
RESOURCE-EFFICIENT MISBEHAVIOR IDENTIFICATION IN
WIRELESS AD HOC NETWORKS

by

William David Kozma Jr

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTERS OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2009

3

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced
degree at the University of Arizona and is deposited in the University Library to be
made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided
that accurate acknowledgment of source is made. Requests for permission for ex-
tended quotation from or reproduction of this manuscript in whole or in part may be
granted by the head of the major department or the Dean of the Graduate College
when in his or her judgment the proposed use of the material is in the interests of
scholarship. In all other instances, however, permission must be obtained from the
author.

SIGNED:
William David Kozma Jr

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Loukas Lazos
Assistant Professor

Date

5

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my academic advisor Dr. Loukas Lazos.
Your passion for your work encouraged me to pursue my own goals, while your atten-
tion to details instilled in me a unique perspective on which to approach problems. I
am deeply grateful for your taking me on as a student. Our academic work together
has been a truly rewarding and enriching experience, while the lessons learned will
help guide me throughout the course of my life in whatever avenue I pursue.

I would also like to thank the members of my defense committee, Dr. Marwan
Krunz and Dr. Srini Ramasubramanian, for both supporting my degree goals and
the valuable time spent in the classroom.

Lastly I would like to thank my family. To my wife, Kimberly, who has supported
my ambitions from the very beginning, encouraging me to push my limits while doing
all she can to help along the way. To my brothers, who provide me with that quite
strength. And to my parents, you have provided everything that a son could every
ask for, and so much more.

7

TABLE OF CONTENTS

LIST OF FIGURES . 9

ABSTRACT . 13

CHAPTER 1 Introduction . 15
1.1 Motivation and Scope . 15
1.2 Main Contributions and Thesis Organization 18

CHAPTER 2 Misbehavior in Wireless Ad Hoc Networks 21
2.1 Introduction . 21
2.2 Related Work . 23

2.2.1 Credit-Based Systems . 23
2.2.2 Reputation-Based Systems . 25
2.2.3 Acknowledgment-Based Systems 29

2.3 Models and Problem Statement . 31
2.3.1 Network Model . 31
2.3.2 Adversarial Model . 33
2.3.3 Problem Statement . 33

CHAPTER 3 Identification of a Single Misbehaving Node 35
3.1 Introduction . 35
3.2 The Search Process . 36
3.3 The Audit Process . 37

3.3.1 Sending an Audit Request . 37
3.3.2 Constructing a Behavioral Proof 38
3.3.3 Processing the Behavioral Proof 40

3.4 The Identification Process . 42
3.5 Collusion of Multiple Misbehaving Nodes 42

CHAPTER 4 REAct: A Resource-Efficient Accountability Scheme for Misbe-
havior Identification based on Rényi-Ulam Games 45
4.1 Introduction . 45
4.2 Rényi-Ulam Games . 46

4.2.1 Applications of Rényi Ulam Games 47
4.3 Mapping to Rényi-Ulam Games . 49
4.4 Rényi-Ulam Inspired Searching Strategies 50

4.4.1 REAct-B: Batch Audits . 51
4.4.2 REAct-C: Adaptive Audits with Cut Questions 53
4.4.3 REAct-M: Adaptive Audits with Membership Questions . . . 58

TABLE OF CONTENTS – Continued

8

4.5 Node Identification . 63
4.5.1 Routing Path Modification . 64
4.5.2 Single Misbehaving Node . 65
4.5.3 Multiple Misbehaving Nodes 66

4.6 Constructing Questions with Bloom Filters 66
4.7 Mobility . 67
4.8 Source/Destination Misbehavior . 69

CHAPTER 5 Performance Evaluation . 71
5.1 Simulation Setup . 71
5.2 Auditing Strategy Comparison . 72

5.2.1 Communication Overhead . 72
5.2.2 Identification Delay . 73
5.2.3 Impact of Node Mobility . 75

5.3 Comparison with Other Schemes . 79
5.3.1 Fixed Time Communication Overhead 80

5.4 Comparison Based on Identification Delay 82

CHAPTER 6 Conclusions . 85

Bibliography . 89

9

LIST OF FIGURES

1.1 An ad hoc network of 20 nodes. The circle with radius r represents
the communication range of the nodes radio. The source S uses a
multi-hop route to send data to the destination D. Node n3 does not
comply with the routing protocol specifications and drops packets
destined to D. 16

2.1 The source sends traffic to D along PSD. Node n5 drops all packets. . 34

3.1 The source sends an audit request to ni via path PSD. 38
3.2 False positive rate of a Bloom filter as a function of the number of

hash functions z and the length of the Bloom filter in bits m. 39
3.3 (a) Initialize Bloom Filter (b) x1 is added to Bloom filter by passing

through z hash functions with corresponding bits set to zero (c) Since
h2(y1) corresponds to a zero bit, y1 not in Bloom filter. 40

3.4 The search converges on link (n4, n5). S makes a slight alteration to
PSD, isolating n4 and n5, to determine that n5 is the misbehaving node. 42

3.5 (a) Nodes n1, n3 are colluding nodes, with n1 dropping all packets.
Node n3 is audited, claiming misbehavior is upstream. (b) Nodes
n1, n3 collude to alter their behavioral strategy, i.e., n1 behaves hon-
estly while n3 drops all packets. The audited node n2 claims mis-
behavior is downstream. (c) The nodes n2, n3 are excluded in turn
during packet forwarding. Since n1 is misbehaving, it drops n2’s pack-
ets, causing n2 to be accused of misbehavior. 43

4.1 (a) A generic Rényi-Ulam game. (b) Misbehavior identification
mapped to a Rényi-Ulam game. 47

4.2 (a) S sends packets to D along PSD. Misbehaving node n4 drops all
packets. (b) S audits all nodes in PSD, i.e., {n1, . . . , n5} to identify
the misbehaving link. 53

4.3 (a) Nodes n1 and n4 collude, with n4 dropping all packets. Audited
node n2 claims misbehavior is downstream. (b) Nodes n1 and n4

alter their behaviors, with n1 dropping all packets and n4 behaving
honestly. Audited node n3 claims misbehavior is upstream. (c) Source
simultaneously audits n2 and n3 to verify if misbehaving link exists. . 56

LIST OF FIGURES – Continued

10

4.4 (a) Let V1 = {S, n1, . . . , n5, D} with A = {S, n1, n2, n3}, B =
{n3, n4, n5, D} and nM = n4. The source audits A, concluding
nM /∈ A. (b) The source then audits B, concluding nM ∈ B. (c)
The source proceeds to stage V2 = {n3, n4, n5, D} and continues the
auditing strategy. 60

4.5 (a) Node n5 drops packets, with link (n4, n5) being the misbehaving
link. (b) The source performs path division separating n4 and n5 in
independent paths, thereby isolating their affects from one another. . 64

4.6 The source performs path expansion by inserting node nα between
n4 and n5, thereby effectively removing the misbehaving link (n4, n5)
from PSD. 65

4.7 (a) S sends packets to D through PSD. Node n2 was audited, reducing
the suspicious set to V = {n2, . . . , n5} (shown bounded by the dotted
box). Let the PSD change due to mobility. (b) Honest node n1 is
removed from PSD, causing no change to V . (c) Honest node n3

is removed from V , causing a reduction in the suspicious set. (d)
Misbehaving node n4 is removed from V , restoring the connection. . . 67

4.8 (a) Honest node nα is added to V ; as if nα had been there from start.
(b) Honest node nα added to PSD, nα /∈ V , causing no change to V .
(c) Misbehaving node nα added to PSD, nα /∈ V . Previously shown
this is detected. 68

5.1 (a) Communication overhead required to identify a single misbehav-
ing node (|M | = 1) as a function of path length, |PSD|. (b) Communi-
cation overhead required to identify two misbehaving nodes (|M | = 2)
as a function of path length. 72

5.2 (a) Delay required to identify a single misbehaving node (|M | = 1) as
a function of path length, |PSD|. (b) Delay required to identify two
misbehaving nodes (|M | = 2) as a function of path length, |PSD|. . . 74

5.3 (a) Impact of mobility on communication overhead as a function of
the average time between path modifications. Communication over-
head is shown as a normalized metric in which the transmission of a
packet incurs a cost of 1 while the reception incurs the cost of 0.5. The
misbehaving node repositions itself upstream or downstream accord-
ing to a normal distribution with µn = 1 hop and σn = 1. Path length
is fixed at 16 nodes. (b) Impact of mobility on communication over-
head as a function of the average time between path modifications.
The misbehaving node repositions itself on PSD randomly according
to a uniform distribution. 77

LIST OF FIGURES – Continued

11

5.4 (a) Impact of mobility on communication overhead as a function of
the average time between path modifications. Communication over-
head is shown as a normalized metric in which the transmission of a
packet incurs a cost of 1 while the reception incurs the cost of 0.5. The
misbehaving node repositions itself upstream or downstream accord-
ing to a normal distribution with µn = 1 hop and σn = 1. Path length
is fixed at 16 nodes. (b) Impact of mobility on communication over-
head as a function of the average time between path modifications.
The misbehaving node repositions itself on PSD randomly according
to a uniform distribution. 78

5.5 (a) Communication overhead as a function of path length, for an
audit size of 200 packets (ad = 200). The overhead is computed
for the time required by REAct-C to converge on the misbehaving
node. (b) Communication overhead as a function of audit size for a
path length of eight nodes (|PSD| = 8). (c) Identification delay as a
function of the path length, for an audit size of 200 packets (ad = 200). 80

5.6 (a) Communication overhead as a function of path length, |PSD|, for
an audit size of 200 packets (ad = 200). For each scheme, the overhead
is computed for the time required to identify the misbehavior. (b)
Communication overhead as a function of audit size for a path length
of eight nodes (|PSD| = 8). 82

13

ABSTRACT

Wireless ad hoc networks rely on multi-hop routes to transport data from a source to

a destination. Each node is responsible for relaying traffic towards the destination,

thus implementing the routing function in a collaborative manner. However, the

easy access of an increasingly sophisticated user pool to commercial wireless devices,

combined with the poor physical and software security of the devices can lead to

node misconfiguration, or misbehavior. A misbehaving node may take advantage of

the multi-hop routes provided by cooperative nodes while refusing to forward packets

itself, in order to conserve its energy resources (selfishness), or simply degrade the

network performance (maliciousness).

In this thesis, we investigate the problem of uniquely identifying the set of misbe-

having nodes on which packet forwarding fails. We map the misbehavior identifica-

tion problem to the classic game of 20 questions and different versions of Rényi-Ulam

games. The advantage of our approach is that the behavior of each node is eval-

uated on a per-packet basis, without incurring per-packet overhead. Utilizing this

mapping, we develop REAct, a resource-efficient misbehavior identification scheme.

Our scheme relies on the source auditing nodes in a resource-efficient and publicly

verifiable manner. Using Rényi-Ulam inspired auditing strategies, we show that a

source can identify any number of misbehaving nodes, given sufficient audits. Addi-

tionally, our mapping to Rényi-Ulam games allows REAct to implicitly assume the

existence of collusion among misbehaving nodes. We explore the tradeoff between

the delay in misbehavior identification and the associated communication overhead.

15

CHAPTER 1

Introduction

1.1 Motivation and Scope

Wireless ad hoc networks are characterized by the spontaneous self-organization of

a collection of nodes into a multi-hop network, in the absence of a pre-deployed in-

frastructure. Due to their low deployment cost and self-adaptability in a variety of

environments, ad hoc networks find numerous civilian applications, such as collab-

orative computing [35], emergency services [46], vehicular networks [70, 71], patient

monitoring [43] and environmental monitoring [42], as well as military applications,

such as area surveillance [24], and target tracking [7].

Without the support from a backbone infrastructure, ad hoc networks rely on the

collaborative implementation of network functionals. All nodes participate in the

network by sharing their individual resources for the purpose of realizing network-

wide services. As an example, consider Figure 1.1 depicting an ad hoc network of

12 nodes. A source S wants to establish communication with a destination D. Due

to the wireless constraints on their radios, S and D are unable to communicate

directly. Thus, the source uses a multi-hop path to route data to the destination.

This collaborative communication model assumes that a path of intermediate

nodes from S to D can be established and that these nodes are willing to forward

data on behalf of the source. Any collaborative network function such as multi-hop

routing is based upon the assumption that network nodes comply with the protocols

that specify the collaboration.

However, an increasingly sophisticated base of malicious users has gained access

to off-the-shelf networking devices. Such users may modify the software or hard-

16

S

D

n1

n2

n3

n4

n5

r

Figure 1.1: An ad hoc network of 20 nodes. The circle with radius r represents the
communication range of the nodes radio. The source S uses a multi-hop route to
send data to the destination D. Node n3 does not comply with the routing protocol
specifications and drops packets destined to D.

ware of their devices in order to maximize their individual network benefit, while

expending a minimum amount of resources. Moreover, malicious users may attempt

to degrade the network performance through protocol misbehavior. Note that at

present, it is too expensive to equip every network device with tamper-proof hard-

ware [19], thus sophisticated users can easily gain access to both the software and

hardware modules of the devices.

In this thesis, we consider the problem of misbehavior in the routing protocol.

Specifically, we address the problem of identifying misbehaving nodes that refuse

to forward packets to a destination, either to degrade throughput or conserve their

energy resources. In Figure 1.1, malicious node n3 attempts to conserve its own

energy by refusing to forward packets towards the destination. Such misbehavior

has been shown to have a severe impact on the network throughput [8, 9, 40, 41, 44].

We focus on identifying n3 in a publicly verifiable and resource-efficient manner.

Currently proposed solutions to the misbehavior problem attempt to either iden-

tify and revoke the misbehaving nodes [8, 9, 10, 40, 41, 44], or provide incentives

for cooperation within the network [12, 13, 14, 15, 30, 62, 72]. In incentive-based

approaches, referred to as credit-based systems, nodes obtain a form of credit for

17

faithfully forwarding packets to the next hop. Nodes can later use their accumulated

credit to have their own packets forwarded by other nodes. Thus nodes are moti-

vated to cooperate in packet forwarding in order to be able to communicate in the

network. However credit-based systems do not address the case of malicious users

who aim at network disruption, and have no motivation in credit accumulation for

transmitting their own packets.

Misbehavior identification approaches can be classified to reputation-based sys-

tems [8, 9, 10, 11, 21, 24, 32, 44, 45, 50, 59, 63], and acknowledgment-based systems

[2, 3, 40, 48, 68]. In reputation-based systems, nodes monitor the behavior of their

neighbors by overhearing that a received packet was faithfully forwarded to the

next hop. However, this requires operation in promiscuous mode which can be al-

most as expensive as transmission [20]. Note that monitoring nodes have to expend

energy to overhear every packet received and forwarded by the monitored node.

Furthermore, neighborhood monitoring mechanisms are difficult to implement in

multi-channel networks where nodes may be engaged in parallel transmissions in

orthogonal frequency bands.

Acknowledgment-based systems rely on the explicit acknowledgment of each

transmitted message. Every packet received must be acknowledged two or more

hops upstream, thus verifying that intermediate nodes cooperated in packet forward-

ing. Sending acknowledgments for every packet adds significant communication and

energy overhead in the misbehavior identification process. Both reputation-based

and acknowledgment-based systems are proactive in nature, and thus continuously

monitor the nodes’ behavior.

We address the problem of identifying the misbehaving node with resource effi-

ciency in mind. This is accomplished by developing a method in which the source can

perform per-packet evaluation of packets forwarded by an individual node, without

incurring per-packet overhead.

18

1.2 Main Contributions and Thesis Organization

The main contribution of this thesis is the development of a reactive misbehavior

identification scheme that does not rely on the per-packet monitoring of nodes. To

achieve this goal, we map the problem of misbehavior identification to the classic

Rényi-Ulam game of 20 questions [60, 67]. Rényi-Ulam games have been extensively

used in various contexts including error correction codes [4], selecting, sorting, and

searching in the presence of errors [51, 61, 64], to name a few. They provide efficient

searching strategies in the presence of errors. We develop three communication-

efficient algorithms for locating the misbehaving nodes, generally referred to as

REAct, based on different versions of Rényi-Ulam games. Our mapping allows the

per-packet evaluation of the behavior of nodes without incurring the per-packet

communication overhead. The source can uniquely identify the misbehaving nodes,

with communication overhead that grows logarithmically with the path size. Our

formulation copes with colluding adversaries who coordinate their behavioral pat-

terns to avoid identification and frame honest nodes. Collusion is not explicitly

addressed in most prior work [2, 3, 9, 40, 44]. REAct achieves at least an order of

magnitude savings in communication overhead when compared to other schemes.

This improvement comes at the slight increase in the delay required to identify the

misbehaving node.

