartite graphs. We randomly generate bipartite graphs of sizes 5 × 5

and 10×10. In each bipartite graph, an edge between a pair of vertices exists

independently with probability Pedge, which is varied from 0.2 to 0.8. Though our

experiments are limited in the size of the bicliques, they are are nonetheless useful for

typical neighborhood sizes and number of channels. In Figure 4.12(a), we show the

number of edges in bicliques obtained by Algorithm 6 when performing an exhaustive

search, averaged over 50 bipartite graphs, as a function of Pedge. We observe that

for the considered bipartite graphs, our greedy heuristic is near-optimal. In Figure

4.12(b),(c) we show the cluster size obtained by Algorithm 7 and through exhaustive

124

0 2 4 6 8 10
0

10

20

30

40

50

Number of contending neighbors (N)

N
um

be
r

of
 m

in
i−

sl
ot

s
(K

)

P

K
=0.90, P

access=1/N

P
K
=0.95, P

access=1/N

P
K
=0.99, P

access=1/N

2 4 6 8 10
0

2

4

6

8

10

12

Number of contending neighbors (N)A
ve

ra
ge

 n
um

be
r

of
 s

uc
ce

ss
fu

l b
ro

ad
ca

st
s

|C

i
|=1

|C
i
|=3

|C
i
|=5

3 4 5 6 7
0

50

100

150

200

250

Number of Channels

B
E
D

(s
lo

ts
)

M−QCH, P
access

=0.1

M−QCH, P
access

=0.2

M−QCH, P
access

=0.3

Our Scheme, P
access

=0.1

(a) (b) (c)

Figure 4.13: (a) Number of mini-slots versus N for a given PK with Paccess = 1/N ,
(b) expected number of successful broadcasts after M time slots versus N (K = 10),
(c) the BED as a function of the number of available channels under a dynamic
spectrum scenario with λ = 2 calls/min and µ = 0.5 mins.

search, averaged over 50 bipartite graphs, as a function of Pedge, and for threshold

values γ0 = 2, 3. Once again, our greedy heuristic is near-optimal.

4.7.6 Evaluation of The Coordination Protocol

Analytical evaluation

We first compute the number of mini-slots needed, so that on average, every con-

tending CR is able to perform one successful broadcast per time slot. Let N be

the number of contending neighbors and let K be the number of mini-slots per

time slot. Without loss of generality, we take N < K. Let Pmini denote the prob-

ability of a successful transmission in a given mini-slot. Because each contend-

ing node independently accesses a mini-slot with probability Paccess, Pmini =
(
N
1

)
Paccess (1− Paccess)

N−1. Simple calculations show that Pmini is maximized when

Paccess = 1/N , i.e., when on average, exactly one CR attempts a transmission in a

mini-slot. The probability of at least N successes in K mini-slots is:

PK =
K∑

i=N

(
K

i

)
P i
mini(1− Pmini)

K−i. (4.3)

One possible way to select K is to impose a lower bound on PK . In Figure

4.13(a), we plot K as a function of N for different values of PK , with Paccess set

to 1/N . We observe that the minimum number of mini-slots that is necessary to

125

guarantee a certain PK increases approximately linearly with N . Approximately 15

mini-slots are enough when N = 5 with PK = 0.9, while 35 mini-slots are needed

when N = 10.

The neighbor discovery phase ends after M time slots, at which point al-

l possible channels will have been scanned. The number of successful broadcast-

s for a single node CRi in M time slots is binomially distributed with mean of

K|Ci|Paccess (1− Paccess)
N−1 .

Figure 4.13(b) shows this mean for different |Ci|, when K = 10. When CRi has

more than three available channels, it can make at least one successful broadcast

even if there are nine other contending CRs. When on average only one channel is

available, CRi can still broadcast successfully if less than four CRs are contending.

In this case, a large value of K is required.

Although in general channel availability is not expected to change during the

neighbor discovery phase, a CR may still detect new PR activity on channel j

during time slot t. In this case, the CR vacates this channel, updates its channel

list, and uses other idle channels to continue exchanging channel information. After

one-hop neighbors are discovered, CRs use the time schedules of their neighbors to

coordinate the clustering and CCA process.

Comparison to the QCH system

Similar to our scheme, the QCH system proposed in [11] can be used for the coor-

dination of CRs in the absence of a control channel. To compare the performance

between the two schemes, we have measured the number of slots needed until every

node within the same collision domain communicates one message to all its neigh-

bors (our control channel assignment scheme requires that all neighbors exchange

their set of idle channels during the coordination phase). We refer to this delay as

the broadcast exchange delay (BED).

