
Reactive Identification of Misbehavior in Ad Hoc
Networks Based on Random Audits

William Kozma Jr. and Loukas Lazos
Department of Electrical and Computer Engineering

University of Arizona
Tucson, Arizona

{wkozma, llazos}@ece.arizona.edu

Abstract—We address the problem of identifying misbehaving
nodes that (selectively) drop packets, in order to degrade the
network performance. Such nodes may agree to forward packets
by participating in the route discovery process, but refuse to
do so once the packets have been received. We propose a
reactive approach where the source initiates an audit process
if a significant performance degradation is observed. We employ
a compact representation of the behavioral proof of a node by
adopting Bloom filter structures and show that the misbehaving
node can be identified based on random audits. Our approach
provides significant energy savings compared to previously pro-
posed methods that rely on reputation systems, or intensive
acknowledgment schemes.

I. INTRODUCTION

In contrast to infrastructure-based networks, ad hoc net-
works do not rely on dedicated network components for imple-
menting the basic network functionalities. In fact, the network
operations are realized in a distributed and cooperative fashion,
with network nodes acting as relays, gateways, coordinators,
etc. Given that network devices may operate unattended or be
in the possession of malicious users, an adversary can easily
gain physical access to the hardware or software of a device
and reconfigure it in any desirable manner.

Due to the relative ease of compromising devices, nodes
are expected to deviate form the normal protocol execution
in multiple ways. A compromised node may participate in
the routing discovery process, but drop packets in order to
conserve energy [1]–[4]. Such a node appears to collaborate
in packet forwarding, but only benefits from other nodes. In
a more severe type of attack known as the blackhole attack, a
compromised node intentionally attempts to attract more traffic
from neighboring nodes by, for example, advertising short
routes to many destinations [5]. Once nearby nodes attempt to
route through the blackhole, the malicious node (selectively)
drops packets to degrade the overall throughput.

Current methods for detecting misbehaving nodes can be
classified to reputation based systems [1], [3], credit based
systems [2], or acknowledgment systems [4]. Reputation-based
methods rely on the continuous monitoring of the behavior
of neighboring nodes (watchdog model) and the association
of a reputation index. However, to implement the monitoring
module, nodes need to operate in promiscuous mode, thus
incuring a very high resource overhead. Credit-based systems
can only alleviate selfish behavior by providing incentives

for forwarding packets. A potential credit incentive cannot
motivate adversaries whose goal is to maximize damage. Fi-
nally, acknowledgment-based systems require a large amount
of ACK messages to be transmitted, thus incurring a high
communication overhead.

Our Contributions: We develop a mechanism for the unique
identification of misbehaving nodes that refuse to forward
packets to a destination. Our solution does not rely on energy
expensive overhearing techniques, or communication inten-
sive acknowledgment schemes. We adopt a reactive approach
where a random audit process is initiated only after a per-
formance degradation is observed, thus significantly reducing
the associate resource overhead. Based on a storage and com-
munication efficient representation of the packets forwarded
by each intermediate node, we construct a publicly verifiable
proof of node misbehavior.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Misbehavior identification problem: Consider a path PSD

from the source S to the destination D, consisting of nodes
PSD = {n1, . . . nk} where for simplicity node nj is “down-
stream” from node ni if i < j. Let a node nm ∈ PSD

misbehave by (a) dropping all packets routed through nm or,
(b) selectively dropping packets. We investigate the unique
identification of the misbehaving node nm. In Figure 1, we
show a source S routing data to a destination D via a path
PSD = {n1 − n5}. Node n4 drops all packets it receives.

Assumptions: We assume that the source is aware of the
intermediate nodes in the path PSD to the destination [8].
We also assume that the destination can notify the source
if a significant drop in throughput or delay is observed.
Furthermore, we assume that a node can sign its messages
using a resource-efficient signature scheme such as the Elliptic
Curve Digital Signature Algorithm (ECDSA) that has been
shown feasible even for sensors [7]. Finally, we assume that
there are at least two independent paths to any destination,
i.e., the network is two-connected. This assumption is essential
for reaching eny node in the path PSD, through an alternative
route that does not contain the misbehaving node(s).