The remainder of the thesis is organized as follows. In Chapter 2, we describe

different types of routing misbehavior in wireless ad hoc networks. We then discuss

related work to the misbehavior identification problem. Finally, we formally define

our problem and state our network and adversarial models. In Chapter 3, we present

a simple version of our reactive misbehavior identification algorithm, thus establish-

ing the core ideas of our approach. In Chapter 4, we introduce Rényi-Ulam games

and their real-world applications. We then show how the misbehavior identification

problem can be mapped to Rényi-Ulam games. Inspired by this analogy, we develop

19

REAct, our resource-efficient misbehavior identification scheme. In Chapter 5, we

evaluate the performance of REAct comparative to previously proposed schemes.

In Chapter 6, we present our conclusions.

21

CHAPTER 2

Misbehavior in Wireless Ad Hoc Networks

2.1 Introduction

Ad hoc networks are based on the assumption that all nodes collaborate to realize

network-wide services. However, this implicit trust placed in network nodes is not

always preserved. A misbehaving node can act in a selfish manner, in order to

conserve its own resources (such as energy), thus refusing to relay packets to the

next hop. Moreover, a malicious node can degrade network performance by dropping

all packets routed through it. Regardless of its motive, a misbehaving node violates

the core ad hoc network principle of collaboration. Node misbehavior in the routing

function has been shown to have a severe impact on the network throughput [8, 9,

40, 41, 44].

Several attacks have been demonstrated against routing protocols in ad hoc net-

works [8, 9, 16, 25, 28, 38, 40, 44, 47, 56, 57]. In the sinkhole attack, a misbehaving

node attempts to attract traffic by falsely advertising a shortest route to multiple

destinations [16, 47, 56]. Thus, neighboring nodes route their traffic through the

misbehaving node, allowing it to drop/modify/analyze a large volume of packets.

Networks in which all nodes periodically transmit data to a sink, such as a moni-

toring network, are particularly vulnerable to the sinkhole attack since data packets

have a single destination.

In the the wormhole attack [25, 38, 57], two (or more) nodes establish a low-

latency link between distant parts of the network. Messages received at one end

of the wormhole are transmitted back on the other end. Since the wormhole is a

low-latency link, nodes on either side of the wormhole will appear as neighbors, and

22

eventually all packets destined from one side of the network to the other will traverse

the wormhole. Notice that in this attack, the misbehaving nodes are not required to

broadcast messages advertising the low-latency link. This occurs naturally during

route discovery since all received packets are rebroadcast through the wormhole.

Once established, the misbehaving nodes can launch additional attacks on the net-

work based on the large volume of traffic traversing the wormhole. Preventative

measures against the wormhole attack are based on topological consistency checks

[25, 27, 38].

On-demand routing protocols for ad hoc networks have been shown vulnerable

to the rushing attack [28]. In this attack, the misbehaving node tampers with the

route request packet and modifies the routing path. Once modified, the node rushes

the packet to the next hop. Since under most protocols only the first copy of the

route request is accepted (all subsequent ones are dropped), the misbehaving node

attempts to forward the modified route request before any others are transmitted,

thus causing the modified packet to be used for the duration of the route discovery

and establish a false routing path.

In the blackhole attack [37, 65], the misbehaving node advertises the shortest

path to a particular destination node whose traffic it wants to intercept. Once a

route request is received by the misbehaving node, it immediately replies to the

source. Since most route discovery processes accept the first route discovered, the

traffic is routed through the misbehaving node.

The most common form of misbehavior is packet dropping [8, 9, 40, 44]. In

this attack, the misbehaving node participates in the routing path establishment

process. Once the routing path is established, the misbehaving node simply refuses

to forward packets to the next hop. Although a source and destination may employ

an end-to-end acknowledgment scheme, such as the one used in the TCP protocol,

an acknowledgment scheme may not be employed on a per-link basis. The source

and destination can recognize that a performance drop has occurred on the routing

23

path, but are unable to determine the problematic link. This thesis focuses on this

last type of misbehavior in which the source and destination attempt to determine

the node(s) that drop packets along the routing path. We now describe related work

with respect to the misbehavior identification problem

2.2 Related Work

Previously proposed methods for addressing the misbehavior problem can be clas-

sified into, (a) credit-based systems [12, 13, 14, 15, 30, 62, 72], (b) reputation-based

systems [8, 9, 10, 11, 21, 24, 32, 44, 45, 50, 59, 63], and (c) acknowledgment-based

systems [2, 3, 40, 48, 68].

2.2.1 Credit-Based Systems

Credit-based systems [12, 13, 14, 15, 30, 62, 72] are designed to provide incentives for

forwarding packets. Buttyan and Hubaux [12, 13, 14] proposed a system in which

nodes receive credit for each packet they forward, and spend their accumulated

credit to transmit their own packets. This is accomplished through the use of a

counter called the nuglet counter. The nuglet counter is incremented each time

the node forwards a packet, and decremented each time the node transmits its own

packet. The nuglet counter cannot take on a negative value and cannot be arbitrarily

changed by the node. To enforce this rule, the nuglet counter is implemented in a

tamper-proof hardware module, called the security module. The security module is

assumed to provide universal protection from both software and physical attacks.

Zhong et al. [72] proposed Sprite, in which nodes collect receipts for the packets

that they forward to other nodes. For a packet sent from a source to a destination,

each node along the path records a hash of the packet as the receipt, and forwards the

packet to its next hop. When the node has a high-speed link to a Credit Clearance

Service (CCS), it uploads its receipts. The CCS determines the value of the receipts

24

and provides credit in exchange. Credit is only granted if the destination reports a

receipt verifying reception of the packet and if the node was on the routing path.

Once verified, credit is removed from the sources account and given to each node

who participated in packet forwarding. Thus nodes that transmit their own packets

but do not cooperate in packet forwarded will incur a debt at the CSS and can be

identified.

Crowcroft et al. [15] propose a scheme which not only rewards nodes for partici-

pating in packet forwarding with credit, but takes into account congestion and traffic

flow. When sending a packet, the source computes a congestion price, which is a

metric defined by the required power for transmission and the available bandwidth.

It then compares this price to its personal willingness-to-pay parameter, which the

source continually adjusts based on its personal observations. By taking into consid-

eration bandwidth in computing the cost (credit) required to send a message to the

destination, the scheme avoids overwhelming low cost routes, as they would increase

in costs as they become saturated. Power and bandwidth metrics are dynamically

updated based on shared information among nodes.

Salem et al. [62] proposed a scheme to provide incentives to nodes in multihop

cellular networks. The scheme relies on the fact that all network traffic must travel

through the base stations (i.e. cell towers), and that all base stations are owned by

a single trusted operator. When the source sends a packet, it appends a keyed hash

of the entire packet. Each intermediate node re-hashes the entire packet, including

the previously appended hash. The previous nodes hash is then replaced with the

new intermediate nodes hash. Once at the base station, the hash is verified and

the packet is transmitted over the backbone network, where it is re-transmitted

to the destination from a nearby base station. The source is charged immediately

by the base station upon receipt of a packet, while the destination is charged a

small amount when the packet is re-transmitted. This amount is refunded once the

destination acknowledges the reception of the packet, thus preventing the destination

25

from cheating the system by claiming packets were never received.

While credit-based systems motivate selfish nodes to cooperate in packet for-

warding, they provide no incentive to malicious nodes that target the network

throughput. Such nodes have no incentive to collect credit and receive no pun-

ishment for non-cooperation. Furthermore, tamper-proof hardware [22] is currently

too expensive to integrate in every network device, while providing an unverifiable

level of security [1]. Sprite removes this requirement, at the expense of requiring the

presence of a CCS. Lastly, credit-based systems lack a mechanism for identifying

the misbehaving node(s), allowing them to remain within the network indefinitely.

Huang et al. [29] even go so far as to question whether or not there exists

a need for credit-based schemes. Some of the issues they bring to light is that

all network nodes are not treated fairly. Nodes located on the outskirts of the

network will encounter less traffic to be forwarded, thus accumulating less credit

compared to nodes located in the center of the network. Thus there exists an

inherent disadvantage to a subset of nodes. They also claim that to be effective, a

credit-based system must be uniquely designed for a given network, which conflicts

with it idea of ad hoc networks and their corresponding technologies.

2.2.2 Reputation-Based Systems

Reputation-based systems [8, 9, 10, 11, 21, 24, 32, 44, 45, 50, 59, 63] use neigh-

borhood monitoring techniques to identify misbehaving nodes. Marti et al. [44]

proposed a scheme which relies on two modules, the watchdog and the pathrater.

The watchdog module monitors the behavior of their next hop node by operating

their radio in promiscuous mode. Once a node forwards a packet to the next hop,

the node overhears to verify that the next hop node faithfully forwarded the packet.

The scheme is based on the assumption that links between nodes are bi-direction

and nodes utilize omni-direction antennas. A cache is used to store packets that

wait for verification. If packets remain in the cache longer than a threshold period,

26

the watchdog makes an accusation of misbehavior. The pathrater module uses the

accusations generated to chose a path that will most likely avoid misbehaving nodes.

Buchegger and Le Boudec [8, 9, 10] proposed a scheme called CONFIDANT,

which is built upon the watchdog/pathrater model. Nodes perform neighborhood

monitoring using their radios in promiscuous mode while selecting paths that at-

tempt to avoid misbehaving nodes. Whereas Marti et al. proposed using only the

previous hop for monitoring, CONFIDANT requires all neighboring nodes to oper-

ate in promiscuous mode for monitoring, thus replying on a neighborhood watch. In

addition, monitoring nodes notify other nodes of detected misbehavior through the

broadcast of alarm messages. Instead of including a proof of the misbehavior in the

alarm message, a scheme based on Pretty Good Privacy (PGP) [73] is implemented

to determine the trust level of the alarm message.

Soltanali et al. [63] propose a reputation-based scheme consisting of four

modules: a Monitor, a Opinion Manager, a Reputation Manager, and a Rout-

ing/Forwarding Manager. The Monitor module monitors the nodes neighbors via

the watchdog model, verifying that neighboring nodes faithfully participate in packet

forwarding. Based on observations from the Monitor, the Opinion Manager formu-

lates opinions of the nodes behavior and periodically advertises them to neighboring

nodes. The Reputation Manager accepts these opinions and processes them to arrive

at a trust metric for a specific node. When establishing a routing path to a destina-

tion, the Routing/Forwarding Manager uses these trust metrics to avoid including

untrustworthy (misbehaving) nodes.

Ganeriwal and Srivastava [21] use a Bayesian model to map binary ratings to

reputation metrics, using a beta probability density function. Each sensor computes

a reputation ranking for its neighbors, defining them as cooperative or noncoopera-

tive. The ranking is based on multiple factors, including but not limited to routing

consistency and packet integrity. Nodes can also share information regarding their

classification of neighbors as cooperative/noncooperative. Jøsang and Ismail [32]

27

presents similar work on how to derive reputation rankings using beta probability

functions based on feedback of neighboring node behavior. Likewise, Buchegger and

Le Boudec [11] investigate the effects of rumor spreading in ad hoc networks and

propose a reputation-based scheme based on a Bayesian model. They also attempt

to identify lies and exclude them as input to their reputation model.

He et al. [24] proposed SORI, which monitors neighboring nodes using a watch-

dog mechanism and propagates this information to nearby nodes, thus relying on

both first- and second-hand information. Each node monitors all neighboring nodes,

while maintaining a neighborhood list. The neighborhood list contains the number

of packets each neighbor received and the number forwarded. Periodically, neighbor-

ing nodes exchange reputation information. This second-hand information is added

to the nodes observations to compute an overall evaluation record for a node. SORI

takes the additional step of punishing nodes deemed to be misbehaving. Neighbors

of a misbehaving node will probabilistically drop its packets, thus encouraging co-

operation among nodes. SORI includes a mechanism to prevent retaliation attacks

in which nodes continually increase the probability of dropping each others packets.

The authors address security issues such as node impersonation by requiring the use

of an authentication mechanism based on one-way hash chains.

Rebahi et al. [59] proposed a reputation-based scheme which also relies on first-

and second-hand information. However the authors propose two different methods

for nodes to acquire the second-hand information, i.e., the reputation information

originating from neighboring nodes. In the first method, as soon as a node wit-

nesses misbehavior, defined according to a threshold number of packet drops, the

node immediately broadcasts the accusation. Thus the proactive transmitting of

reputation information allows all nodes in the network to have up-to-date behav-

ioral information about their neighbors. However, since the proactive broadcasting

of information may require unacceptable bandwidth requirements, thus diminish-

ing the networks functionality, nodes can also acquire second-hand information in

28

an on demand manner. In much the same way that on demand routing protocols

request route information, a node transmits a packet to the network requesting rep-

utation information from other nodes. Thus network resources are only consumed

to transfer reputation information that is requested.

Michiardi and Molva [45] proposed CORE, in which nodes create a composite

reputation rating for a given node by combining the nodes subjective reputation,

its indirect reputation and its functional reputation. The subjective reputation is

calculated from direct observation of the nodes behavior, using a weighted average

of both current and past observations. The indirect reputation is a value calculated

based on second-hand observations made by other nodes in the network. A nodes

functional reputation is based on task-specific behavior. Thus it is computed based

on its reputation in packet forwarding, routing, etc. Denial-of-service attacks based

on misbehaving nodes broadcasting negative ratings for honest nodes are prevented

by preventing nodes from broadcasting negative behavior. Thus when sharing rep-

utation metrics, node are restricted to sharing only positive ratings.

Paul and Westhoff [50] proposed a scheme which can identify different types of

misbehavior through routing message verification and packet comparisons. In par-

ticular, they focus on securing DSR to attacks, in which a misbehaving node either

(a) refuse to forward route request packets, (b) forwards route requests without

adding itself to the routing path, or (c) adds unrelated nodes to the route request.

The scheme verifies routing messages through the use of an un-keyed hash chain,

while nodes compare RREQ headers to a local cache consisting of headers from

overheard packets to identify misbehavior. Each intermediate node along the path

thus monitors its neighboring nodes, and send any accusations of misbehavior to the

source, along with the type of misbehavior they witnessed. The source analyzes all

accusations received, and takes action based on the type of misbehavior witnessed.

The process of node monitoring becomes complex in the case of multi-channel

networks or nodes equipped with directional antennas. Neighboring nodes may be

29

engaged in parallel transmissions in orthogonal channels or different sectors thus

being unable to monitor their peers. Moreover, operating in promiscuous mode

requires up to 0.5 times the amount of energy for transmitting a message [20], thus

making message overhearing an energy expensive operation. Finally, reputation-

based systems are proactive in nature, requiring the constant monitoring of nearby

nodes. Hence, overhead is incurred on all nodes regardless of whether a misbehaving

node exists in a neighborhood.

2.2.3 Acknowledgment-Based Systems

Acknowledgment-based systems [2, 3, 40, 48, 68] rely on the reception of acknowl-

edgments to verify that a message was forwarded to the next hop. Balakrishnan

et al. [3] proposed a scheme called TWOACK, where nodes explicitly send 2-hop

acknowledgment messages (TWOACK) to verify cooperation. For every packet a

node receives, it sends a TWOACK along the reverse path, verifying to the node

2-hops upstream that the intermediate node faithfully cooperated in packet forward-

ing. Packets that have not yet been verified remain in a cache until they expire.

A value is assigned to the quantity/frequency of un-verified packets to determine

misbehavior.

Liu et al. [40] improved on TWOACK by proposing 2ACK. Similar to

TWOACK, nodes explicitly send 2-hop acknowledgments (2ACK) to verify cooper-

ation. To reduce overhead, 2ACK allows for only a percentage of packets received

to be acknowledged. Additionally, 2ACK uses a one-way hash chain to allow nodes

in the routing path to verify the origin of packets they are acknowledging, thus pre-

venting attacks in which a misbehaving node drops the original packet and forwards

a spoofed packet.

Padmanabhan and Simon [48] proposed a method called secure traceroute to

identify the link on which misbehavior is occurring. Instead of the standard tracer-

oute operation, which relies on nodes responding to expired packets, secure tracer-

30

oute verifies the origin of responses and uses traceroute packets that are indistin-

guishable from data packets. Secure traceroute proceeds hop by hop, although

instead of responding to expired packets, the source establishes a shared key with

the node. By encrypting the packets, secure traceroute packets are indistinguishable

from data packets and cannot be selectively dropped. A Message Authentication

Code (MAC) is utilized for authenticating the packets origin. Although traceroute

is considered a reactive approach, secure traceroute is proactive, requiring connected

nodes to transmit “keep-alive” packets when they have node data of their own to

send, albeit at lower data rate.