To provide a fair comparison with the QCH scheme, we have considered the

quorum-based design that is most suitable for broadcast communications. According

to [11], the channel access delay is minimized when the channel hopping system is

126

constructed based on a majority cyclic quorum. Therefore, the authors suggest

using the M-QCH system for the implementation of broadcast control channels. M-

QCH has a minimum frame length equal to three and is k = 3 and is constructed

over U = Z3. We have selected the quorum system for constructing the hopping

sequences as S = {{0, 1}, {0, 2}, {1, 2}} for our simulations. In this setup, each node

is randomly assigned a quorum from S in order to construct its hopping sequence.

To compare the performance of the two schemes under a dynamic spectrum sce-

nario, we considered a PR network in which calls arrive at each channel according to

a Poisson process of rate λ = 2 calls/min. We assumed an exponentially distributed

call holding time with parameter µ = 0.5 mins. Figure 4.13(c) shows the BED as a

function of the number of available channels. We observe that our scheme is more

efficient than the M-QCH scheme (M-QCH needs around 30% more time-slots to

finish broadcast when the number of available channels is large). This difference in

performance is attributed to the fact that in our scheme, CRs converge on the same

channel in every time slot, thus facilitating the broadcast operation. In contrast, in

M-QCH only a subset of nodes converge to the same channel at any time slot.

4.8 Conclusions

We addressed the problem of CCA in CRNs. We adopted a dynamic allocation

policy in which the control channel is dynamically assigned according to PR activity.

We mapped the clustering problem into instances of a bipartite graph problem, and

showed that this mapping allows for a graceful tradeoff between the cluster size

and the set of common channels in each cluster. In particular, we mapped the

clustering process to the maximum edge biclique problem, and the maximum one-

sided edge cardinality problem. Since both problems are known to be NP-complete,

we proposed two greedy heuristics for finding bicliques that satisfy our requirements.

We proposed two distributed clustering algorithms called SOC and C-SOC that

takes into account the channel availability in deciding cluster memberships. We

further proposed a control channel rotation mechanism that enables control channel

127

migration in case of PR activity, inter-cluster communication, and adaptation to

the temporal variations of spectrum availability.

128

CHAPTER 5

Related Work

5.1 Jamming Attack in Wireless Networks

Jamming in wireless networks has been extensively studied. Most prior research

assumes that the jammer is an external entity, oblivious to the protocol specifics

and cryptographic secrets [73]. Recently, several works have considered the problem

of jamming by an internal adversary, who exploits knowledge of network protocols

and secrets to launch DoS attacks on layers above the physical layer [17, 55, 66, 67,

78,80,81]. In this section, we classify related work based on the adversarial model.

Jamming Under an Internal Threat Model– Chan et al. considered the

problem of control-channel jamming in the context of GMS networks [17]. They

proposed the replication of control information over multiple channels according to

a binary encoding based key (BBK) assignment. Assuming an adversary who is

capable of jamming only one channel per time slot, the authors derived necessary

conditions to guarantee control channel access to all users within several slots. They

also showed that the BBK assignment leads to the identification of a certain number

of compromised nodes.

Tague et al. proposed a cryptographic key-based mechanism for hiding the

control-channel slots [81]. Nodes can only discover a subset of these locations with

some probability. Their method allows for graceful degradation in the control-

channel secrecy as a function of the number of compromised nodes, as opposed to

the threshold approach in [17]. Further, they proposed an algorithm called GUIDE

for identifying compromised nodes based on the set of jammed control channels.

They formulated the identification problem as a maximum likelihood estimation

problem [81]. All methods in [17, 80, 81] consider a server-client model, where base

stations are assumed to be secure.

129

Chiang et al. proposed an anti-jamming scheme for broadcast communications

in DS- and FH-CDMA systems [21]. Their method organizes broadcast PN codes

into a binary key tree. Each node on the tree corresponds to a unique PN code,

known only to a subset of users. Every message is spread by multiple PN codes

such that all users can decode using exactly one code. Identification of compromised

nodes is achieved by relating the PN code adopted by the jammer to those known

to each user. Desmedt et al. proposed an anti-jamming scheme that protects SS

based broadcast communication [26]. With a known number of malicious insiders,

they design the distribution of frequency allocation to prevent legitimate nodes from

being jammed.