III. CONSTRUCTING EVIDENCE OF MISBEHAVIOR

Though a hop-by-hop acknowledgment scheme guarantees
the per hop link reliability, it is not sufficient to guarantee

Fig. 1. A path from the source S to the destination D. Node n4

is misbehaving by dropping packets. Node n5 is audited by S using an
independent path. Once the suspicious nodes are narrowed down to n4, n5

the source exclude each node in turn from PSD by using bypass paths.

the reliability of the entire path. A malicious node can verify
the receipt of messages by sending an ACK, but refuse to
forward the received packets. In case of an abnormal drop in
throughput or increased delay, the destination D may notify S
for the poor path performance. This reactive approach saves a
significant amount of resources since the destination need not
acknowledge every packet in an end-to-end fashion. When S
is notified by D, it initiates a process of random audits to
identify the misbehaving node or the faulty link.

To evaluate the behavior of a node ni ∈ PSD, the source
audits ni to prove that it faithfully forwards packets to the next
hop. Node ni ∈ PSD stores a proof of the set of packets it
forwards to the next hop. Buffering the packets themselves
would require a high amount of storage and a significant
overhead for the transmission of the proof back to the source.
We note that S need only be able to perform a simple test: “Did
node ni forward packets Xi = {x1, . . . , xN} to the next hop?”
Bloom filters provide a storage-efficient way of performing
membership testing for the packets forwarded [6].

A. Membership Testing Using Bloom Filters

A Bloom filter provides a compact representation of mem-
bership for a set X = {x1, x2, . . . , xN} of N elements in a
vector v of m bits. All m bits of v are initialized to zero. To
add a member xi in the Bloom filter, xi is passed through
q independent hash functions h`, 1 ≤ ` ≤ q with each
h` having a range of {1, . . . , m}. The corresponding bits
h`(xi), 1 ≤ ` ≤ q of vector v are set to one. To check
if y is a member of X , element y is hashed q times using
the hash functions h` and the corresponding bits are checked
against the vector v. If a zero is found at a corresponding
location in v, the element y is not a member of the set X.
Else y ∈ X with a very high probability. This means that
a Bloom filter may yield a false positive, i.e. the filter may
indicate that an element y is in X even though it is not. For
perfectly random hash functions, the false positive probability
pf can be computed as [9]:

pf =

(
1−

(
1− 1

m

)qN
)q

≈
(
1− e−

qN
m

)q

. (1)

The number of hash functions q that minimize pf , is known
to be q = ln2(m

N), but any choice on q can be made to allow a
graceful tradeoff between pf and q. We can also compute the
minimum storage required (size of vector v) so that pf ≤ ε,

to be equal to m ≥ N log2 ε
ln 2 . For a given storage m, we can

compute the size N of the set X that can be represented by
the Bloom filter when pf must be kept under ε.

B. Misbehavior Detection Based on Random Audits

Auditing a single node–In the audit process, the source
decides to audit a particular node ni ∈ PSD. Using a path
independent from PSD, the source sends an audit request to
ni, indicating the beginning and end time of the audit. An
independent path is followed to ensure that the audit is not
dropped by the misbehaving node. Fail to reply to an audit is
perceived as a misbehavior. Once the audit request is received,
node ni initializes its Bloom filter vi, and records all packets
from S for time period defined in the audit. Then ni sends
the Bloom filter vi back to the source signed, so that the
authenticity and integrity of vi can be verified. In Figure 1,
the source uses a path independent of PSD to audit node n5.