Xue and Nahrstedt [68] proposed the Best-effort Fault-Tolerant Routing (BFTR)

scheme, which relies on end-to-end acknowledgment messages to monitor packet de-

livery ratio and select routing paths which avoid misbehaving nodes. Similar to the

DSR routing protocol, the source floods RREQ messages to discover a routing path

to a destination. However, RREP packets must be sent along the reverse path and

must be signed with a shared secret key between the source and destination. Also,

the destination responds to multiple RREQ, thus providing the source with multiple

paths to choose from. The source selects the shortest path for packet routing. Dur-

ing transmission to the destination, the source monitors the feasibility of the routing

path, based on the end-to-end acknowledgments sent by the destination. Using a

proposed heuristic, the source varies the routing path to maintain feasibility. Thus,

the goal of BFTR is to avoid misbehaving nodes.

Awerbuch et al. [2] proposed an on demand routing protocol that probes the

path to identify the faulty link. Once misbehavior is identified as occurring, the

source begins probing nodes on the routing path by asking nodes to acknowledge

all packets received. Probing is performed according to a binary search, in which

the binary response of probed nodes are {failed, successful}. Once the faulty link

has been identified, a weight metric is utilized to increase the value of the faulty

link, thus avoiding including it in future routing paths. To avoid a misbehaving

31

node from dropping the acknowledgments of probed nodes, the acknowledgment are

attached to packets from previous nodes such that the misbehaving node cannot

drop only a subset of acknowledgment messages. The source makes no attempt to

identify the individual node(s) causing the misbehavior.

Acknowledgment-based systems are proactive, and hence incur message overhead

regardless of the presence of misbehavior. 2ACK provides a method to reduce mes-

sage overhead by acknowledging only a fraction of the packets, with the tradeoff of

increased delay in misbehavior detection. Awerbuch et al. further reduces overhead

through its on demand characteristic, however it only identifies the faulty link, thus

failing to identify the node causing the misbehavior.

2.3 Models and Problem Statement

2.3.1 Network Model

We consider a multi-hop ad hoc network where nodes collaboratively relay traffic

according to an underlying routing protocol such as DSR [31] or AODV [54]. The

path PSD used to route traffic from a source S to a destination D is assumed to

be known to S. This is true for source routing protocols such as DSR where the

entire PSD is included in every packet. If DSR is not used, the source can identify

the nodes in PSD by performing a traceroute operation. For simplicity, we number

nodes {n1, . . . , nk}, k = |PSD|, located in a path PSD in an ascending order, i.e.,

node ni is upstream of nj if i < j and is downstream of nj if i > j.

We assume that the source and the destination collaboratively monitor the per-

formance of PSD. The destination is responsible for periodically reporting to the

source critical metrics such as throughput or delay. Periodic updates with average

performance metrics are sufficient for our purpose. If a misbehaving node drops

the periodic updates as part of it’s misbehavior pattern, the source interprets the

lack of updates as a sign of misbehavior in PSD. Likewise the destination explicitly

32

alerts the source in case the performance in PSD is restored. This explicit alert is

used to pause the misbehavior identification process and account for: (a) temporal

variations of performance due to traffic or intermittent connectivity, and (b) random

behavioral patterns of the misbehaving nodes.

We assume the network is k-connected, with k − 1 representing the maximum

number of colluding misbehaving nodes. This is required to prevent colluding nodes

from framing an honest node of misbehavior during the identification process. Addi-

tionally, we initially consider a quasi-static network in which the path PSD does not

change for the entire duration of the misbehavior identification process. We later

relax this assumption, allowing changes in the path PSD due to node mobility. Note

that we do not require the existence of an end-to-end per packet acknowledgment

mechanism.

We assume that the integrity, authenticity, and freshness of critical control mes-

sages can be verified using resource-efficient cryptographic methods. For example,

a public key cryptosystem realized via computationally-efficient elliptic curve cryp-

tography may be used to verify the authenticity and integrity of messages while

providing confidentiality [39]. Nodes audited by the source use their private key to

sign their commitment of the set of packets forwarded to the next hop. This signed

commitment becomes a publicly verifiable behavioral proof, as any node in the net-

work can verify the commitment of packets forwarded by using the corresponding

public key. Likewise, due to the secret nature of the private keys, all nodes are proven

of the origin of the behavioral claim without requiring contact with the origin node.

Note that such cryptosystems require the existence of a trusted certificate authority

(CA) for initialization (issuance of keys and certificates) as well as revocation of

users via a certificate revocation list (CRL). Several methods have been proposed

for the distributed implementation of a CA [18, 58, 69]. Alternatively, methods

based on symmetric keys can be used to protect critical messages [26, 49, 55].

33

2.3.2 Adversarial Model

We assume that a set M of misbehaving nodes exist in a path of length k ≥ |M |.
Misbehaving nodes can be located anywhere in PSD. The source and destination

have a mutual interest in communicating or framing honest nodes. Misbehavior is

not in the form of packet dropping, since either the source or destination would have

refused to establish the connection. Hence we consider the misbehavior of the source

and destination separately. Following Kerckhoff’s principle, misbehaving nodes are

assumed to be aware of the routing protocol and the details of the mechanism used

for misbehavior identification. The goal of misbehavior is twofold: (a) degrade

throughput between the source and and destination, and (b) remain undetected.

We consider two models with respect to the behavioral pattern of nodes in M .

Independently misbehaving nodes: In this model, nodes in PSD misbehave

independently without coordinating their packet dropping patterns. Misbehavior

is modeled after an ON/OFF process in which nodes alternate between dropping

packets and behaving normally. The duration of the misbehaving/behaving period

is exponentially distributed with parameters µ1, µ2.

Colluding nodes: Colluding nodes share information with respect to the misbe-

havior identification process. For example, one misbehaving node can notify another

of any actions of the source. Information sharing is achieved either in-band via the

exchange of encrypted messages, or through an out-of-band coordination channel.

Based on collective knowledge, the colluding nodes coordinate their behavioral pat-

terns to avoid identification or frame honest nodes. In this model, we assume that

misbehaving nodes are controlled by a single entity.

2.3.3 Problem Statement

Consider a path PSD which contains a set M of misbehaving nodes. Nodes in

M misbehave according to the adversarial models defined in Section 2.3.2. We

34

S

D

n1

n2

n3

n4

n5

n6

Figure 2.1: The source sends traffic to D along PSD. Node n5 drops all packets.

address the problem of identifying nodes in M and providing publicly verifiable proof

of misbehavior. Our goal is to achieve misbehavior identification in a resource-

efficient manner. In Figure 2.1, the source sends packets to the destination through

a path PSD = {n1, . . . , n6}. Node n5 misbehaves by dropping all packets. We are

interested in identifying n5 and constructing proof of its misbehavior.

35

CHAPTER 3

Identification of a Single Misbehaving Node

3.1 Introduction

In this chapter, we present a misbehavior identification scheme that locates a single

misbehaving node along a problematic path PSD. Let a source S send packets to a

destination D along a path PSD, with node nM ∈ PSD dropping all packets.

The source audits several nodes in PSD when notified of a performance drop. The

purpose of these audits is to have nodes commit to the set of packets they forwarded

to the next hop. The source collects multiple audit replies, combining them in

order to identify the link on which packet forwarding fails. This is accomplished by

progressively limiting a set of suspicious nodes, in which nodes upstream from the

misbehaving nodes report forwarding all packets while nodes downstream from the

misbehaving node report forwarding no packets. When audited, transmission of the

entire set of forwarded packets back to the source requires high communication and

storage requirements. Thus we utilize Bloom filters, which are compact membership

sets and hence provide a storage-efficient way of performing membership testing for

the set of packets forwarded to the next hop.

The identification scheme consists of three processes: (a) the search process, (b)

the audit process, and (c) the identification process. We first describe the search

process which is responsible for selecting nodes to be audited. We then describe the

audit process and how audited nodes commit to publicly verifiable proofs of the set

of packets forwarded to the next hope. Lastly, we show how the source identifies

the misbehaving node, resulting in the publicly verifiable proof of misbehavior.

36

3.2 The Search Process

The goal of the search process is to select nodes to be audited such that the source

converges on two neighboring nodes, one that claims the misbehaving node is up-

stream and one that claims the misbehaving node is downstream. Let |M | = 1 with

the misbehaving node being defined as nM . We define the notion of a suspicious

set V as the set of nodes ni ∈ PSD which have not been shown honest. Initially, all

nodes ni ∈ PSD are placed in V . Let the source audit nodes by asking if they have

received and forwarded the set of packets XS sent by the source for a given duration.

When the source audits node ni ∈ PSD, either: (a) ni claims to have received and

forwarded all packets in XS, or (b) ni claims to have not received packets in XS

from the previous hop. For each case, the following conclusions can be drawn.

If ni claims to have received and forwarded all packets in XS, the source concludes

that all nodes upstream of ni are honest. This is true, since if any node upstream

of ni was misbehaving, ni would not receive packets in XS. Therefore, the source

reduces the suspicious set V to {ni, . . . , nk}. Note that ni remains in V , since it may

correctly receive packets in XS, construct vi, but refuse to forward them towards

the destination.

If ni claims to have not received packets in XS from the previous hop, the

source concludes that all downstream nodes are honest. This is true, since if any

downstream node nj is misbehaving, all nodes upstream from nj, including ni,

would claim to have received and forwarded all packets in XS, given that only one

misbehaving node exists in PSD. Since ni claims not to have received packets in XS,

the source concludes that the misbehaving node nM must be upstream of ni. Thus,

the source reduces the suspicious set V to {n1, . . . , ni}.
By repeated audits, the source reduces V to two neighboring nodes, node ni

that claims the misbehaving node is downstream, and node ni+1 that claims the

misbehaving node is upstream. Each audited node ni is selected such that i = d |V|
2
e.

37

Thus the source converges on said link after dlog2 PSD| audits, do to the binary

search. If nM changes its behavior and forwards packets honestly, the source will

be alerted by the destination to this change. Hence the source will pause the search

until it is alerted by the destination that misbehavior is occurring again.

3.3 The Audit Process

The goal of auditing a node ni ∈ PSD is to verify that a set of packets XS, sent by

the source S, were correctly received and forwarded by nodes upstream of ni. Once

audited, node ni commits to the set of packets Xi that it received and forwarded

to the next hop. Conflicting commitments collected from multiple nodes in PSD are

used to create proof of node misbehavior.

To respond to an audit, the node ni records the packets forwarded during a given

period of time, and reports them to the source. Based on this report, the source

compares the packets in Xi with the packets in XS originally sent to the destination.

Buffering the packets themselves requires a large amount of storage and significant

overhead for transmission back to the source. To alleviate these requirements, we

employ Bloom filters which provide a storage-efficient way of performing membership

testing [5]. The audit process occurs in three steps: (a) sending an audit request,

(b) constructing a behavioral proof, and (c) processing the behavioral proof. We

now describe these steps in detail.

3.3.1 Sending an Audit Request

Once misbehavior has been detected in PSD, the source S selects a node ni to be

audited based on the auditing algorithm used. The source selects an audit duration

ad, measured in the number of packets to be audited. The value of ad is user-definable

and must be sufficiently large to differentiate misbehavior from normal packet loss

rate. The source also selects an initial packet sequence number as, indicating the

38

S

D

n1

n2

n3

n4

n5

n6

Audit Path

Figure 3.1: The source sends an audit request to ni via path PSD.

sequence number of the packet where the audit begins. The source signs the audit

request to enable the verification of its authenticity and integrity. In Figure 3.1, the

source selects node n4 for audit. The audit request is routed to n4 via PSD.

Note that an audit request may fail to reach the audited node ni since a misbe-

having node along PSni
may drop it, or ni is the misbehaving node and chooses not

to respond. In this case, the source tries a threshold number of times to audit ni.

Failure to obtain an audit reply is interpreted as “Node ni did not forward packets

in XS to the next hop.” This is true since either ni is the misbehaving node or the

misbehaving node is upstream of ni (hence the audit request and other packets were

dropped).

3.3.2 Constructing a Behavioral Proof

When a node is audited, it constructs a behavioral proof of the set of all packets

it forwards, from as to as + ad, denoted by X = {xas , xas+1, . . . , xas+ad
}. Buffering

packets themselves would require a large amount of storage and significant overhead

for transmission back to the source. On the other hand, Bloom filters [5] provide a

compact representation of membership for a set X = {xas , xas+1, . . . , xas+ad
} in an

m-bit vector v with m ¿ N . For an empty set X, all m bits of v are initialized to

zero. A member xi is added to Bloom filter X by passing xi through z independent

hash functions hl, 1 ≤ l ≤ z with each hl having a range of {1, . . . , m}. The

corresponding bits hl(xi), 1 ≤ l ≤ z of vector v are set to one. To check if y is

39

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Number of hash functions (z)

F
al

se
 p

os
iti

ve
 r

at
e

of
 B

lo
om

 F
ilt

er
 (

p f)

Bloom filter false positive rate (p
f
) as a function

 of hash functions (z) and bits (m); (| X
i
 | = 200)

m = 1000
m = 1200
m = 1400
m = 1600
m = 1800
m = 2000

Figure 3.2: False positive rate of a Bloom filter as a function of the number of hash
functions z and the length of the Bloom filter in bits m.

a member of X, element y is hashed z times using hl. If any corresponding bit

location hl(y) in v is zero, element y /∈ X. Else y ∈ X with very high probability.

Thus Bloom filters may yield a false positive, i.e., the filter may indicate y ∈ X even

though it is not. For perfectly random hash functions, the false positive probability

pf is given by [6]:

pf =

(
1−

(
1− 1

m

)zN
)z

≈
(
1− e−

zN
m

)z

(3.1)

In Figure 3.2, we show the false positive rate pf as a function of the number

of hash functions z and the length of the Bloom filter in bits m. In Figure 3.3(a),

we show a Bloom filter v (m = 10) that has been initialized to zero, representing

the membership set X = {}. Figure 3.3(b), shows element x1 being added to v by

passing through z independent hash functions hl, 1 ≤ l ≤ z, with bits hl (xi) of v

set to 1, yielding membership set X = {x1}. To check if y1 is in X, y1 is passed

through hl as in Figure 3.3(c). Since h2(y1) corresponds to a zero bit, y1 /∈ X.

The number of hash functions q that minimize the false positive probability pf ,

is known to be q = ln2

(
m
N

)
, but any choice can be made to allow a graceful tradeoff

40

00000 00000

x1

h1

00101 00001

x1

h2

x1

hz

y1

h1

00101 00111

y1

h2

y1

hz

(a) (b) (c)

Figure 3.3: (a) Initialize Bloom Filter (b) x1 is added to Bloom filter by passing
through z hash functions with corresponding bits set to zero (c) Since h2(y1) corre-
sponds to a zero bit, y1 not in Bloom filter.

between pf and q. We can also compute the minimum storage required (size of

vector v) so that pf ≤ ε, to be equal to m ≥ N log2 ε
ln 2

.

Upon receiving an audit request, node ni creates a proof of all packets it forwards

to the next hop by constructing Bloom filter vi. The audited node ni inserts each

packet xj, as ≤ j ≤ (as + ad) into its Bloom filter vi. After ad packets have been

added to vi, ni signs vi and sends it to the source via PSD. Note that each Bloom

filter is signed, acting as a public commitment to the packets forwarded that node.

Misbehavior can be publicly verified via comparison with the source’s Bloom filter.

In order to check ni’s audit (Bloom filter), the source constructs its own Bloom

filter vS in the same manner as ni, i.e., all packets xj, as ≤ j ≤ (as + ad) are added

to vS. When the source receives ni’s behavioral proof, it will then have two Bloom

filters; vS, which is guaranteed to correctly contain all packets in XS, and vi from

node ni.

3.3.3 Processing the Behavioral Proof

When the source receives the behavioral proof from ni, it verifies its authenticity and

discards vi if the signature check fails. If ni fails to respond to the audit request, the

source may re-transmit the request using alternative paths. After a certain number

of reply failures, the source assumes that the node ni is suspicious of misbehaving

and continues with the algorithm execution.

The source performs a comparison of Bloom filters vS, vi by computing the inner

41

product 〈vS, vi〉, which measures the similarity between vectors vS, vi. Let XS denote

the set of packets in vS and Xi denote the set of packets in vi. The magnitude of

the inner product can be approximated by [6]:

〈vS, vi〉 ≈ m

(
1−

(
1− 1

m

)z|XS |
−

(
1− 1

m

)z|Xi|

+

(
1− 1

m

)z(|XS |+|Xi|−|XS
⋂

Xi|)
)

. (3.2)

Given vector length m, cardinalities of XS, Xi, and z hash functions, the source

can compute the size of the intersection set,

|XS

⋂
Xi| ≈ |XS|+ |Xi| −

log
(

<vS ,vi>
m

+
(
1− 1

m

)z|XS | +
(
1− 1

m

)z|Xi|
)

z log
(
1− 1

m

) . (3.3)

The cardinality of XS

⋂
XiS provides a method to verify if packets in XS are in

Xi. Furthermore, the source can maintain a sampling of XS to perform membership

tests on vi for an additional verification of the packets in Xi. The sampling can be

either random or packets of higher importance.