Several schemes eliminate the need for secret PN codes [8, 55, 66, 78]. Baird

et al. proposed the BBC algorithm, which can recover jammed messages under

some special conditions. can insert arbitrary messages into the broadcast channel

but cannot erase any of the original messages. Pöpper et al. proposed a solution

called Uncoordinated DSSS (UDSSS) [66]. In their scheme, broadcast transmissions

are spread according to a PN code that is randomly selected from a public set

of codes. At the receiving end, nodes have to record transmitted messages and

attempt to decode them by exhaustively applying every PN code in the public

codebook. Because the selected PN code is not known a priori to any receiver, the

jammer has to guess the PN code, thus significantly complicating the jamming task.

However, message transmissions have to be repeated several times to allow receivers

to synchronize with the transmitter. Strasser et al. proposed an uncoordinated

frequency hopping (UFH) scheme for establishing shared secret keys between devices

that do not share any prior secrets, in the presence of a jammer [78]. In UHF, the

transmitter and receiver hop between channels at random. After some number of

hops, they are able to exchange a common pairwise key and independently derive a

pairwise shared PN code. An improvement in communication latency and jamming

resistance of the original UHF scheme was presented in [77], by combining coding

techniques with hashing. Slater et al. improved the communication efficiency of

UFH by using Merkle trees, distillation codes, and erasure coding [75].

130

Liu et al. proposed RD-DSSS, a randomized differential DSSS scheme that

enables jamming-resistant broadcast using only publicly known PN codes [55]. In

RD-DSSS, a “0” bit is encoded using two randomly selected PN codes with low

correlation, while a “1” bit is encoded using two PN codes with high correlation. The

selected PN codes are appended at the end of each message, thus slightly decreasing

the communication efficiency compared with the original DSSS. Recovery of the

PN codes that were selected by the sender is achieved only after the transmitted

message is received.

Several methods attempt to identify the compromised nodes that leaked infor-

mation to the jammer. Lazos et al. proposed the assignment of unique frequency

hopping sequences to each receiver, overlapping in a fixed subset of hops [48]. Using

the uniqueness of the assigned sequences, compromised nodes whose sequences are

used for jamming are identified. Tague et al. proposed the GUIDE scheme for iden-

tifying compromised nodes based on the set of control channels that are jammed.

They formulated the identification problem as a maximum likelihood estimation

problem [81]. Chiang and Yih-Chun Hu, developed a code-tree based approach for

identifying compromised PN codes [22].

Jamming Under an External Threat Model– Under an external threat

model, jamming is often mitigated by employing SS techniques [73, 74]. In these

techniques, the transmitted narrowband signal is spread over a larger bandwidth

according to a secret PN code. Anti-jamming properties are achieved because more

energy is required to cause interference in a larger bandwidth. The typical processing

gain in SS communications is in the range of 20 to 30 dB [73,74].

Xu et al. studied the problem of jamming in systems where spreading is not

possible (or effective) [89, 91, 92]. They studied the problem of detecting physical-

layer and MAC-layer DoS attacks based on jamming [92]. They proposed a slow

frequency hopping method to avoid jamming, but assumed that hopping sequences

remain secret. For mobile networks, they proposed the use of spatial retreats to

avoid communication within the jammed area. Formal measures for detecting jam-

ming attacks were introduced in [91]. Xu et al. also proposed the establishment of

131

a timing-based low bitrate covert channel to notify nodes outside the jamming area

about the presence of a jammer [89]. This channel maps the inter-arrival times of

corrupted packets into bits. Cagalj et al. proposed wormhole-based anti-jamming

techniques for sensor networks [16]. Using a wormhole link, sensors within a jammed

region establish communications outside this region, and notify them regarding on-

going jamming attacks.

Jamming Beyond the PHY Layer– The use of jamming as a vehicle for

launching DoS attacks against higher-layer functionalities was studied in [14,16,45,

50, 51, 53, 56, 67]. Brown et al. demonstrated that a jammer can exploit implicit

packet identifiers such as packet size, timing, and sequence number at the transport

or network layer to classify transmitted packets and launch selective jamming attacks

[14]. Proaño and Lazos showed the feasibility of selective jamming by performing

real-time packet classification. Liu et al. proposed a layered architecture called

SPREAD to mitigate the impact of smart jammers that target multiple layers of

the network stack [53]. SPREAD randomizes protocols at each layer, thus increasing

the adversary’s uncertainty with respect to the protocol execution. Finally, Li. et al.

provided a game theoretic approach to optimal jamming and anti-jamming strategies

at the MAC layer [50].

5.2 Control Channel Assignment

Previously proposed CCA schemes for CRNs can be classified into: (a) static assign-

ment of a dedicated frequency band common to all CRs, and (b) dynamic assignment

based on criteria such as spatial correlation, spectrum usage, connectivity degree,

etc. We describe both categories in detail.