The source computes the inner product < vi, vS >, with its
own Bloom filter vS . The inner product is a measure of the
similarity between vectors vi, vS and can serve as an estimate
of the cardinality of the set Xi

⋂
XS , where Xi is the set of

packets in the filter vi and XS is the set of packets in the filter
vS . The inner product can be approximated by [9]:

< vi, vS > ≈ m

(
1−

(
1− 1

m

)q|Xi|
−

(
1− 1

m

)q|XS |

+
(

1− 1
m

)q(|Xi|+|XS |−|Xi

⋂
XS |)

)
. (2)

Given that the vector length m, the cardinalities of sets Xi, XS

and the number of hashes q are known, the source can compute
the size of the intersection set,

|Xi

⋂
XS | ≈ |Xi|+ |XS | −

log
(

<vi,vS>
m

+
(
1− 1

m

)q|Xi| +
(
1− 1

m

)q|XS |
)

q log
(
1− 1

m

) . (3)

Using |Xi

⋂
XS | as a metric, the source S can verify if

packets in XS are members of Xi. Furthermore, the source
can maintain a sampling of XS to perform membership tests
on vi for an additional verification of the packets in Xi. The
sampling of XS can be either random or contain packets of
higher importance. As an example, if the source is sending
MPEG encoded video, a misbehaving node can selectively
drop only I-frames to degrade the video quality. The source S
can specifically check if the I-frames are members of Xi.

Identifying the misbehaving node–Assume a single compro-
mised node nm ∈ PSD. Let A denote a one-dimensional array
of length k, such that A[i] = |Xi

⋂
XS |. Array A is almost

sorted in a descending order, since for any node upstream of
the misbehaving one, |Xi

⋂
XS | ≈ |XS |, and for any node

downstream from the misbehaving one |Xi

⋂
XS | << |XS |.

Hence, one of the following cases is possible: (a) A[m−1] ≈
|XS |, and A[m] << |XS |, in which case nm faithfully reports
its Bloom filter or, (b) A[m] ≈ |XS |, and A[m+1] << |XS |,
in which case nm lies about its Bloom filter. In both cases,

we can limit the set of suspicious nodes to only two one-
hop neighbors; nm−1, nm or nm, nm+1. To further identify
nm, the source can request the slight modification of the path
PSD to exclude the two nodes in turn, and monitor the path
performance. In Figure 1, half of the traffic bypasses node n4

via node n6 while the remaining traffic bypasses node n5 via
node n7.

Note that a node may misbehave in such a way that
|Xi

⋂
XS | ≈ |XS |. Although such node will escape the

misbehavior detection mechanism, this attack has minimal
effect on the path performance. Also note that in the case
of collisions, a benign node will still have a filter vi similar
to vS if a retransmission mechanism is in place. For protocols
without a retransmission mechanism, the adversary still needs
to drop packets at a much higher rate than the normal collision
rate to affect the path performance. Hence, its Bloom filter will
be drastically different than the filters of benign nodes.

The task of identifying the misbehaving node is equivalent
to identifying the transition from A[i] ≈ |XS |, to A[i] <<
|XS |. We can identify such a transition via binary search using
comparison questions, thus requiring only O(log2(N)) audits.
However, a deterministic audit algorithm reveals the sequence
of nodes that will be audited given a path PSD. Hence, the
adversary can target particular nodes, and stop its misbehavior
for certain periods of time in order to avoid detection.

To alleviate the shortcomings of a deterministic audit
sequence, we employ a random audit process as follows.
Initially, all nodes M = {n1, . . . nk} belong to the suspicious
set of nodes. The source audits any node ni ∈ M at random.
If A[i] ≈ |XS |, the set of suspicious nodes is reduced to
M = {ni . . . nk}, else M = {n1 . . . ni}. Note that the audited
node always remains in the set of suspicious nodes, since it can
always lie about its Bloom filter. The audit process is repeated
until the set of suspicious nodes M contains only two nodes.
The misbehaving node is further identified by in turn exclusion
of each suspicious node from PSD. The pseudocode for the
random audit algorithm is given in Figure 2.