A node can arbitrarily construct its own Bloom filter to avoid any accusation of

misbehavior by setting all bits of its filter to one. In such a case, |XS

⋂
Xi| ≈ |XS|

since XS ⊆ Xi and any membership test would come out positive. However, the

source can easily verify if Bloom filter Xi contains packets not in XS. The source can

pick any x 6∈ XS and test if it is a member of Xi. If the membership test is positive,

the source can assume that x ∈ Xi with a probability (1-pf). The probability of

false positive can be further reduced by repeating the experiment r number of times,

yielding a successful identification of Bloom filter manipulation with a probability

1-(pf)
r.

42

S

D

n1

n2

n3

n4

n5

n6

Figure 3.4: The search converges on link (n4, n5). S makes a slight alteration to
PSD, isolating n4 and n5, to determine that n5 is the misbehaving node.

3.4 The Identification Process

Once the search process has converged on the link (ni, ni+1) in which node ni that

claims the misbehaving node is downstream, and node ni+1 that claims the mis-

behaving node is upstream, the two nodes ni, ni+1 are excluded in turn from the

routing path to the destination. The node ni−1 will split the traffic between ni, ni+1

in turn. In Figure 3.4, S uses node n3 to exclude in turn nodes n4 and n5. The

source alerts the destination that two nodes are monitored. The destination reports

to the source which of the two paths misbehavior is occurring on and alerts the

source. The source uses this alert from the destination to identify the misbehaving

node.

3.5 Collusion of Multiple Misbehaving Nodes

We have described how a source can identify a misbehaving node in PSD. However,

it is possible for an honest node to be framed of misbehavior if PSD contains two

colluding misbehaving nodes. For example, let assume the source is executing the

misbehavior identification scheme and there exists collusion between misbehaving

nodes. In Figure 3.5(a), nodes n1 and n3 are misbehaving and colluding. Initially,

n1 drops packets while n3 behaves honestly. The source audits n3, who replies that

an upstream node is misbehaving. In Figure 3.5(b), the source selects n2 for audit.

Nodes n1, n3 collude, altering their behaviors such that n3 drops all packets while

43

n2 n3n1S Dn4 n2 n3n1S Dn4

(a) (b)

n2 n3n1S Dn4

(c)

Figure 3.5: (a) Nodes n1, n3 are colluding nodes, with n1 dropping all packets.
Node n3 is audited, claiming misbehavior is upstream. (b) Nodes n1, n3 collude to
alter their behavioral strategy, i.e., n1 behaves honestly while n3 drops all packets.
The audited node n2 claims misbehavior is downstream. (c) The nodes n2, n3 are
excluded in turn during packet forwarding. Since n1 is misbehaving, it drops n2’s
packets, causing n2 to be accused of misbehavior.

n1 behaves honestly. Thus, the audited node n2 reports misbehavior is occurring

downstream and the source has limited the possible set of misbehaving nodes to

{n2, n3}. In Figure 3.5(c), the source makes a slight modification to the routing path,

such that packets are routed through n2 and n3 in turn. Node n1 can now selectively

drop all packets routed through n2, thus making n2 appear as the misbehaving node.

This problem arises since misbehaving nodes n1 and n3 can share information

about the state of the search and modify their behavioral strategies to accuse the

honest node n2 of misbehavior. Even if the source randomizes the set of packets

XS to prevent a node from conjecturing upon its value, this does not prevent the

sharing of information when misbehaving nodes are audited. Thus, n1, n3 can lie to

the source by changing where the misbehavior appears in PSD.

45

CHAPTER 4

REAct: A Resource-Efficient Accountability Scheme for Misbehavior Identification

based on Rényi-Ulam Games

4.1 Introduction

In the previous chapter, we presented a misbehavior identification scheme in which

the source audits nodes along the routing path, forcing them to commit to the set of

packets they forward to the next hop. The source collects multiple audit replies to

identify the misbehaving node. We noted that although an honest node will always

respond faithfully to an audit request, a misbehaving node can lie about the set

of packets forwarded. Provided sufficient replies from honest nodes, the source can

identify the misbehaving ones. The process of analyzing audit plies and selecting

the nodes to be auditing is analogous to Rényi-Ulam games [53, 60, 67].

Rényi-Ulam games are searching games between two entities, a questioner and

a responder. The responder selects a secret value from a finite search space. The

questioner attempts to determine the responders secret value by asking questions,

in which the responder can lie up to a pre-determined number of times. The ques-

tioner wins the game if it can determine the responders secret value after at most q

questions.

In this chapter, we map the misbehavior identification problem to Rényi-Ulam

games. Solutions to Rényi-Ulam games are designed to use the least number of

questions possible. By basing our auditing strategies on these games, we are able

to reduce the number of audits required to identify misbehaving nodes. Moreover,

we show that such auditing strategies are collusion-resistant.

Based on Rényi-Ulam games, we develop REAct, a resource-efficient account-

46

ability scheme for node misbehavior. We describe how the source utilizes the corre-

sponding questioning strategies to identify misbehaving nodes in PSD. We formulate

each case, starting from a single misbehaving node and proceed to the cause of mul-

tiple colluding ones. Audits are performed as described in Section 3.3. We first

describe relevant background on Rényi-Ulam games.

4.2 Rényi-Ulam Games

Rényi-Ulam games are searching games independently proposed by Rényi [60] and

Ulam [67]. These games involve two players; a questioner and a responder. The

responder selects a secret value ω from a finite search space Ω. The questioner

attempts to determine ω by asking at most q questions to which the responder is

allowed up to ` lies.

Before starting the game, the players agree on: (a) the search space Ω, (b) the

number of questions q allowed to the questioner, (c) the number of lies ` allowed

to the responder, and (d) the nature of the interaction between the players. The

latter is defined by the type of questions allowed and the way they are asked. The

format of the questions can be classified into three categories: (a) bit questions, (b)

cut questions, and (c) membership questions. Bit questions are defined as “Is the

ith-bit of ω equal to 1?” Cut questions are defined as, for some y ∈ Ω, “Is ω ≤ y?”

Membership questions are defined as, for some subset A ⊆ Ω, “Is ω ∈ A?” The

same questioning format is assumed for the entire duration of the game.

Two modes are possible for the interaction between the two players; a batch mode

and an adaptive mode. In batch mode, the questioner must submit all questions

to the responder at the same time. The responder is therefore able to review all

questions before answering. In adaptive mode, the questioner asks questions one at

a time. The questioner can adapt its strategy based on all previous answers.

In some versions of the game, restrictions are placed on the responder as to when

and how it may use its lies. As an example, the total number of lies after i questions

47

Questioner Responder

 = {1,…,k}

Is ��
No

S n1 n2 n3 n4 n5 D

Questioner Responder

=

AuditRequest

AuditReply

 = {n1,…,n5}

(a) (b)

Figure 4.1: (a) A generic Rényi-Ulam game. (b) Misbehavior identification mapped
to a Rényi-Ulam game.

must be less than some fraction of i. The questioner wins the game if it determines

ω after at most q questions. Else, the responder wins. The questioner is said to

have a “winning strategy” if it can always win the game after at most q questions,

regardless of how the responder lies.

4.2.1 Applications of Rényi Ulam Games

A major area of application for Rényi-Ulam games is in error correcting codes

[4, 51, 53]. Assume two nodes are transmitting messages through a noisy chan-

nel. The sender sends a message through noisy channel, which can invert bits

causing the receiver to receive a corrupted message. In this scenario, the responder

is represented as the noisy channel, and lies by inverting up to a fixed number of

bits. The questioner, represented by the receiver, attempts to recover the original

messages. Obviously, if the receiver wants the correct a corrupted message with at

most e errors, then it requires the use of an e-error correcting code. These e-error

correcting codes can be modeled after Rényi-Ulam searching games. This simply

idea can be further expanded to a scenario in which the sender receives feedback

from the receiver concerning the transmission of messages. This feedback is also

transmitted through the noise channel. Thus the sender must decided on the opti-

mal transmission rate in which sent messages are represented as questions and the

48

(possibly corrupted) feedback represents answers.

Additionally, Rényi-Ulam games can be applied to communication networks in

which some of the components are faulty [52, 66]. Two common types of faults

are crash and Byzantine faults. A crash fault is relatively harmless in the sense

that it does not send, receive, or alter any messages in the network. Byzantine

faults, by contrast, are components which can either stop, reroute, or alter messages

arbitrarily (or maliciously). One such scenario is a distributed computing network

in which each machine has an initial value. All fault-free machines must agree on

the same value in a logical way. Thus faulty machines may attempt to prevent such

a convergence on a value. Another example is a collection of nodes in a network,

each of which have a message. The goal is to propagate the information such that

when finished, each node has a copy of all the other nodes messages. A faulty node

may attempt to prevent message transfers or transmit altered messages.

Rényi-Ulam games are also used to address the problem of searching in graphs

containing uncertainty [23, 33, 34, 36]. Assume an undirected graph in which one

of the nodes contains a sought after token (or piece of information). The questioner

starts at some node and attempts to located the token by traveling along as few

edges as possible. Each node that does not contain the token offers advice to the

questioner about which of its edges is on the shortest path to the token. However,

this advices is unreliable. Analogies to this problem would be asking for directions

at each stop in which the responder may lie (or give incorrect advice) with a fixed

probability. This problem can also be thought of as a user searching the Internet

looking for some piece of information. In this scenario, web pages may contain

incorrect or misleading links, while the user attempts to find the token in the least

number of “clicks” as possible.

49

4.3 Mapping to Rényi-Ulam Games

In our mapping of misbehavior identification to Rényi-Ulam games, the role of

the questioner is assumed by the source and the destination, while the role of the

responder is assumed by the nodes in PSD (by PSD, we refer to all intermediate nodes

excluding S and D). The search space is defined as the set of nodes in PSD, i.e.,

Ω = {n1, . . . , nk} with k = |PSD|. The responder selects a number ω ∈ {1, . . . , k},
corresponding to the node nω in path PSD which is misbehaving. The source’s goal

is to determine the value of nω, i.e., to locate the misbehaving node. The questions

submitted by the questioner correspond to the audits performed by the source to

nodes in PSD.

When responding to an audit, nodes state the set of packets forwarded to the next

hop. The source combines one or more audits to construct bit, cut, or membership

questions. The responder lies when a misbehaving node lies with respect to the

packets forwarded to the next hop. For example, a node lies by either claiming

to forward all packets received when in reality it drops them, or claiming to have

forwarded no packets indicating that no packets were received from the previous

hop. The location of the misbehaving nodes in PSD is mapped to the placement of

such lies by the responder. Figures 4.1(a) and 4.1(b) illustrate the mapping of the

misbehavior identification problem to a Rényi-Ulam game.

Note that an honest node will always respond faithfully to an audit, thus a lie can

only occur if a misbehaving node is audited. By adaptively selecting the nodes to be

audited at each step, the source can gather sufficient honest replies to identify nodes

in M . If each node in PSD is audited at most one time, the number of possible lies is

limited to ` = |M |. If nodes are audited multiple times, the number of lies allowed

to the responder is larger than the number of misbehaving nodes and depends on

the exact audit strategy. We now present one batch and two adaptive misbehavior

identification auditing strategies, inspired by Rényi-Ulam games.

50

4.4 Rényi-Ulam Inspired Searching Strategies

Let Xi denote the set of packets forwarded by a node ni to the next hop. For

example, the source sends packets XS to the destination, and nodes ni, nj forward

packets Xi, Xj respectively. In the absence of misbehavior in PSD and assuming no

packet loss XS = Xi = Xj. In reality, some portion of the packets may be lost due

to the wireless channel condition or congestion, and hence XS ≈ Xi ≈ Xj. In the

presence of misbehaving nodes, we define the notion of a misbehaving link.

Definition 1. A link (ni, ni+1) is defined as misbehaving if its two incident nodes

ni, ni+1 provide conflicting claims with respect to the packets forwarded to the next

hop, i.e., |Xi

⋂
Xi+1| ¿ |Xi|.

Proposition 1. At least one of the incident nodes to a misbehaving link is misbe-

having.

Proof. By contradiction. Assume that both nodes ni, ni+1 of a misbehaving link

are honest. Hence, the set of packets Xi+1 forwarded by ni+1 to the next hop

is approximately equal to the set of packets Xi, forwarded by ni to ni+1, i.e.,

|Xi

⋂
Xi+1| ≈ |Xi|. This contradicts the definition of a misbehaving link.

Definition 2. A simultaneous audit is defined as the process of auditing two or

more nodes with respect to the same set of packets XS.

Corollary 1. Two behaving nodes cannot be incident to a misbehaving link when

simultaneously audited.

Proof. By Proposition 1, at least one misbehaving node is incident to any misbehav-

ing link. Hence, two behaving adjacent nodes cannot be incident to a misbehaving

link. The simultaneous audit requirement ensures that the dropping pattern of any

misbehaving node upstream of behaving node ni has the same effect on the packets

observed by ni, ni+1. Thus packets forwarded by ni are also forwarded by ni+1, i.e.,

|Xi

⋂
Xi+1| ≈ |Xi|.

51

Note however that the converse statement to Corollary 1 is not true. For two

nodes ni and ni+1 in which |Xi

⋂
Xi+1| ≈ |Xi|, we cannot conclude that both nodes

are honest. This is due to the fact that two colluding misbehaving nodes may

be incident to a link, thus claiming similar audit replies regardless of the packets

forwarded downstream. We use the notions of a misbehaving link and simultaneous

audit to identify the misbehaving nodes. We now explore efficient strategies for

identifying the misbehaving node(s), inspired by Rényi-Ulam games.

4.4.1 REAct-B: Batch Audits

In the batch questioning game, the questioner submits all of its questions to the

responder at one time. The responder can review all questions before supplying

answers, allowing collusion among all questions. Each question is represented as an

audit in the form, “Did node ni receive and forward all packets in XS honestly?”

The source attempts to gather enough information about PSD through the audits

that at least one misbehaving link can be identified.

Let R be defined as a vector of length |PSD|, in which R[i] = 1 if node ni

receives and forwards all packets in XS honestly, and R[i] = 0 otherwise. Vector R

is representative of the state of PSD. Proposition 2 states that given R, the source

can identify at least one misbehaving link.

Proposition 2. Given R, at least one misbehaving link can be identified.

Proof. By definition, a misbehaving link is identified by two adjacent nodes return-

ing contradictory claims, thus R[i] 6= R[i + 1]. For all nodes ni upstream of nM ,

R[i] = 1. For all nodes nj downstream of nM , R[j] = 0. Thus, regardless of the value

of R[M], either (R[M − 1], R[M]) or (R[M], R[M +1]) will represent a misbehaving

link.

Vector R is constructed by the source through the questioning strategy. Ideally,

the source would like to utilize a winning questioning strategy requiring the minimal

52

number of audits. Therefore, how the q questions are selected determines the amount

of information about R gained by the source. As an example, if the source audits

all odd numbered nodes, i.e., n1, n3, . . . (q = |PSD|
2

), the source can never win the

game, since to identify a misbehaving link, its incident nodes need to be audited,

which never occurs.

Thus, the source needs to guarantee that the q questions will completely con-

struct R, such that by Proposition 2, the game will be won and the misbehaving

link identified. A single audit reply will determine one bit of R, while inferring on

additional bits, i.e., if ni claims no misbehavior this infers that all nodes upstream

of ni report no misbehavior. However, since a node may lie during its audit re-

ply, any inference about the behavior of its upstream and downstream nodes may

be incorrect. Therefore, in order to completely construct R, q = |PSD| audits are

required. Proposition 3 shows that q = |PSD| represents the winning questioning

strategy. The batch auditing strategy is presented in Algorithm 1.

Proposition 3. A winning strategy exists if q = |PSD|.

Proof. Assume q < |PSD| and |M | = 1. There exists some node ni ∈ PSD which

is not audited. Let R = {1, . . . , 1, •, 0, . . . , 0}, with R[i] = • representing an

un-audited node and therefore no information. In this case, (R[i − 1], R[i]) and

(R[i], R[i+1]) both represent a possible misbehaving link. However, the source can-

not produce proof of misbehavior since R[i] is not available. Therefore the responder

has won the game.

When q = |PSD|, this results in the complete construction of R by the source,

as the audit of node ni determines R[i] = {1, 0}. By Proposition 2, given R, the

source can identify at least one misbehaving node. Hence q = |PSD| is a winning

questioning strategy.