Static Control Channel Assignment Schemes–Several researchers have

proposed the exchange of control information on an always available static frequency

band, known to all nodes (e.g., [13,15,36,70]). Čabrić et al. proposed the CORVUS

system, in which control traffic is transmitted using UWB technology [15]. Brown

proposed the use of ISM bands for control in CRNs [13]. Han et al. proposed an

132

OFDM-based scheme to allow for long-range transmission of control messages with

small bit error rates [36]. Several MAC protocol designs for CRNs assume the exis-

tence of a dedicated control channel, without specifying its allocation (e.g. [39,70]).

Dynamic Control Channel Assignment Schemes–Zhao et al. proposed dis-

tributed coordination of CRs via a locally computed control channel that changes

in response to PR activity [94]. The band available to the largest set of one-hop

neighbors is selected for control in each neighborhood, implementing a partition of

the CRN into clusters. This approach minimizes the number of distinct frequency

bands needed for control, thus reducing the overhead of cluster management. How-

ever, this can lead to frequent reclustering due to variations in PR activity. Another

cluster-based design was adopted in [20].

Chen et al. proposed a swarm-intelligence-based algorithm for adapting the con-

trol channel based on individual interference measurements [19]. Neighboring CRs

engage in a negotiation process to decide on a control channel. This negotiation

is carried out in licensed bands without consideration for PRs. Kondareddy and

Agrawal proposed dynamic hopping of the control channel based on pseudo-random

sequences [43]. Transmitter/receiver pairs randomly meet in different bands and de-

cide on a common hopping sequence, called the rendezvous channel, until their data

exchange is completed. One limitation of this design is that hopping coordination

occurs over licensed channels without considering possible interference to PRs.

Bahl et al. proposed WhiteFi, a system that provides Wi-Fi like connectivity

over the UHF white spaces [7]. WhiteFi incorporates dynamic channel assignmen-

t algorithms for detecting and managing spectrum opportunities. Similar to our

scheme, WhiteFi handles control traffic in-band, using one main and one backup

control channel. The locations of the main and backup channels vary according to

the dynamics of the spectrum. The main differences between how WhiteFi handles

the CCA problem and our work are that: (a) WhiteFi is designed for an access

point-client architecture, where a large set of clients is connected to a single access

point. We consider an ad hoc network model where the control channel has to be

maintained over multiple hops; (b) WhiteFi maintains only one backup channel for

133

broadcasting control information. SOC organizes the CRN to clusters where several

common idle channels are available for carrying control traffic and therefore, is more

resilient to temporal variations of the spectrum.

134

CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have studied how to design jamming-resistent mechanisms

under node compromise attack. In particular, we have focused on mechanisms

for control-channel jamming attack, and control channel assignment problem in

cognitive radio networks. Our main achievements and findings are summarized as

follows.

First, we have studied the problem of jamming attacks in wireless network, and

various attacks existing in each layer of a OSI model. For control-channel jamming

attack, we proposed a randomized distributed scheme for maintaining and establish-

ing the control channel using frequency hopping. Our method differs from classical

frequency hopping in that the communicating nodes are not synchronized to the

same hopping sequence. Instead, each node follows a unique hopping sequence. We

further proposed a mechanism for adjusting hopping sequences to dynamic spectrum

conditions without incurring any extra overhead. Our scheme can identify compro-

mised nodes through their unique sequences and exclude them from the network.

We evaluated the performance of our scheme both in static- and dynamic-spectrum

networks, based on the metrics of evasion entropy, evasion delay, and evasion ratio.

We further evaluated the Hamming distance between the jamming sequence and

those assigned to compromised and uncompromised nodes. Our proposed scheme

can be utilized as a temporary solution for re-establishing the control channel until

the jammer and the compromised nodes are removed from the network.

Second, We have proposed TDBS, a scheme for jamming-resistant broadcast

communications in the presence of inside jammers. In TDBS, broadcast is realized

as a series of unicast transmissions distributed in frequency and time. Because

135

the adversary is limited in the number of channels he can jam, several unicast

transmissions remain interference-free. We mapped the problem of constructing

hopping sequences for TDBS to the problem of 1-factorization of complete graphs.

We analytically evaluated the security properties of TDBS under an external and an

internal threat model and showed that TDBS maintains broadcast communications

even when multiple nodes are compromised. We verified our theoretical analysis

using extensive simulations.