A node can try to avoid being accused of misbehavior
by arbitrarily constructing its own Bloom filter. This can be
achieved, for example, if all bits of the Bloom filter are set to
one. In such a case, |Xi

⋂
XS | ≈ |XS | since XS ⊆ Xi and

any membership test would come out positive. Note, however,
that a source can easily verify if the Bloom filter Xi contains
a packet not in XS and hence, Xi is modified. The source
S can pick any x /∈ XS and test if it is a member of Xi. If
the membership test is positive, the source can assume that
x ∈ Xi with a probability (1 − pf). The probability of false
positive can be further reduced by repeating the experiment
t number of times, yielding a successful identification of
Bloom filter manipulation with a probability 1 − (pf)t. Note
that each Bloom filter is signed and hence, acts as a public
commitment to the packets forwarded by each corresponding
node. Misbehavior can be be publicly verified via the evidence
provided from the source.

Detecting misbehavior of multiple nodes–It is possible that

Algorithm Random Audit Algorithm

1: Initialize: M` ← n1, Mr ← nk, M = {M`, . . . , Mr}
2: while |M | > 2 do
3: audit ni = M [rand]
4: if |Xi

⋂
XS | ≈ |XS |

5: M` ← ni

6. else Mr ← ni

7. return M

Fig. 2. The pseudocode of the random audit algorithm.

more than one nodes are compromised on the path PSD. In
such a case our audit process can identify one misbehaving
node at a time. The problem of identifying a compromised
node can be modeled after a noisy binary search. In the noisy
binary search, a misbehaving node can be identified as long
as a limited number of audited nodes lie about their Bloom
filter. The mapping of the problem of misbehavior detection
by multiple nodes to the problem of noisy binary search is not
presented here, due to space limitations.

IV. CONCLUSION

We addressed the problem of identification of misbehav-
ing nodes refusing to forward packets to a destination. We
proposed a reactive identification mechanism that does not
rely on continuous overhearing or intensive acknowledgment
techniques, but is only activated in the event of performance
degradation. Our solution employs Bloom filters to compactly
represent the set of packets forwarded by an intermediate node,
thus significantly reducing the storage required to construct
a publicly verifiable proof of node behavior. Future work
includes identification of other types of misbehavior such as
time delay, and addressing node collusion.

REFERENCES

[1] S. Buchegger, and J-Y. Le Boudec, Performance Analysis of the CON-
FIDANT Protocol: Cooperation of Nodes, Fairness in Dynamic Ad-Hoc
Networks, In Proc. of MobiHoc’02, 2002.

[2] L. Buttyan, and J.-P. Hubaux, Stimulating Cooperation in Self-organizing
Mobile Ad Hoc Networks, ACM/Kluwer Mobile Networks and Applica-
tions, vol. 8, no. 5, 2003.

[3] S. Marti, T. Giuli, K. Lai, and M. Baker, Mitigating Routing Misbehavior
in Mobile Ad Hoc Networks, In Proc. of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCom’00), 2000.

[4] K. Liu, An Acknowledgment-Based Approach for the Detection of Routing
Misbehavior in MANETs, IEEE Transactions on Mobile Computing vol.
6, no. 5 536–550, 2006.

[5] C. Karlof, and D. Wagner, Secure Routing in Wireless Sensor Networks:
Attacks and Countermeasures, Elsevier’s Ad Hoc Networks Journal,
Special Issue on Sensor Network Applications and Protocols, vol. 1 no.
2–3, pp. 293–315, 2003.

[6] B. Bloom, Space/Time Tradeoffs in Hash Coding with Allowable Errors,
Communications of the ACM vol. 13 no. 7 pp. 422-426, 1970.

[7] A. Liu, and P. Ning, TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks, to appear in Proceedings of
the 7th International Conference on Information Processing in Sensor
Networks (IPSN 2008), SPOTS Track, 2008.

[8] D. Johnson, D. Maltz, and Y-C. Hu, The Dynamic Source Routing
Protocol for Mobile Ad Hoc Networks (DSR), draft-ietf-manet-dsr-09.txt.

[9] A. Broder, and M. Mitzenmacher, Network Applications of Bloom Filters:
A Survey, Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