In Figure 4.2(a), the source sends packets to the destination along PSD =

{n1, . . . , n5}. Node n4 misbehaves by dropping all packets. The source audits all

53

S n1 n2 n3 n4 Dn5 S n1 n2 n3 n4 Dn5

(a) (b)

Figure 4.2: (a) S sends packets to D along PSD. Misbehaving node n4 drops all
packets. (b) S audits all nodes in PSD, i.e., {n1, . . . , n5} to identify the misbehaving
link.

nodes in PSD. If n4 claims misbehavior is downstream (|XS

⋂
X4| ≈ |XS|), then

the link (n4, n5) will be identified as the misbehaving link since the honest node n5

will claim misbehavior is occurring upstream (|XS

⋂
X4| ¿ |XS|). Likewise, if n4

claims misbehavior is upstream (|XS

⋂
X4| ¿ |XS|), then the link (n3, n4) will be

identified as the misbehaving link since the honest node n3 will claim misbehavior is

occurring downstream (|XS

⋂
X3| ≈ |XS|). Hence the misbehaving link is identified

independent of n4’s audit response.

While REAct-B provides a winning questioning strategy for the source, it re-

quires that all nodes in PSD must be audited. This has two consequences. First,

misbehaving nodes are always alerted to the search, and can thus modify their

misbehavior strategy to avoid implication. Secondly, message overhead increases

linearly as a function of path length, since all nodes must be audited. As our metric

of interest is resource-efficiency, this motivates the need for a non-linear search-

ing algorithm with respect to message overhead. Adaptive games provide such an

opportunity.

4.4.2 REAct-C: Adaptive Audits with Cut Questions

We now show how the source can identify the misbehaving nodes using an adaptive

strategy and cut questions. Cut questions can be implemented by auditing one node

at a time. These questions are of the form, “Is the misbehaving node upstream

of ni?”, where ni is the audited node. Assume there exists a single continuously

misbehaving node in PSD, i.e., |M | = 1 and define a suspicious set V = {n1, . . . , nk}.

54

Algorithm 1 REAct-B: Batch Questioning Algorithm

1: Audit(n1, n2, . . . , nk)

2: for i = 0 to |PSD| do

3: if |Xi

⋂
Xi+1| ¿ |Xi| then

4: return Xi, Xi+1

5: end if

6: end for

7: return No Misbehavior

If an audited node ni replies with Xi such that |XS

⋂
Xi| ¿ |XS|, the source

concludes that all nodes downstream of ni are behaving honestly, and therefore

nM ≤ ni. This is true since either ni is honest in which case it never received

packets in XS indicating an upstream misbehaving node, or ni is the misbehaving

node lying about its audit reply. Hence, all nodes downstream of ni must be honest

and V is reduced to {n1, . . . , ni}.
If the audited node ni replies that |XS

⋂
Xi| ≈ |XS|, the source concludes that

all nodes upstream of ni are honest, and therefore nM ≥ ni. This is true, since if any

node upstream of ni was the misbehaving one, ni would not have received packets

in XS. Thus the set V is reduced to {ni, . . . , nk}. We note that the audited node

always remains in V , since it can lie about the forwarded packets.

Pelc [51] proposed a questioning strategy for adaptive games in which the ques-

tioner wins if either the responder’s secret value ω is determined, or the questioner

can prove a lie took place. For a search space of size |Ω|, and a maximum number

of lies `, the winning strategy requires dlog2 |Ω|e+ ` questions. To find ω, the ques-

tioner first performs a binary search requiring dlog2 |Ω|e questions to converge to a

value ω′. It then asks the responder ` times if ω ≤ ω′. Since the responder is limited

in lies, the questioner can determine if ω′ is the secret value or the responder has

lied.

55

Following the winning strategy proposed by Pelc, let the source win if either

a misbehaving link is identified or the source can prove a lie has occurred. The

source can converge to a single link by performing a binary search. The source

initializes V = {n1, . . . , nk} and selects a node ni ∈ V to audit with i = d |V|
2
e. As

previously described, V is reduced to either {n1, . . . , nk} or {ni, . . . , nk}. The source

continues to audit nodes in V until |V| = 2. By Proposition 4, the source identifies

a misbehaving link.

Proposition 4. When |M | = 1 and nM is continuously misbehaving, the source

always converges to the misbehaving link in log2(|PSD|) audits.

Proof. Let |M | = 1 with nM being the misbehaving node. Initially, V = PSD and

hence nM ∈ V . Let the source select a node ni upstream of nM for audit. Since

|M | = 1, ni responds honestly that it forwarded packets to the next hop, reducing V
to {ni, . . . , nk}, with nM ∈ V . Similarly, if a node nj downstream of nM is audited,

it will respond that no packets were forwarded, reducing V to {n1, . . . , nj}. If nM

is audited, its response will indicate that misbehavior occurs either upstream of

downstream. In either case nM ∈ V , since the audited node always remains in V .

The convergence of the binary search will end in a suspicious set V = {nM−1, nM}
or V = {nM , nM+1}, depending on whether nM indicated that misbehavior occurs

upstream of downstream. If nM lied in its audit reply indicating that misbehavior

occurs downstream of nM (i.e. |XS

⋂
XM | ≈ |XS|), the set of suspicious nodes

will be reduced to V = {nM , . . . , nk}. Every node in V besides nM is honest and

hence, when audited, will indicate that misbehavior occurs upstream. The binary

search will converge on (nM , nM+1). Likewise, if nM claims it did not forward any

packets to the next hop (i.e. |XS

⋂
XM | ¿ |XS|), implying that misbehavior occurs

upstream of nM , the binary search will converge on link (nM−1, nM). In any case,

the identified link is a misbehaving one since per the definition its two incident nodes

provide conflicting audit replies. Since the binary search converges in log2(|PSD|),
in case |M | = 1 the source will locate nM in log2(|PSD|) steps.

56

S n1 n2 n3 n4 D S n1 n2 n3 n4 D

(a) (b)

S n1 n2 n3 n4 D

(c)

Figure 4.3: (a) Nodes n1 and n4 collude, with n4 dropping all packets. Audited node
n2 claims misbehavior is downstream. (b) Nodes n1 and n4 alter their behaviors,
with n1 dropping all packets and n4 behaving honestly. Audited node n3 claims
misbehavior is upstream. (c) Source simultaneously audits n2 and n3 to verify if
misbehaving link exists.

During the execution of REAct-C, the misbehaving node(s) may change their

misbehavior strategy by forwarding all packets (behaving honestly) to the next hop

honestly. In such a case, the destination alerts the source of the absence of misbe-

havior in PSD via an alarm message. The source will take two steps, independent of

the auditing strategy used. First, any outstanding audits will be discarded. Second,

REAct-C will be suspended at it’s current state until the source receives an alarm

message from the destination notifying it that misbehavior is occurring again. When

misbehavior is resumed, the source randomly selects a new set XS of packets for

the next audit. Thus a misbehaving node cannot conjecture when the audit process

begins, preventing it from modifying its dropping pattern accordingly.

However, Proposition 4 assumes the source is aware of the number of misbehaving

nodes in PSD, which is not true. If two or more nodes collude, the source may

converge on a link in which both nodes are behaving, as shown in the following

example. In Figure 4.3(a), M = {n1, n4} with nodes n1, n4 colluding. Initially,

n4 is dropping all packets, while n1 behaves. Let node n2 be audited and report

no misbehavior, thus V = {n2, n3, n4}. Assume now that nodes n1, n4 switch their

57

behavior with node n1 dropping packets while n4 is behaving, as shown in Figure

4.3(b). If node n3 is audited, it will report misbehavior upstream, reducing V to

{n2, n3} and thus removing misbehaving node n4 from V . Hence, link (n2, n3) is

incorrectly identified as the misbehaving one.

Pelc solves this problem through the repetitive questioning of the result obtained

via binary search, thereby exhausting the responder’s lies. In our case, a simulta-

neous audit on nodes ni, ni+1 of an identified link V = {ni, ni+1} is sufficient to

identify a misbehaving link or the occurrence of a lie. If |Xi

⋂
Xi+1| ¿ |Xi|, a

misbehaving link is identified. If |Xi

⋂
Xi+1| ≈ |Xi|, the source concludes that a

lie occurred, since in the absence of lies, the binary search would have converged to

the misbehaving link. Returning to our previous example, in Figure 4.3(c), n2, n3

are simultaneously audited. Since both nodes are honest, they return identical au-

dit replies and no misbehaving link is identified. In this example, the responder

has lied by changing the value of ω during the search, i.e., initially ω = n4, then

ω = n1. However, S identifies a lie occurred since n2 and n3 both claim misbehavior

is upstream.

When the source identifies a lie occurred, is can also reach to the following

conclusion: either (a) nM ∈ V but lied during the simultaneous audit, or (b) |M | ≥ 2

with at least one misbehaving node upstream of ni+1 and one downstream of ni. Note

that if |M | = 1 and the misbehaving node stops misbehaving (due to the fact that

it is being audited) the destination alerts the source that misbehavior has stopped

in PSD via an alarm message. If the destination does not alert the source that

performance in PSD has been restored, the source concludes that |M | ≥ 2. This

is evident in our example by the responses of n2 that on the first audit in Figure

4.3(a), it claims that misbehavior is downstream, while in Figure 4.3(c), it claims

misbehavior is upstream.

Let the link identified by the audit process be (ni, ni+1). Since the source knows

that at least one misbehaving node is upstream of ni and one misbehaving node

58

is downstream of ni+1, it attempts to isolate the effect of the misbehavior of each

node by partitioning PSD into PSni
= {n1, . . . , ni} and Pni+1D = {ni+1, . . . , nk}. The

source repeats the auditing strategy recursively for each path partition PSni
, Pni+1D.

However, note that the destination can only determine if misbehavior occurs in PSD;

not which partition.

To treat each partition individually, the source considers ni as a pseudo-

destination and ni+1 as a pseudo-source. In PSni
, node ni is always audited si-

multaneously with any other node. Similarly node ni+1 is audited simultaneously

with any other node in Pn+1D. Note that if ni is the misbehaving node, it has only

two strategies, (a) respond honestly, or (b) lie. If ni lies, it immediately implicates

itself in a misbehaving link, since both ni, ni+1 are always audited. If ni responds

honestly, the search in PSni
will converge to the misbehaving link (assuming one

misbehaving node in PSni
). For the realization of the cut questions, the source ini-

tializes VSni
= {n1, . . . , ni} and selects node nj for audit with j = d |VSni

|
2
e. The cut

question “Is nM ≤ nj?” is true if |XS

⋂
Xj| ¿ |XS| and |XS

⋂
Xi| ¿ |XS|. The

second condition verifies that misbehavior is occurring on PSni
.

Likewise on Pni+1D, the audit response of ni+1 acts as a verification if packets

from XS have reached this partition. Node ni+1 therefore acts as a pseudo-source for

Pni+1D. Much like ni, if ni+1 lies it immediately implicates itself in a misbehaving link

since (ni, ni+1) is always audited. Thus the source can identify multiple misbehaving

links using this adaptive auditing strategy. REAct-C is presented in Algorithm 2.

4.4.3 REAct-M: Adaptive Audits with Membership Questions

The source can also use an adaptive auditing strategy based on membership

questions to identify the misbehaving nodes. Membership questions can be con-

structed by combining two cut questions. To answer the membership question, “Is

nM ∈ A = {ni, . . . , nj}?” the source audits ni, nj simultaneously and compares

their audit replies. If |Xi

⋂
Xj| ≈ |Xi|, then ni, nj claim that nM /∈ A, since all

59

Algorithm 2 REAct-C: Cut Questioning Algorithm

1: ni ← n1, nj ← n|PSD|,V = {ni, . . . , nj}
2: while |V| > 2 do

3: h = d |V|
2
e, Audit(nh)

4: if |XS

⋂
Xh| ≈ |XS| then

5: ni ← nh

6: else

7: nj ← nh

8: end if

9: end while

10: Audit(ni, nj)

11: if |Xi

⋂
Xj| ¿ |Xi| then

12: return Xi, Xj

13: else

14: return |M | ≥ 2, Partition PSD

15: end if

packets forwarded by ni are received by nj. Else, they claim nM ∈ A.

Dhagat et al. [17] proposed an adaptive questioning strategy which proceeds in

stages. During each stage, the questioner either believes the responder’s answer and

places it in a trusted set T , or discards it if the answer contradicts prior answers.

Let Vj represent the set of possible values for ω at stage j, with V1 being initialized

to Ω.

Suppose that Vj is the current stage, with |Vj| greater than one, and let set

{rj−1,a, rj−1,b} represent the answers to round j − 1. The questioner divides Vj into

two equal-sized subsets, A and B. The responder is asked “Is ω ∈ A?” If the

answer rj,a is “yes”, the questioner adds {rj,a} to T and moves to the next stage

with Vj+1 = A. If the responder replies “no”, the questioner asks “Is ω ∈ B?” If the

60

S n1 n2 n3 n4 Dn5 S n1 n2 n3 n4 Dn5

(a) (b)

S n1 n2 n3 n4 Dn5

(c)

Figure 4.4: (a) Let V1 = {S, n1, . . . , n5, D} with A = {S, n1, n2, n3}, B =
{n3, n4, n5, D} and nM = n4. The source audits A, concluding nM /∈ A. (b)
The source then audits B, concluding nM ∈ B. (c) The source proceeds to stage
V2 = {n3, n4, n5, D} and continues the auditing strategy.

answer rj,b is “yes,” {rj,a, rj,b} are added to T and the questioner moves to Vj+1 = B.

If both rj,a, rj,b are negative, then the questioner removes {rj−1,a, rj−1,b} from T , and

returns to stage Vj−1. The questioner then selects a different partition of Vj1 for

stage j and repeats the questioning on each partition. Dhagat et. al. showed that

the responder’s secret value ω can be identified after q = d2 log2 |Ω|
1−3β

e questions, when

β < 1
3
, with β being the fraction of q than are lies [17]. To prevent the continuous

lies from the same misbehaving node, the source selects a new n′i and repeats the

membership questions, until |Vj| = 2.

Mapping Dhagat’s questioning strategy to misbehavior identification, the source

begins from stage V1 = {S, n1, . . . , nk, D}. Set V1 is divided into two subsets, A =

{S, . . . , ni} and B = {ni, . . . , D} with i = d |V1|
2
e. The source first asks “Is nM ∈

A?” by simultaneously auditing nodes S, ni. If S and ni return conflicting audit

replies, i.e., |XS

⋂
Xi| ¿ |XS|, the source knows that nM ∈ A, adds {r1,a} to

T , and proceeds to stage V2 = {S, . . . , ni}. If the audit replies from S, ni are

identical, the source questions “Is nM ∈ B?” by simultaneously auditing nodes

ni, D, whose audit replies define answer r1,b. If ni, D return conflicting audit replies,

i.e., |Xi

⋂
XD| ¿ |Xi|, the source knows that nM ∈ B, adds {r1,a, r1,b} to T , and

proceeds with V2 = {ni, . . . , D}. If both r1,a, r1,b are negative, the source concludes

61

a lie has occurred.

In Figure 4.4(a), node n4 is the misbehaving node. The source splits V1 =

{S, n1, . . . , n5, D} to sets A = {S, n1, n2, n3}, B = {n3, n4, n5, D}, and audits n3 to

realize the membership question “Is nM ∈ A?” Since |XS

⋂
X3| ≈ |XS|, the source

asks “Is nM ∈ B?” by simultaneously auditing n3, D, as shown in Figure 4.4(b).

The outcome of the new audit is |X3

⋂
XD| ¿ |X3|, and the the source concludes

nM ∈ B. In Figure 4.4(c), the source moves to the next auditing stage, with

V2 = B = {n3, n4, n5, D}, by dividing V2 into two memberships sets. The process

is repeated until |Vj| = 2. In our example, the source converges on the misbehaving

link {n3, n4}.

Proposition 5. When |M | = 1, the source converges to the misbehaving link in less

than 4 log2(|PSD|) + 2 audits.

Proof. Let the source be at stage Vj = {ni, . . . , nk} with nM ∈ Vj and select node

nh for audit, creating membership sets A = {ni, . . . , nh} and B = {nh, . . . , nk}. If

nM 6= ni, nh, nk, then all audit responses will be honest and the source will conclude

either nM ∈ A or nM ∈ B, thus proceeding to the next stage with Vj+1 = A,

Vj+1 = B and nM ∈ Vj+1. As long as the source audits honest nodes, the set of

suspicious nodes Vj will be cut to half, thus converging to |Vj| = 2.

Now assume one of the ni, nh, nk is nM . When audited, nM will either respond

honestly, or lie. If nM responds honestly, this is equivalent to both audited nodes be-

ing honest and the search will proceed to state Vj+1 with nM ∈ Vj+1 and |Vj+1| = |Vj |
2

.

Thus the search continues to converge. If nM lies, the source will obtain negative

answers from both membership questions, unable to reduce Vj further, thus return-

ing to stage Vj−1 with nM ∈ Vj−1. The source will then pick a different nh, and

repeat the set splitting and auditing, thus preventing the same lie from repeating.

Since there is only one misbehaving node, and each node is audited at most once,

the auditing strategy will converge to |Vj| = 2, with nM in Vj.