Third, we addressed the problem of CCA in CRNs. We adopted a dynamic

allocation policy in which the control channel is dynamically assigned according

to PR activity. We mapped the clustering problem into instances of a bipartite

graph problem, and showed that this mapping allows for a graceful tradeoff be-

tween the cluster size and the set of common channels in each cluster. In particular,

we mapped the clustering process to the maximum edge biclique problem, and the

maximum one-sided edge cardinality problem. Since both problems are known to

be NP-complete, we proposed two greedy heuristics for finding bicliques that satisfy

our requirements. We proposed two distributed clustering algorithms called SOC

and C-SOC that takes into account the channel availability in deciding cluster mem-

berships. We further proposed a control channel rotation mechanism that enables

control channel migration in case of PR activity, inter-cluster communication, and

adaptation to the temporal variations of spectrum availability.

Lastly, we present related works to address jamming attacks in wireless network

both under external treat model and internal threat model. Also works on CCA

(control channel assignment) in static spectrum network and dynamic spectrum

network are discussed respectively.

6.1.1 Future Work

136

REFERENCES

[1] N. Abramson. The aloha system: another alternative for computer communi-
cations. In Proc. of AFIPS, volume 70, pages 281–285, November 1970.

[2] D. Adamy. EW 101: A first course in electronic warfare. Artech House Pub-
lishers, 2001.

[3] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty. Next generation dynamic spec-
trum access cognitive radio wireless networks: A survey. Computer Networks,
50(13):2127–2159, 2006.

[4] M. Al-Shurman, S.-M. Yoo, and S. Park. Black hole attack in mobile ad hoc
networks. In Proc. of the 42nd annual Southeast regional conference, pages 96
– 97, 2004.

[5] K. Appel and W. Haken. Every planar map is four colorable: part i. Illinois
journal of Mathematics, 21(3):491–567, 1977.

[6] P. Bahl, R. Chandra, and J. Dunagan. SSCH: Slotted seeded channel hopping
for capacity improvement in IEEE 802.11 ad-hoc wireless networks. In Proc.
of (MobiCom), pages 216–230, 2004.

[7] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh. White space
networking with Wi-Fi like connectivity. In Proc. of the ACM SIGCOMM 2009
Conference, pages 27–38, 2009.

[8] L. C. Baird, W. L. Bahn, M. D. Collins, M. C. Carlisle, and S. C. Butler. Keyless
jam resistance. In Proceedings of the 2007 IEEE Workshop on Information
Assurance United States Military Academy, 2007.

[9] D. Baker, A. Ephremides, and J. Flynn. The design and simulation of a mobile
radio network with distributed control. IEEE Journal on Selected Areas in
Communications, 2(1):226–237, 1984.

[10] S. Basagni. Distributed clustering for ad hoc networks. In Proc. of I-SPAN,
pages 310–315, June 1999.

[11] K. Bian, J. Park, and R. Chen. A quorum-based framework for establishing
control channels in dynamic spectrum access networks. In Proc. of MobiCom,
pages 25–36, 2009.

137

[12] K. Bicakci and B. Tavli. Denial-of-service attacks and countermeasures in
ieee 802.11 wireless networks. Journal Computer Standards and Interfaces,
31(5):931–941, 2009.

[13] T. Brown. An analysis of unlicensed device operation in licensed broadcast
service bands. In Proc. of DySPAN, pages 11–29, Nov 2005.

[14] T. X. Brown, J. E. James, and A. Sethi. Jamming and sensing of encrypted
wireless ad hoc networks. In Proceedings of the ACM MobiHoc, pages 120–130,
2006.

[15] D. Čabrić, S. Mishra, D. Willkomm, R. Brodersen, and A. Wolisz. A cognitive
radio approach for usage of virtual unlicensed spectrum. Proc. of the 14th IST
Mobile and Wireless Communications Summit, 2005.

[16] M. Cagalj, S. Capkun, and J.-P. Hubaux. Wormhole-based anti-jamming tech-
niques in sensor networks. IEEE Transactions on Mobile Computing, 6(1):100–
114, 2007.

[17] A. Chan, X. Liu, G. Noubir, and B. Thapa. Control channel jamming: resilience
and identification of traitors. In Proceedings of ISIT, 2007.

[18] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar. Throughput and fairness guar-
antees through maximal scheduling in wireless networks. IEEE Transactions
on Information Theory, 54(2):572–594, 2008.

[19] T. Chen, H. Zhang, M. Katz, and Z. Zhou. Swarm intelligence based dynamic
control channel assignment in CogMesh. In Proc. of ICC, pages 123–128, 2008.

[20] T. Chen, H. Zhang, G. Maggio, and I. Chlamtac. CogMesh: A cluster-based
cognitive radio network. In Proc. of DySPAN, pages 168–178, 2007.

[21] J. T. Chiang and Y.-C. Hu. Cross-layer jamming detection and mitigation in
wireless broadcast networks. In Proceedings of the MobiCom, pages 346–349,
2007.

[22] J. T. Chiang and Y.-C. Hu. Dynamic jamming mitigation for wireless broadcast
networks. In Proc. of INFOCOM, pages 1211–1219, 2008.

[23] M. Dawande, P. Keskinocak, J. Swaminathan, and S. Tayur. On bipartite and
multipartite clique problems. Journal of Algorithms, 41(2):388–403, 2001.

[24] M. Dawande, P. Keskinocak, and S. Tayur. On the biclique problem in bipar-
tite graphs. Technical report, GSIA Working Paper, 1996-04. Carnegie Mellon
University, 1996.

138

[25] J. Deng, R. Han, and S. Mishra. Intrusion tolerance and anti-traffic analysis
strategies for wireless sensor networks. In Proc. of IEEE CS Press Internal
Conf. Dependable Systems and Networks, pages 637 – 656, 2004.

[26] Y. Desmedt, R. Safavi-Naini, H. Wang, C. Charnes, and J. Pieprzyk. Broad-
cast anti-jamming systems. In Proc. of the IEEE International Conference on
Networks (ICON), pages 349 – 355, 1999.

[27] J. H. Dinitz and D. R. Stinson. A hill-climbing algorithm for the construction
of one-factorizations and room squares. SIAM J. Algebraic Discrete Methods,
8(3):430–438, 1987.

[28] FCC. Spectrum Policy Task Force Report, 2002.

[29] FCC. OET Bulletin No.69–Longley-Rice Methodology for evaluating TV Cov-
erage and Interference. Federal Communications Commission, 2004.

[30] S. Feng, H. Zheng, H. Wang, J. Liu, and P. Zhang. Preamble design for non-
contiguous spectrum usage in cognitive radio networks. In Proc. of WCNC,
2009.

[31] I. . W. G. for WLAN. IEEE 802.15 for wireless local area networks (WLANs).
http://www.ieee802.org/11/.

[32] I. . W. G. for WPAN. IEEE 802.15 for wireless personal area networks (W-
PANs). http://www.ieee802.org/15/.

[33] G. Ganesan and Y. Li. Cooperative spectrum sensing in cognitive radio net-
works. In Proc. of the DySpan, pages 137–143, 2005.

[34] A. Ghasemi and E. Sousa. Collaborative spectrum sensing for opportunistic ac-
cess in fading environments. In Proc. of the DySpan, pages 131–136, November
2005.

[35] A. Gupta, X. Lin, and R. Srikant. Low-complexity distributed scheduling algo-
rithms for wireless networks. IEEE/ACM Transactions on Networking (TON),
17(6):1846–1859, 2009.

[36] C. Han, J. Wang, Y. Yang, and S. Li. Addressing the control channel design
problem: OFDM-based transform domain communication system in cognitive
radio. Computer Networks Journal, 52(4):795–815, 2007.

[37] Y. C. Hu, D. Johnson, and A. Perrig. Sead: Secure efficient distance vector
routing for mobile wireless ad hoc networks. In Proc. of WMCSA, 2002.

139

[38] H. Ishii and H. Kakugawa. A self-stabilizing algorithm for finding cliques in dis-
tributed systems. In Proc. of the 21st IEEE Symposium on Reliable Distributed
Systems (SRDS’02), pages 390–395, 2002.

[39] J. Jia, Q. Zhang, and X. Shen. HC-MAC: a hardware-constrained cognitive
MAC for efficient spectrum management. IEEE Journal on Selected Areas in
Communications, 26(1):106–117, 2008.

[40] D. Johnson, D. Maltz, and J. Broch. The dynamic source routing protocol
for multihop wireless ad hoc networks. Ad Hoc Networking (Addison-Wesley,
2001), pages 139–172, 2001.

[41] H. K. Kalita and A. Kar. Wireless sensor network security analysis. Interna-
tional Journal of Next-Generation Networks (IJNGN), 1(1):1–10, 2009.

[42] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks
and countermeasures. Elsevier’s Ad Hoc Networks Journal, Special Issue on
Sensor Network Applications and Protocols, 1(2):293–315, 2003.