62

For computing the number of steps needed for the convergence to the misbehav-

ing link, assume the worst case and let each stage always require two membership

questions, i.e., “Is nM ∈ A?” and “Is nM ∈ B?” In the absence of lies, the total

number of membership questions needed is 2 log2(|PSD|). This is true, since at each

stage we split the suspicious set to half similar to a binary search. To realize a

membership question we need to simultaneously audit two nodes, requiring a total

of 4 log2(|PSD|) audits in the worst case (assume no lies). If nM is audited and lies,

the search backtracks to the previous stage, resulting in the waste of two audits.

Given that |M | = 1 and the fact that the source always selects a different node to

audit after a backtrack, the misbehaving node will be audited only once. Thus, in

the worst case, the source requires q ≤ 4 log2(|PSD|) + 2 audits.

REAct-M is presented in Algorithm 3. Now assume |M | ≥ 2. By Corollary 2, if

the source converges to a link, it must be misbehaving.

Corollary 2. The source can never converge to a link containing two behaving

nodes.

Proof. According to REAct-M, the source must receive conflicting reports from two

simultaneously audited nodes to proceed from stage j − 1 to stage j. Hence, for

terminating to a set Vj = {ni, ni+1} the source must receive conflicting audit replies

from ni, ni+1, when simultaneously audited. However, as shown in Corollary 1, this

cannot occur if both ni, ni+1 are behaving nodes.

It is possible that multiple neighboring colluding nodes can delay the search

indefinitely. Assume all nodes in Vj collude. Once in stage Vj+1, the replies to

the audits from the colluding nodes yield membership questions on both partitions

negative, thus forcing the source to return to stage Vj. Auditing any other node

in Vj will yield the same results since nodes in Vj are colluding. If the source has

audited all possible partitions of Vj, and thus all ni ∈ V , with no progress to the

next stage, it terminates the search and proceeds to the identification phase.

63

Algorithm 3 REAct-M: Membership Questioning Algorithm

1: V1 = {ni, . . . , nk}, ni ← S, nk ← D,T = r1,a

2: while |Vj| > 2 do

3: h = d |Vj |
2
e, rj,a = audit(ni, nh)

4: if |Xi

⋂
Xh| ¿ |Xi| then

5: T ← {rj,a}
6: j = j + 1, Vj = {ni, . . . , nh}
7: else

8: rj,b = audit(nh, nk)

9: if |Xh

⋂
Xk| ¿ |Xh| then

10: T ← {rj,a, rj,b}
11: j = j + 1, Vj = {nh, . . . , nk}
12: else

13: return j = j − 1

14: end if

15: end if

16: end while

17: return Xi, Xk

4.5 Node Identification

Regardless of the auditing strategy employed, the source will identify a misbehaving

link (ni, ni+1), in which either ni or ni+1 is sure to be the misbehaving node. The

source identifies the misbehaving node by making a slight alteration to the routing

path PSD. We now present two methods of path modification, (a) Path Division,

and (b) Path Expansion. We then present how the source identifies which of the

two nodes is causing the misbehavior for both the single and multiple misbehaving

node scenario.

64

S

D

n1

n2

n3

n4

n5

n6

(a)

S

D

n1

n2

n3

n4

n5

n6

n

n

(b)

Figure 4.5: (a) Node n5 drops packets, with link (n4, n5) being the misbehaving link.
(b) The source performs path division separating n4 and n5 in independent paths,
thereby isolating their affects from one another.

4.5.1 Routing Path Modification

The goal of performing routing path modification is to isolate the affect of the two

nodes in the misbehaving link (ni, ni+1) such that the source can determine which

node is causing the misbehavior. In the first method, called path division, the

source makes a slight modification to PSD such that packets are routed through

either ni or ni+1. The source splits PSD into two paths by selecting nodes nj and

nk, in which nj, nk 6= ni, ni+1. Node nj is upstream of ni, ni+1, while node nk

is downstream of ni, ni+1. The routing path segment between nodes nj and nk

is replaced with two disjoint path segments such that one segment contains node

ni and the other segment contains node ni+1. In Figure 4.5(a), the source has

reduced the set of possible misbehaving nodes to two, thus either n3 or n4 is the

misbehaving node. In Figure 4.5(b), the source selects n2, n5 as the upstream and

65

S

D

n1

n2

n3

n4

n5

n6

n

Figure 4.6: The source performs path expansion by inserting node nα between n4

and n5, thereby effectively removing the misbehaving link (n4, n5) from PSD.

downstream nodes, respectively. Path segment {n2, n3, n4, n5} is replaced by the

segments {n2, nβ, n4, n5} and {n2, n3, nα, n5}, thus isolating n3, n4 from each other.

It may be the case that two independent paths are not available to perform

path division. A second method, called path expansion, is then used to remove

the misbehaving link (ni, ni+1) from PSD. Path expansion inserts at least one ad-

ditional node between the suspicious nodes ni and ni+1, thus misbehavior is forced

to appear on a different link (since link (ni, ni+1) no longer exists). Again, as was

shown in Figure 4.5(a), assume link (n4, n5) is misbehaving with node n5 drop-

ping packets. The source performs path expansion by adding node nα such that

PSD = {. . . , n4, nα, n5, . . .}, as shown in Figure 4.6.

4.5.2 Single Misbehaving Node

Without loss of generality assume that the auditing process converged to a mis-

behaving link (nM , nM+1), where nM is the misbehaving node (the other case is

convergence to (nM−1, nM)). The source divides PSD, into two paths such that

packets are routed through either nM or nM+1, but not both, and attempts to re-

identify the misbehaving link. This can be achieved by bypassing each node in

PSD via an alternative path. Instead of performing the entire audit process from

the beginning in each of the paths, the source concentrates on the nodes around

nM , nM+1, For example, in Figure 4.5(a), the source has identified link (n3, n4) as

66

the misbehaving one. In Figure 4.5(b), the source splits the traffic between two

paths that bypass n3, n4 in turn via nodes nα, nβ. Path segment {n2, n3, n4, n5} is

replaced by the segments {n2, nβ, n4, n5} and {n2, n3, nα, n5}, thus isolating n3, n4

from each other. The source simultaneously audits nodes nβ, n4 and n3, nα to iden-

tify the misbehaving link. The source identifies link (n3, nα) as misbehaving, and

hence identifies node n3 as the misbehaving node.

4.5.3 Multiple Misbehaving Nodes

Let us now assume the existence of multiple misbehaving nodes in PSD, i.e., |M | ≥ 2.

If REAct-C is employed, the source will split PSD to smaller paths in order to isolate

the effect of each misbehaving node. The source can then perform the path division

in each subpath as in the case of a single misbehaving node and identify where

misbehavior occurs. The source uses the pseudo-sources and pseudo-destinations to

perform this search. Note that, as in the case of |M | = 1, the newly added nodes

must not be misbehaving in order to avoid framing honest nodes. If REAct-M is

employed, the source will converge to a set Vj of neighboring misbehaving nodes

with set Vj containing at most one honest node. To identify the misbehaving nodes,

all nodes in Vj must be excluded in turn from PSD according to the path division

process. That is, the source constructs |Vj| individual paths with each node in Vj

being present on only one path.

4.6 Constructing Questions with Bloom Filters

The source combines multiple Bloom filters to realize questions, based on Equation

3.3. Assume the source asks the cut question, “Is nM ≤ ni?” for some ni ∈ PSD. As

previously explained, the source requests an audit from ni, who constructs a Bloom

filter vi, representing the set of packets Xi forwarded to the next hop, and returns

it to the source. The source then computes |XS

⋂
Xi|. If |XS

⋂
Xi| ¿ |XS|, the

67

S n1 n2 n3 n4 Dn5 S n2 n3 n4 Dn5

(a) (b)

S n1 n2 n4 Dn5 S n1 n2 n3 Dn5

(c) (d)

Figure 4.7: (a) S sends packets to D through PSD. Node n2 was audited, reducing
the suspicious set to V = {n2, . . . , n5} (shown bounded by the dotted box). Let
the PSD change due to mobility. (b) Honest node n1 is removed from PSD, causing
no change to V . (c) Honest node n3 is removed from V , causing a reduction in the
suspicious set. (d) Misbehaving node n4 is removed from V , restoring the connection.

misbehaving node is upstream of ni. Else, nM is downstream of ni.

Assume the source is using REAct-M and asks the question, “Is nM ∈ A?” for

some A ⊆ PSD, with A = {ni, . . . , nj}. As previously explained, the source requests

audits from ni and nj, each of which constructs a Bloom filter representing the set

of packets Xi and Xj forwarded to the next hop, respectively, and returns it to the

source. The source then computes |Xi

⋂
Xj|. If |Xi

⋂
Xj| ¿ |Xi|, then nM ∈ A,

since not all packets received by ni were received by nj. Thus a misbehaving node

must be in A dropping packets.

4.7 Mobility

We now relax our assumption that PSD does not change for the entire duration of

the misbehavior identification process. Figure 4.7(a) shows a source using REAct-

M, in which V = {n2,n5} (shown bounded by the dotted line). Let us first look

at the case where a node ni is removed from PSD during execution. If ni /∈ V , then

its removal has no effect on the auditing strategy. The source can only identify a

misbehaving link from the nodes in V . Figure 4.7(b) shows the removal of node

68

S n1 n2 n3 n4 Dn5

n

(a)

S n1 n2 n3 n4 Dn5

n

S n1 n2 n3 n4 Dn5

n

(b) (c)

Figure 4.8: (a) Honest node nα is added to V ; as if nα had been there from start. (b)
Honest node nα added to PSD, nα /∈ V , causing no change to V . (c) Misbehaving
node nα added to PSD, nα /∈ V . Previously shown this is detected.

n1 /∈ V has no affect on V . Let ni ∈ V . There are two cases, either ni is a behaving

node, or ni is misbehaving. If ni is behaving, then removing ni is analogous to

reducing V to a smaller set that still contains the misbehaving node. Figure 4.7(c)

shows the removal of honest node n3 from V , resulting in a beneficial reduction

in the size of V . If ni is a misbehaving node, then the performance in PSD will

be restored or one less misbehaving node will be present. Figure 4.7(d) shows the

removal of misbehaving node n4 from V thus restoring communication between the

source and destination.

Let us now look at the case where a node ni is added to PSD. If ni is added

between nodes in V , then regardless of ni’s behavior, this is equivalent to ni being in

V , in the first place and not yet been audited. Figure 4.8(a) shows a node nα being

added to V , thus representing the scenario that nα had been in V from the beginning

of the search. Let ni be added in PSD outside V . If ni is an honest node, there is no

effect on the audit process. Figure 4.8(b) shows an honest node nα being added to

PSD outside of V . There is no affect since nα is honest and V has not changed. If ni

is a misbehaving node, then this is equivalent to the situation in which |M | ≥ 2 and

one of the nM has been removed from V . Figure 4.8(c) shows a misbehaving node

69

nα being added to PSD outside of V . However, we have shown that both auditing

strategies can recognize this scenario. In the case of cut questions, the source splits

PSD into two paths to isolate the misbehavior of multiple nodes. In the case of

membership questions, the source will still converge on the misbehaving node that

is in V . Once this node is removed, the source will continue to identify the newly

added misbehaving node.

4.8 Source/Destination Misbehavior

We now consider the case of source and/or destination misbehavior. The source and

destination do not misbehave through packet dropping since if they did not want

to send/receive packets, they could have refused to establish the connection in the

first place. Thus we focus on source/destination misbehavior in terms of a framing

attacks by producing proof of misbehavior for an honest node.

Proof of misbehavior in REAct relies on the proofs of misbehaving links. Recall

that a misbehaving link is defined as two adjacent nodes that when simultaneously

audited return conflicting claims of packets forwarded, i.e., link (ni, ni+1) is a mis-

behaving link if the result of a simultaneous audit of ni, ni+1 is |Xi

⋂
Xi+1| ¿ |Xi|.

Thus a misbehaving source/destination would have to either forge an audit response

for either ni or ni+1, since by Corollary 1, two honest nodes cannot return conflict-

ing audit replies. However this is impossible since each audit reply is signed by the

nodes private key. While the source could construct a Bloom filter X ′
i, it could not

produce a valid signature. Thus if the source submits X ′
i to nodes in the network,

the signature check will fail and the claim of misbehavior will be ignored. REAct’s

proof of node misbehavior does not rely on nodes accusing other nodes of dropping

packets, but instead only requires nodes to commit to their own behavioral in a

publicly verifiable manner. Thus the proof of node misbehavior is constructed in a

distributed manner and does not rely on trust in any single node.

71

CHAPTER 5

Performance Evaluation

5.1 Simulation Setup

We randomly deployed 100 nodes within an 80×80 square area, and randomly se-

lected the source/destination pairs. For each source/destination pair S, D we con-

structed the shortest path PSD and randomly selected the set of nodes that misbe-

have. We generated traffic from S to D according of constant bit-rate (CBR) model

and sent packets to the destination following the UDP protocol. When considering

scenarios in which |M | = 2, the misbehaving nodes behave independently of each

other. Misbehaving nodes alter between behavior and misbehavior according to an

ON/OFF process. The duration of each state is uniformly selected from [1, 400]

packets.

In our simulations, we focus on two metrics of interest:

• Communication Overhead: We define communication overhead as the

number of messages transmitted/received by nodes in PSD in order to identify

the misbehaving nodes. We weigh transmitted and received messages by 1

and 0.5, respectively [20].

• Delay: We define delay as the time elapsed from the time instant that the

source is notified of misbehavior until the misbehaving nodes are identified.

We normalize delay by the audit duration.

72

5 6 7 8 9 10 11 12 13 14 15

10
2

10
3

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
Communication Overhead as a Function of |P

SD
|

REACT−B
REACT−C
REACT−M

|M| = 1

5 6 7 8 9 10 11 12 13 14 15
10

2

10
3

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of |P
SD

|

REACT−B
REACT−C (Parallel)
REACT−C (Series)
REACT−M

|M| = 2

(a) (b)

Figure 5.1: (a) Communication overhead required to identify a single misbehaving
node (|M | = 1) as a function of path length, |PSD|. (b) Communication overhead
required to identify two misbehaving nodes (|M | = 2) as a function of path length.

5.2 Auditing Strategy Comparison

In our first experiment, we analyze the performance of the three Rényi-Ulam in-

spired auditing strategies; the strategy based on batch questions, called REAct-B,

as described in Algorithm 1, the strategy based on cut questions, called REAct-C, as

described in Algorithm 2, and the strategy based on membership questions, called

REAct-M, as described in Algorithm 3. We compare the aforementioned strategies

in terms of communication overhead and delay.

5.2.1 Communication Overhead

In Figure 5.1(a), we show the communication overhead required to identify one

misbehaving node as a function of the path length. We observe that REAct-C

requires less communication overhead compared to the other two. This is expected,

as the realization of cut questions requires only one audit, whereas membership

questions require two audits. Both auditing strategies audit in a binary fashion, thus

resulting in logarithmic increases in communication overhead with respect to path

length. REAct-B requires the greatest communication overhead. This is because in

73

batch auditing mode every node in PSD must be audited to identify the misbehaving

node with certainty, thus causing a linear increase of the overhead with respect to

path length.

In Figure 5.1(b), we show the communication overhead required to identify two

misbehaving nodes as a function of path length. Again, REAct-B requires the great-

est communication overhead, due to every node in PSD being audited. Depending

on the misbehavior strategy of the nodes in M , REAct-C may partition PSD. Thus

we plot the communication overhead for two cases: (a) when no partition occurs (Se-

ries), i.e., one misbehaving node is first identified and removed before the second one

can be identified, and (b) when PSD is partitioned to two paths and the two paths

are audited in parallel (Parallel). Note that whether REAct-C operates in series

or parallel mode depends on the misbehavior patterns of the compromised nodes.

Two colluding nodes can force the source to split the path, thus operating in paral-

lel mode, while two independent misbehaving nodes may lead to a series algorithm

execution. Although similar, the communication overhead of REAct-C (Parallel)

increases faster than the series case since once partitioned, the source must audit

two nodes at a time, i.e., the audited node ni and the pseudo-source/destination.

5.2.2 Identification Delay

In Figure 5.2(a), we show the delay required to identify one misbehaving node as

a function of path length. Both REAct-C and REAct-M incur approximately the

same delay when |M | = 1, due to their binary search approach. REAct-B, on the

other hand, requires the least delay since all nodes are audited simultaneously. Thus

REAct-B requires two rounds of auditing to identify the two misbehaving links and

identify the misbehaving node.