[43] P. Kondareddy, Y.R. Agrawal. Synchronized MAC protocol for multi-hop
cognitive radio networks. In Proc. of ICC, pages 3198–3202, 2008.

[44] M. Krondorf, T. Liang, and G. Fettweis. On synchronization of opportunistic
radio OFDM systems. In Proc. of the IEEE Vehicular Technology Conference
(VTC’08), pages 1686–1690, 2008.

[45] Y. W. Law, L. V. Hoesel, J. Doumen, P. Hartel, and P. Havinga. Energy
efficient link-layer jamming attacks against wireless sensor network MAC pro-
tocols. In Proceedings of the 3rd ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN), 2005.

[46] L. Lazos and M. Krunz. Selective jamming/dropping insider attacks in wireless
mesh networks. IEEE Network, 25(1):31–34, 2011.

[47] L. Lazos, S. Liu, and M. Krunz. Mitigating control-channel jamming attacks
in multi-channel ad hoc networks. In Proceedings of the 2nd ACM Conference
on Wireless Network Security (WiSec), pages 169–180, 2009.

[48] L. Lazos, S. Liu, and M. Krunz. Mitigating control-channel jamming attacks
in multi-channel ad hoc networks. In Proc. of WiSec, pages 169–180, 2009.

[49] L. Lazos, S. Liu, and M. Krunz. Spectrum opportunity-based control channel
assignment in cognitive radio networks. In Proceedings of SECON, pages 135–
143, 2009.

140

[50] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jamming attacks and
network defense policies in wireless sensor networks. In Proceedings of the
INFOCOM, 2007.

[51] G. Lin and G. Noubir. On link-layer denial of service in data wireless LANs.
Journal on Wireless Communications and Mobile Computing, 2004.

[52] A. Liu, P. Ning, H. Dai, Y. Liu, and C. Wang. Defending DSSS-based broadcast
communication against insider jammers via delayed seed-disclosure. In Proc.
of the Annual Computer Security Applications Conference (ACSAC’10), 2010.

[53] X. Liu, G. Noubir, R. Sundaram, and S. Tan. SPREAD: Foiling smart jammers
using multi-layer agility. In Proceedings of the INFOCOM Mini Symposium,
2007.

[54] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized differential DSSS: Jamming-
resistant wireless broadcast communication. In Proc. of INFOCOM, 2010.

[55] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized differential DSSS: Jamming-
resistant wireless broadcast communication. In Proceedings of the INFOCOM,
2010.

[56] J. M. McCune, E. Shi, A. Perrig, and M. K. Reiter. Detection of denial of
message attacks on sensor network broadcasts. In Proceedings of the IEEE
Symposium on Security and Privacy, 2005.

[57] E. Mendelsohn and A. Rosa. One-factorizations of the complete graph-a survey.
Journal of Graph Theory, 9(1):43–65, 1985.

[58] S. Mishra, A. Sahai, and R. Brodersen. Cooperative sensing among cognitive
radios. In Proc. of ICC, June 2006.

[59] G. Noubir and G. Lin. Low-power DoS attacks in data wireless LANs and
countermeasures. ACM SIGMOBILE Mobile Computing and Communications
Review, 7(3):29–30, 2003.

[60] G. Noubir and G. Lin. Low power DoS attacks in data wireless LANs and
countermeasures. In Proceedings of the ACM MobiCom, 2003.

[61] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete
Applied Mathematics Journal, 131(3):651–654, 2003.

[62] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector routing. In
Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 90 – 100, 1999.

141

[63] R. Poisel. Modern communications jamming principles and techniques. Artech
House on Demand, 2004.

[64] R. Poovendran and L. Lazos. A graph theoretic framework for preventing
the wormhole attack in wireless ad hoc networks. ACM/Springer Journal on
Wireless Networks (WINET), 13(1):27–59, 2007.

[65] C. Popper, M. Strasser, and S. Capkun. Jamming-resistant broadcast commu-
nication without shared keys. In Proc. of the USENIX Security Symposium,
2009.

[66] C. Popper, M. Strasser, and S. Čapkun. Anti-jamming broadcast commu-
nication using uncoordinated spread spectrum techniques. IEEE Journal on
Selected Areas in Communication, 28(5):703–715, 2010.

[67] A. Proaño and L. Lazos. Selective jamming attacks in wireless networks. In
Proceedings of ICC, 2010.

[68] D. R. Raymond and S. F. Midkiff. Denial-of-service in wireless sensor networks:
Attacks and defenses. IEEE Pervasive Computing, 7(1):74–81, 2008.

[69] N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four colour theo-
rem. Journal of Combinatorial Theory, Series B, 70(1):2–44, 1997.

[70] H. A. B. Salameh, M. M. Krunz, and O. Younis. MAC protocol for opportunistic
cognitive radio networks with soft guarantees. IEEE Transactions on Mobile
Computing, 8(10):1339–1352, 2009.

[71] S. Sarkar and L. Tassiulas. End-to-end bandwidth guarantees through fair local
spectrum share in wireless ad-hoc networks. IEEE Transactions on Automatic
Control, 50(9):1246–1259, 2005.

[72] G. Sharma, C. Joo, and N. Shroff. Distributed scheduling schemes for through-
put guarantees in wireless networks. In Proc. of the 44th Annual Allerton
Conference on Communications, Control, and Computing, 2006.

[73] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt. Spread Spectrum
Communications Handbook. McGraw-Hill, 2001.

[74] B. Sklar. Digital Communications, Fundamentals and Applications. Prentice-
Hall, 2001.

[75] D. Slater, P. Tague, R. Poovendran, and B. Matt. A coding-theoretic approach
for efficient message verification over unsecure channels. In Proceedings of the
ACM Conference on Wireless Security (WiSec), 2009.

142

[76] J. So and N. H. Vaidya. Multi-channel MAC for ad hoc networks: Handling
multi-channel hidden terminals using a single transceiver. In Proceedings of the
ACM MobiHoc, pages 222–233, 2004.

[77] M. Strasser, C. Popper, and S. Capkun. Efficient uncoordinated FHSS anti-
jamming communication. In Proceedings of the ACM MobiHoc, 2009.

[78] M. Strasser, C. Popper, S. Capkun, and M. Cagalj. Jamming-resistant key
establishment using uncoordinated frequency hopping. In Proceedings of IEEE
Symposium on Security and Privacy, 2008.

[79] K. Sun, P. Peng, P. Ning, and C. Wang. Secure distributed cluster forma-
tion in wireless sensor networks. In Proc. of the Annual Computer Security
Applications Conf. (ACSAC’06), 2006.

[80] P. Tague, M. Li, and R. Poovendran. Probabilistic mitigation of control channel
jamming via random key distribution. In Proceedings of PIRMC, 2007.

[81] P. Tague, M. Li, and R. Poovendran. Mitigation of control channel jamming un-
der node capture attacks. IEEE Transactions on Mobile Computing, 8(9):1221–
1234, 2009.

[82] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control, 37(12):1936–1948, 2002.

[83] P. Tosic and G. Agha. Maximal clique-based distributed group formation for
autonomous agent coalitions. In Proc. of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2004), 2004.

[84] Y. Tseng, S. Ni, Y. Chen, and J. Sheu. The broadcast storm problem in a
mobile ad hoc network. Wireless Networks, 8(2/3):153–167, 2002.

[85] W. Wallis. One-factorizations of complete graphs. Contemporary Design The-
ory: A Collection of Surveys, pages 692–731, 1992.

[86] W. Wallis. One-factorizations. Kluwer Academic Publishers, 1997.

[87] T. Weiss, A. Krohn, F. Capar, I. Martoyo, and F. Jondral. Synchronization
algorithms and preamble concepts for spectrum pooling systems. In Proc. of
the IST Mobile and Wireless Telecommunications Summit, 2003.

[88] A. Wood and J. Stankovic. Denial of service in sensor networks. Computer,
35(10):54–62, 2002.

143

[89] W. Xu, W. Trappe, and Y. Zhang. Anti-jamming timing channels for wireless
networks. In Proceedings of the 1st ACM Conference on Wireless Security
(WiSec), 2008.

[90] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of launching and
detecting jamming attacks in wireless networks. In Proc. of MobiHoc, pages
46–57, 2005.

[91] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of launching and
detecting jamming attacks in wireless networks. In Proceedings of the ACM
MobiHoc, pages 46–57, 2005.

[92] W. Xu, T. Wood, W. Trappe, and Y. Zhang. Channel surfing and spatial
retreats: Defenses against wireless denial of service. In Proceedings of Wireless
Security Workshop (WiSe), 2004.

[93] J. Yu and P. Chong. A survey of clustering schemes for mobile ad hoc networks.
IEEE Communications Surveys & Tutorials, 7(1):32–48, 2005.

[94] J. Zhao, H. Zheng, and G.-H. Yang. Spectrum sharing through distributed
coordination in dynamic spectrum access networks. Wireless Communications
and Mobile Computing Journal, 7(9):1061–1075, 2007.