In Figure 5.2(b), we show the delay required to identify two independently mis-

behaving nodes as a function of path length. As expected, REAct-B incurs the

least delay due to the simultaneous audit of all nodes in PSD. In REAct-C, after

74

5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

Path Length, |P
SD

|

D
el

ay
Identification Delay as a Function of |P

SD
|

REACT−B
REACT−C
REACT−M

|M| = 1

5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

REACT−B
REACT−C (Parallel)
REACT−C (Series)
REACT−M

|M| = 2

(a) (b)

Figure 5.2: (a) Delay required to identify a single misbehaving node (|M | = 1) as
a function of path length, |PSD|. (b) Delay required to identify two misbehaving
nodes (|M | = 2) as a function of path length, |PSD|.

the path is partitioned, the auditing of the two partitions is dependent on the mis-

behavior strategies of nodes in M . In the worst case, only one misbehaving node

drops packets at a time. Thus the search will only audit the path partition which

is reporting misbehavior. This causes the source to search the partitions in series,

i.e., one at a time. If both misbehaving nodes drop packets, the source can audit

the two path partitions in parallel, since each path partition contains a source (or

pseudo-source) and a destination (or pseudo-destination). This parallel auditing

decreases the incurred delay.

For REAct-C, we plot both the case of search in series and parallel, giving an

expected range of delay. Note that the delay of REAct-M falls within this range;

closer to the parallel REAct-C for smaller path sizes and closer to the series REAct-

C as the path length increases. This is due to the fact that in REAct-C, the source

cannot determine if a lie occurred until performing a simultaneous audit to the two

nodes adjacent to the converged upon link at the end of the search. In REAct-

M, the source determines if a lie occurred by looking for contradictions at every

stage. Therefore, if a lie is found, the penalty is only the waste of two audits, and

not a complete series of audits in PSD as in REAct-C. This results in a tradeoff in

75

which REAct-M incurs an additional overhead per stage compared to REAct-C by

checking for contradictions at the expense of delay.

5.2.3 Impact of Node Mobility

In our second experiment, we simulated the impact of node mobility on REAct in

terms of communication overhead and delay. We assumed a single misbehaving

node (|M | = 1) and focused on the case when nM moves to a different position in

the path PSD. Mobility of honest nodes was not considered here since deletion of

honest nodes leads to faster identification of misbehavior, and addition of honest

nodes only marginally increases communication overhead and identification delay.

The movement of the misbehaving node was unrestricted inside PSD and can occur

at any point during the execution of REAct. For all simulations, we varied the rate

at which the misbehaving node nM repositions itself in PSD. This repositioning,

referred to as the average time between path modifications, is normally distributed

and is represented in number of packets. We vary this average time between path

modification from one audit duration to 3.5 audit durations, i.e., 200 packets to 700

packets. The variance is fix at 50 packets.

We assumed that the source is aware of any changes made to PSD. If nM moves

to a different position in PSD, but stays inside of the suspicious set V , then no

change is necessary in the searching process since this is analogous to nM being in

that position from the start of the search. The source will continue to execute the

auditing until |V| = 2. Suppose nM moves to a position outside the set V . To

make sure that no node is excluded from |V| due to mobility, the source expands

the suspicious set such that nM is in V . Thus, if V = {ni, . . . , nM , . . . , nj} and

nM moves upstream of ni, then the source will adjust V to {nM , . . . , ni, . . . , nj}. A

similar adjustment will be made if nM moves downstream of nj. All simulations

are performed on a path of 16 nodes. We utilized two mobility models for the

misbehaving node:

76

• Normally Distributed Mobility: Under this mobility model, nM moves

to a different position in PSD according to a normal distribution. We set

the average number of hops, µn, to 1 hop from its current position with a

variance, σn of 1 hop. These numerical values were selected based on the

actual limitations of a mobile node. Assume a radio range of 100 meters,

a transmission speed of 1 Mbps, a packet size of 1500 bytes, and an audit

duration ad of 200 packets. For these parameters, auditing a single node

requires 2.4 seconds. Given that a mobile node would have to travel at least

100 meters (the radio range) to move to a different position in PSD, and varying

the time between path modifications, this yields mobility speeds of [150, 43]

km/hr for the misbehaving node.

• Uniformly Distributed Mobility: Under this mobility model, nM selects

a different position in PSD to move according to a uniform distribution. By

fixing the mobility speed of nM at 25 km/hr and varying the time between

path modifications, we can determine the range data rates. For a misbehaving

node that moves 1 hop the corresponding range of data rates is [88.3, 291.7]

kbps, while a misbehaving node that moves 16 hops yields the corresponding

range of data rates is [5.2, 18.2] kbps.

In Figure 5.3(a), we show the impact of node mobility on the communication

overhead as a function of the average time between path modifications. Node nM

moves upstream or downstream according to a normal distribution. As expected,

the less mobile the node is, the less overhead required to identify nM . The overhead

of REAct-B is independent of mobility. This is because it uses a batch auditing

algorithm and thus does not rely on reducing the size of a suspicious set. All that

is required is the identification of two misbehaving links. Note that regardless of

the position of nM , it is always identified in a misbehaving link. Additionally, if

nM moves, this is allows the source to identify a second misbehaving link without

77

1 1.5 2 2.5 3 3.5
0

200

400

600

800

Average Inter−mobility Time, µ
d
, in Audits

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
Impact of Mobility on Overhead for

Normally Distributed Movement

REACT−B
REACT−C
REACT−M

1 1.5 2 2.5 3 3.5
0

200

400

600

800

Average Inter−mobility Time, µ
d
, in Audits

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Impact of Mobility on Overhead for
Uniformly Distributed Movement

REACT−B
REACT−C
REACT−M

(a) (b)

Figure 5.3: (a) Impact of mobility on communication overhead as a function of the
average time between path modifications. Communication overhead is shown as a
normalized metric in which the transmission of a packet incurs a cost of 1 while the
reception incurs the cost of 0.5. The misbehaving node repositions itself upstream or
downstream according to a normal distribution with µn = 1 hop and σn = 1. Path
length is fixed at 16 nodes. (b) Impact of mobility on communication overhead as
a function of the average time between path modifications. The misbehaving node
repositions itself on PSD randomly according to a uniform distribution.

requiring path division or path expansion, since the goal of each of these methods are

to remove original misbehaving link from PSD, which was accomplished during the

movement of nM . Thus the mobility of nM does not provide any benefit with respect

to communication overhead. This is not the case with REAct-C and REAct-M,

since the auditing strategy is adaptive and thus continually reduce the set V . Note

that as the misbehaving node becomes less mobile, the communication overhead of

REAct-C and REAct-M converges to the static PSD case as shown in Figure 5.1(a).

In Figure 5.3(b), we show the impact of node mobility on the communication

overhead as a function of the average time between path modifications, for uniformly

distributed mobility. We note that under this model, the communication overhead

for REAct-C and REAct-M is higher compared to normally distributed mobility.

This is due to the fact that in the earlier case, a misbehaving node most likely

remains in the suspicious set with no further impact on the identification process.

On the other hand, under the uniform model, the suspicious set V is more likely to

78

1 1.5 2 2.5 3 3.5
0

5

10

15

20

Average Inter−mobility Time, µ
d
, in Audits

D
el

ay
Impact of Mobility on Delay for
Normally Distributed Movement

REACT−B
REACT−C
REACT−M

1 1.5 2 2.5 3 3.5
0

5

10

15

20

Average Inter−mobility Time, µ
d
, in Audits

D
el

ay

Impact of Mobility on Delay for
Uniformly Distributed Movement

REACT−B
REACT−C
REACT−M

(a) (b)

Figure 5.4: (a) Impact of mobility on communication overhead as a function of the
average time between path modifications. Communication overhead is shown as a
normalized metric in which the transmission of a packet incurs a cost of 1 while the
reception incurs the cost of 0.5. The misbehaving node repositions itself upstream or
downstream according to a normal distribution with µn = 1 hop and σn = 1. Path
length is fixed at 16 nodes. (b) Impact of mobility on communication overhead as
a function of the average time between path modifications. The misbehaving node
repositions itself on PSD randomly according to a uniform distribution.

expand causing additional overhead until |V| = 2. The performance of REAct-B is

the same under both mobility models. This is expected, since REAct-B uses a batch

auditing strategy and does not rely on reducing the suspicious set. As expected, the

results for the identification delay converge to the state PSD case shown in Figure

5.1(a) as mobility decreases.

In Figure 5.4(a), we show the impact of node mobility on the identification delay

as a function of the average time between path modifications, under the normally

distributed mobility model. Again, the identification delay for REAct-B is indepen-

dent of the mobility of nM . This is based of the same argument as before; namely

that a misbehaving link is always identified in batch auditing mode, and thus two

rounds of auditing, and hence a delay of 2, are required to identify the misbehaving

node.REAct-C and REAct-M require an increased delay when nM is highly mobile,

due to the fluctuations in the suspicious set.

In Figure 5.4(b), we show the impact of mobility on the identification delay as a

79

function of the average time between path modifications, for a uniformly distributed

mobility model. This model yields a higher delay for REAct-C and REAct-M since

it is less likely for nM to remain in the suspicious set when it moves. As with

the communication overhead, REAct-B performs the same under both the normally

distributed mobility model and the uniformly distributed mobility model. Again,

note that both Figure 5.4(a) and Figure 5.4(b) converge to the state PSD case shown

in Figure 5.2(a).

5.3 Comparison with Other Schemes

We now compare the performance of our Rényi-Ulam inspired schemes to CONFI-

DANT [9], 2ACK [40], and AWERBUCH [2]. For the CONFIDANT scheme, every

one-hop neighbor of a transmitting node was assumed to operate in promiscuous

mode, thus overhearing transmitted messages. The energy for overhearing a mes-

sage was set to 0.5 times the energy required to transmit one [20]. For the 2ACK

scheme, a fraction p of the messages transmitted by each node was acknowledged two

hops upstream of the receiving node. We set that fraction to p = {1, 0.5, 0.1} [40].

AWERBUCH identifies misbehaving links by probing the path, requiring selected

nodes to send acknowledgment messages back to the source.

Since both CONFIDANT and 2ACK schemes are proactive, they incur commu-

nication overhead regardless of the existence of a misbehaving node. On the other

hand, our schemes and AWERBUCH incur overhead only if misbehavior is observed,

due to their reactive nature. We select the adaptive auditing strategy utilizing cut

questions (REAct-C), for our figures. The plots in Figure 5.1(a)-(d) can be used for

comparisons with REAct-B and REAct-M. To provide a fair comparison between

the four schemes, we first considered the overhead during a fixed duration of time,

i.e., the time required to identify the misbehaving node using REAct-C. The audit

duration was set to 200 packets.

80

5 7 9 11 13 15
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
Communication Overhead as a Function of |P

SD
|

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REACT−C

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
d

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of a
d

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REACT−C

(a) (b)

5 7 9 11 13 15
0

5

10

15

20

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REACT−C

(c)

Figure 5.5: (a) Communication overhead as a function of path length, for an audit
size of 200 packets (ad = 200). The overhead is computed for the time required by
REAct-C to converge on the misbehaving node. (b) Communication overhead as a
function of audit size for a path length of eight nodes (|PSD| = 8). (c) Identification
delay as a function of the path length, for an audit size of 200 packets (ad = 200).

5.3.1 Fixed Time Communication Overhead

In Figure 5.5(a), we show the communication overhead as a function of path length.

The Y axis is shown in logarithmic scale. The communication overhead for REAct-

C is between 1-2 orders of magnitude less than the communication overhead for the

other schemes. This gain is due to the fact that REAct-C does not expend energy on

a per-packet basis to monitor the behavior of each node. As expected, AWERBUCH

requires the next least amount of overhead, since it begins by probing one node,

81

then proceeding to probe one additional node each stage until the binary search

terminates. The 2ACK scheme with p = 1 requires the highest communication

overhead since every packet sent by the source requires a 2-hop acknowledgment to

be sent upstream per link traversed. The communication overhead for REAct-M is

in the same range as REAct-C, which can be shown since REAct-C and REAct-M

require similar communication overhead as shown in Figure 5.1(a). Likewise, REAct-

B requires approximately an order of magnitude less in communication overhead

compared to 2ACK, CONFIDANT, and AWERBUCH.

The audit duration ad defines the minimum number of packets that need to

be monitored in order to differentiate normal packet loss from misbehavior. For

example, when the audit duration is equal to 200 packets, a node’s behavior must

be monitored for at least 200 packets to decide whether its dropping rate is normal

or constitutes misbehavior. In Figure 5.5(b), we show the communication overhead

as a function of audit size for a path length of eight nodes. 2ACK, CONFIDANT,

and AWERBUCH all incur a linear increase in communication overhead with the

audit duration. This is due to the fact that for reputation- and acknowledgment-

based methods, the communication overhead incurs on a per-packet basis. On the

other hand, the communication overhead for REAct-C, REAct-M, and REAct-B is

incurred on a per-audit basis. Thus the overhead of our algorithms is independent

of audit duration.

While our algorithms provide significant savings in communication overhead,

they require a longer time to identify the misbehaving node, since multiple audits

need to be performed. On the other hand, the proactive schemes require only the

duration of one audit to identify misbehavior. This is due to the fact that proactive

protocols monitor all nodes in the path PSD in parallel. Fortunately, for our adaptive

auditing strategies REAct-C and REAct-M, the delay grows logarithmically with

the path length. Hence, the increase in identification delay is small compared to the

savings in communication overhead.

82

5 7 9 11 13 15
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
Communication Overhead over the Identification Period

AWERBUCH
2ACK
CONFIDANT
REACT−C

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
d

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead over the Identification Period

AWERBUCH
2ACK
CONFIDANT
REACT−C

(a) (b)

Figure 5.6: (a) Communication overhead as a function of path length, |PSD|, for an
audit size of 200 packets (ad = 200). For each scheme, the overhead is computed
for the time required to identify the misbehavior. (b) Communication overhead as
a function of audit size for a path length of eight nodes (|PSD| = 8).

In Figure 5.5(c), we show the identification delay as a function of path length.

CONFIDANT requires a single audit duration to identify the misbehaving node since

all nodes in PSD are monitored in parallel. AWERBUCH performs a binary search,

thus requiring delay to increase logarithmically. The 2ACK scheme also requires a

single audit duration for identification when all packets are acknowledged two hops

upstream. However, the identification delay increases when only a fraction of the

packets in one audit are acknowledged. For example, REAct-C achieves a delay

metric comparable, though less, than 2ACK when 2ACK acknowledges only 10% of

the packets. However, as shown in Figure 5.5(a), the communication overhead for

REAct-C is an order of magnitude less.

5.4 Comparison Based on Identification Delay

According to Figure 5.5(c), the four compared schemes incur different delay dur-

ing the misbehavior identification process. We now evaluate the communication

overhead incurred by each scheme from the start of the node misbehavior until the

identification of the misbehaving node. The communication overhead of CONFI-

83

DANT and 2ACK is measured for the duration of a single audit since all nodes

are monitored in parallel, thus requiring only one audit duration for identification.

Meanwhile, REAct-C and AWERBUCH are measured for the duration until the

misbehaving node is identified.

In Figure 5.6(a), we show the communication overhead as a function of the path

length, for an audit size of 200 packets. In Figure 5.6(b), we show the communi-

cation overhead as a function of the audit size, for a path length of eight nodes.

We observe that even in the case where the communication overhead is measured

only during the identification time, REAct-C significantly outperforms the other

schemes, requiring at least one order of magnitude less in communication overhead.

Both the CONFIDANT and 2ACK schemes are sensitive to path length and audit

size. AWERBUCH, while logarithmic in its search, requires resource intensive ac-

knowledgment messages. On the other hand, REAct-C allows for a graceful tradeoff

between communication overhead and delay.

85

CHAPTER 6

Conclusions

Wireless ad hoc networks rely on multi-hop routes to transport data from a source to

a destination, thus implementing the routing function in a collaborative function. A

misbehaving node may refuse to forward packets to the next hop in order to conserve

its energy resources (selfishness) or degrade network performance (maliciousness). In

this thesis we investigated the problem of uniquely identifying the set of misbehaving

nodes on which packet forwarding fails. We focused on improving the resource

efficiency of the misbehavior identification mechanism.

We proposed a reactive method in which the source audits several nodes along the

routing path to the destination, when notified of a performance drop. The purpose of

these audits is to have nodes commit to the set of packets they forwarded to the next

hop. The source collects multiple audit replies, combining them in order to identify

the link on which packet forwarding fails. This is accomplished by progressively

limiting a set of suspicious nodes, in which nodes upstream from the misbehaving

nodes report forwarding all packets while nodes downstream from the misbehaving

node report forwarding no packets.

When audited, transmission of the entire set of forwarded packets back to the

source requires high communication and storage requirements. Thus we utilize

Bloom filters to represent the set of forwarded packets in a compact manner. This

provides two main advantages. The first is that the storage requirement for the

Bloom filter is orders of magnitude less then storing and communicating all for-

warded packets back to the source. Secondly, Bloom filters allow the explicit evalu-

ation of the behavior of an audited node on a per-packet basis, while not incurring

per-packet overhead. Thus we showed that the communication overhead for au-

86

diting is independent of the audit size, which is not true for acknowledgment- and

reputation-based systems.

We showed that the collection and combination of audit replies to identify the

misbehaving nodes is analogous to Rényi-Ulam games. Rényi-Ulam games are

searching games where a responder selects a secret value in a finite search space

which the questioner attempts to determine within a set number of questions. A

unique trait of these games is the ability of the responder to lie up to a fixed num-

ber of times when answering questions. In the misbehavior identification problem,

honest nodes always respond faithfully when audited, while a misbehaving node can

lie. We employ efficient questioning strategies used in Rényi-Ulam games to identify

nodes that lie about the set of packets forwarded to the next hop. Since our map-

ping collapses all misbehaving nodes to a single entity, collusion among misbehaving

nodes is implicitly assumed.

Utilizing our mapping, we developed REAct, a resource-efficient misbehavior

identification scheme. REAct is based on three variants of Rényi-Ulam games, thus

providing the source with three different auditing strategies, one batch auditing

strategy and two adaptive ones. In the batch auditing strategy called REAct-B,

the source audits all nodes simultaneously. The source can always identify the

misbehaving links, regardless of the number of misbehaving nodes. However, the

required overhead increases linearly with the path length. Thus we examine adaptive

auditing strategies in which the source adaptively selects nodes for audit based on

past replies.

Our first adaptive auditing strategy was REAct-C, which was mapped from a

cut questioning strategy proposed by Pelc [51]. This auditing strategy was based

upon binary search. The source search the path until a link is identified, as which

time an additional audit occurs to verify the result. This additional audit allows

the source to identify if multiple misbehaving nodes exists, and thus to adapt its

auditing strategy accordingly. In our second adaptive auditing strategy, REAct-M,

87

we mapped our solution to the membership questioning strategy proposed by Dhagat

[17]. Using this method, the source searches for contradictions between current and

past audit replies to identify the misbehaving link. We showed through simulation

that although REAct-M results in greater delay than REAct-C, it provides increased

savings in communication overhead when lies occur. Additionally, while REAct-C

and REAct-M achieve a logarithmic increase in overhead, REAct-B requires the

least delay since all audits are performed at once.

With the location of the misbehaving link, the source identifies the misbehaving

node by isolating its two adjacent nodes. We presented two methods for the isolation,

path division and path expansion. Both methods require the source to make a

slight alteration in the routing path, effectively removing the previously discovered

misbehaving link from the path. By re-executing the auditing algorithm, the source

can identify the misbehaving node. It is this requirement of path modification that

requires that the network be k-connected.

We compared REAct to two acknowledgment-based schemes [9, 40] and one

reputation-based scheme in terns of communication overhead and identification de-

lay. REAct provides at least an order of magnitude reduction in communication

overhead. This overhead is independent of the amount of time that a node must

be monitored to evaluate its behavior, i.e., the audit duration. On the other hand,

the communication overhead increases linearly with monitoring duration for both

acknowledgment-based and reputation-based systems. This is a desirable tradeoff

given the relatively small path lengths observed in ad hoc networks.

89

REFERENCES

[1] R. Anderson and M. Kuhn. Tamper resistance-a cautionary note. In Proceedings
of the Second Usenix Workshop on Electronic Commerce, volume 2, pages 1–11,
1996.

[2] B. Awerbuch, D. Holmer, C.-N. Rotaru, and H. Rubens. An on-demand secure
routing protocol resilient to byzantine failures. In In Proceedings of the ACM
Workshop on Wireless Security (WiSe’02), 2002.

[3] K. Balakrishnan, J. Deng, and P. K. Varshney. Twoack: Preventing selfishness
in mobile ad hoc networks. In In Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC’05), 2005.

[4] E. Berlekamp. Error Correcting Codes. Wiley, N. Y., 1968.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[6] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Internet Mathematics, 1(4):485–509, 2004.

[7] R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target classification
and tracking in sensor networks. Proceedings of the IEEE, 91(8):1163–1171,
2003.

[8] S. Buchegger and J.-Y. L. Boudec. Nodes bearing grudges: Towards routing
security, fairness, and robustness in mobile ad hoc networks. In Proceedings
of the 10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing (EUROMICRO-PDP’02), pages 403–410, 2002.

[9] S. Buchegger and J.-Y. L. Boudec. Performance analysis of the confidant pro-
tocol (cooperation of nodes: Fairness in dynamic ad-hoc networks). In Proceed-
ings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing
(MobiHOC 2002), June 2002.

[10] S. Buchegger and J.-Y. L. Boudec. Self-policing mobile ad-hoc networks by
reputation systems. IEEE Communications Magazine, pages 101–107, 2005.

90

[11] S. Buchegger and J. Le Boudec. The effect of rumor spreading in reputation
systems for mobile ad-hoc networks. In Proceedings of WiOpt 03: Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, volume 4, pages
4–1, 2003.

[12] L. Buttyan and J. Hubaux. Nuglets: a virtual currency to stimulate cooperation
in self-organized mobile ad hoc networks. ICCA, Swiss Federal Institute of
Technology, 2001.

[13] L. Buttyan and J.-P. Hubaux. Enforcing service availability in mobile ad-hoc
wans. In Proceedings of the First Annual Workshop on Mobile and Ad Hoc
Networking and Computing (MobiHOC’00), pages 87–96, 2000.

[14] L. Buttyan and J.-P. Hubaux. Stimulating cooperation in self-organizing mobile
ad hoc networks. ACM/Kluwer Mobile Networks and Applications, 8(5), 2003.

[15] J. Crowcroft, R. Gibbens, F. Kelly, and S. Östring. Modelling incentives for
collaboration in mobile ad hoc networks. In Proceedings of WiOpt03, 2003.

[16] B. Culpepper, H. Tseng, N. Center, and C. Moffett Field. Sinkhole intrusion
indicators in DSR MANETs. In Broadband Networks, 2004. BroadNets 2004.
Proceedings. First International Conference on, pages 681–688, 2004.

[17] A. Dhagat, P. Gács, and P. Winkler. On playing “twenty questions” with a
liar. In SODA ’92: Proceedings of the third annual ACM-SIAM symposium
on Discrete algorithms, pages 16–22, Philadelphia, PA, USA, 1992. Society for
Industrial and Applied Mathematics.

[18] Y. Dong, H. Go, A. Sui, V. Li, L. Hui, and S. Yiu. Providing Distributed
Certificate Authority Service in Mobile Ad Hoc Networks. In First International
Conference on Security and Privacy for Emerging Areas in Communications
Networks 2005 (SecureComm 2005), pages 149–156, 2005.

[19] J. Dyer, M. Lindemann, R. Perez, R. Sailer, and L. van Doorn. Building the
ibm 4758 secure coprocessor. IEEE Computer, 34:57–66, October 2001.

[20] L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wire-
less network interface in an ad hoc networking environment. In Proceedings of
the Twentieth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM ’01), volume 3, 2001.

[21] S. Ganeriwal, L. Balzano, and M. Srivastava. Reputation-based framework for
high integrity sensor networks. 2008.

91

[22] V. Gligor. Handling new adversaries in secure mobile ad-hoc networks. In ARO
Planning Workshop on Embedded Systems and Network Security (ESNS ’07),
2007.

[23] N. Hanusse, E. Kranakis, and D. Krizanc. Searching with mobile agents in
networks with liars. Discrete Applied Mathematics, 137(1):69–85, 2004.

[24] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, L. Gu, J. Hui, and B. Krogh. Energy-efficient surveillance system using
wireless sensor networks. In Proceedings of the 2nd international conference on
Mobile systems, applications, and services, pages 270–283. ACM New York,
NY, USA, 2004.

[25] L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In
Network and Distributed System Security Symposium (NDSS), pages 131–141,
2004.

[26] Y. Hu, D. Johnson, and A. Perrig. SEAD: secure efficient distance vector
routing for mobile wireless ad hoc networks. Ad Hoc Networks, 1(1):175–192,
2003.

[27] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: a defense against wormhole
attacks in wireless networks. In IEEE INFOCOM 2003. Twenty-Second An-
nual Joint Conference of the IEEE Computer and Communications Societies,
volume 3.

[28] Y. Hu, A. Perrig, and D. Johnson. Rushing attacks and defense in wireless ad
hoc network routing protocols. In Proceedings of the 2nd ACM workshop on
Wireless security, pages 30–40, 2003.

[29] E. Huang, J. Crowcroft, and I. Wassell. Rethinking incentives for mobile ad
hoc networks. In Proceedings of the ACM SIGCOMM workshop on Practice
and theory of incentives in networked systems, pages 191–196. ACM New York,
NY, USA, 2004.

[30] M. Jakobsson, J.-P. Hubaux, and L. Buttyan. A micropayment scheme en-
couraging collaboration in multi-hop cellular networks. In In Proceedings of
Financial Crypto 2003, 2003.

[31] D. Johnson, D. Maltz, and Y.-C. Hu. The dynamic source routing protocol for
mobile ad hoc networks (dsr). draft-ietf-manet-dsr-09.txt, 2003.

92

[32] A. Jøsang and R. Ismail. The beta reputation system. In Proceedings of the
15th Bled Electronic Commerce Conference, pages 324–337, 2002.

[33] A. Kaporis, L. Kirousis, E. Kranakis, D. Krizanc, Y. Stamatiou, and
E. Stavropoulos. Locating information with uncertainty in fully interconnected
networks with applications to World Wide Web information retrieval. The
Computer Journal, 44(4):221–229, 2001.

[34] L. Kirousis, E. Kranakis, D. Krizanc, and Y. Stamatiou. Locating information
with uncertainty in fully interconnected networks. Lecture notes in computer
science, pages 283–296, 2000.

[35] G. Kortuem, J. Schneider, D. Preuitt, T. Thompson, S. Fickas, and Z. Segall.
When peer-to-peer comes face-to-face: Collaborative peer-to-peer computing
in mobile ad hoc networks. In Proceedings of the First International Confer-
ence on Peer-to-Peer Computing (P2P’01), page 75. IEEE Computer Society
Washington, DC, USA, 2001.

[36] E. Kranakis and D. Krizanc. Searching with uncertainty. In Proc. 6th Int. Col-
loq. on Structural Information and Communication Complexity (SIROCCO99),
pages 194–203, 1999.

[37] S. Kurosawa, H. Nakayama, N. Kato, A. Jamalipour, and Y. Nemoto. Detecting
blackhole attack on AODV-based mobile ad hoc networks by dynamic learning
method. International Journal of Network Security, 5(3):338–346, 2007.

[38] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and L. Chang. Preventing
wormhole attacks on wireless ad hoc networks: a graph theoretic approach. In
2005 IEEE Wireless Communications and Networking Conference, volume 2,
2005.

[39] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic curve cryp-
tography in wireless sensor networks. In to appear in Proceedings of the 7th
International Conference on Information Processing in Sensor Networks (IPSN
2008). SPOTS Track, 2008.

[40] K. Liu, J. Deng, P. Varshney, and K. Balakrishnan. An acknowledgment-
based approach for the detection of routing misbehavior in manets. IEEE
Transactions on Mobile Computing, 6(5):536–550, May 2007.

[41] Y. Liu and Y. R. Yang. Reputation propagation and agreement in mobile
ad-hoc networks. In Proc. of IEEE Wireless Communication and Networking
Conference (WCNC’03), pages 1510–1515, March 2003.

93

[42] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless
sensor networks for habitat monitoring. In WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor networks and applications,
pages 88–97, 2002.

[43] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton. Codeblue: An ad
hoc sensor network infrastructure for emergency medical care. Organization
co-chairs, 2004.

[44] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior
in mobile ad hoc networks. In Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCom 2000), pages 255–
265, 2000.

[45] P. Michiardi and R. Molva. Core: A collaborative reputation mechanism to
enforce node cooperation in mobile ad hoc networks. In In Proceedings of the
Sixth IFIP Conference on Security Communications and Multimedia (CMS02),
2002.

[46] S. Midkiff and C. Bostian. Rapidly-deployable broadband wireless networks for
disaster and emergency response. In Presented at The First IEEE Workshop
on Disaster Recovery Networks (DIREN 02), 2002.

[47] E. Ngai, J. Liu, and M. Lyu. On the intruder detection for sinkhole attack in
wireless sensor networks. In IEEE International Conference on Communication
(ICC), 2006.

[48] V.-N. Padmanabhan and D.-R. Simon. Secure traceroute to detect faulty or
malicious routing. SIGCOMM Computer Communication Review, 33(1), 2003.

[49] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In
SCS Communication Networks and Distributed Systems Modeling and Simula-
tion Conference (CNDS 2002), pages 01–27, 2002.

[50] K. Paul and D. Westhoff. Context aware detection of selfish nodes in dsr based
ad-hoc networks. In In Proceedings of the IEEE Globecom Conference, 2002.

[51] A. Pelc. Detecting errors in searching games. Journal of Combinatorial Theory
Series A, 51(1):43–54, 1989.

[52] A. Pelc. Fault-tolerant broadcasting and gossiping in communication networks.
Networks, 28(3), 1996.

94

[53] A. Pelc. Searching games with errorsfifty years of coping with liars. Theoretical
Computer Science, 270(1-2):71–109, 2002.

[54] C. Perkins, E. Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV)
Routing, 2003.

[55] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS: Security
Protocols for Sensor Networks. Wireless Networks, 8(5):521–534, 2002.

[56] A. Pirzada and C. McDonald. Circumventing sinkholes and wormholes in wire-
less sensor networks. In International Conference on Wireless Ad Hoc Networks
(IWWAN), 2005.

[57] R. Poovendran and L. Lazos. A graph theoretic framework for preventing the
wormhole attack in wireless ad hoc networks. Wireless Networks, 13(1):27–59,
2007.

[58] S. Raghani, D. Toshniwal, and R. Joshi. Dynamic Support for Distributed
Certification Authority in Mobile Ad Hoc Networks. In Proceedings of the 2006
International Conference on Hybrid Information Technology-Volume 01, pages
424–432. IEEE Computer Society Washington, DC, USA, 2006.

[59] Y. Rebahi, V. Mujica, and D. Sisalem. A reputation-based trust mechanism for
ad hoc networks. In In Proceedings of the 10th IEEE Symposium on Computers
and Communications (ISCC05), pages 37–42, 2005.

[60] A. Rényi. A Diary on Information Theory. Wiley, New York, 1984.

[61] R. Rivest, A. Meyer, D. Kleitman, K. Winklmann, and J. Spencer. Coping
with errors in binary search procedures. J. Comput. System Sci, 20:396–404,
1980.

[62] N. Salem, L. Buttyán, J. Hubaux, and M. Jakobsson. A charging and rewarding
scheme for packet forwarding in multi-hop cellular networks. In Proceedings of
the 4th ACM international symposium on Mobile ad hoc networking & comput-
ing, pages 13–24. ACM New York, NY, USA, 2003.

[63] S. Soltanali, S. Pirahesh, S. Niksefat, and M. Sabaei. An Efficient Scheme to
Motivate Cooperation in Mobile Ad hoc Networks. In Networking and Services,
2007. ICNS. Third International Conference on, pages 98–98, 2007.

[64] J. Spencer and P. Winkler. Three thresholds for a liar. Combinatorics, Proba-
bility and Computing, 1:81–93, 1992.

95

[65] L. Tamilselvan and V. Sankaranarayanan. Prevention of Blackhole Attack in
MANET. In Wireless Broadband and Ultra Wideband Communications, 2007.
AusWireless 2007. The 2nd International Conference on, pages 21–21, 2007.

[66] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2000.

[67] S. Ulam. Adventures of a Mathematician. Scribner, New York, 1976.

[68] Y. Xue and K. Nahrstedt. Providing fault-tolerant ad-hoc routing service in
adversarial environments. Wireless Personal Communications, Special Issue on
Security for Next Generation Communications, 29(3–4):367–388, 2004.

[69] S. Yi and R. Kravets. MOCA: Mobile Certificate Authority for Wireless Ad Hoc
Networks. In 2nd Annual PKI Research Workshop Pre-Proceedings, volume 51,
page 61801.

[70] S. Yousefi, M. Mousavi, and M. Fathy. Vehicular ad hoc networks (VANETs):
challenges and perspectives. In ITS Telecommunications Proceedings, 2006 6th
International Conference on, pages 761–766, 2006.

[71] J. Zhao and G. Cao. VADD: Vehicle-assisted data delivery in vehicular ad hoc
networks. IEEE Transactions on Vehicular Technology, 57(3):1910–1922, 2008.

[72] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple cheat-proof, credit-based
system for mobile ad-hoc networks. In Proceedings of INFOCOM 2003, pages
1987–1997, March 2003.

[73] P. Zimmermann. The Official PGP User’s Guide. MIT Press, 2005.

