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Abstract—We propose encoder and decoder architectures for
quantum low-density parity-check (LDPC) codes suitable for
all-optical implementation, based on controlled-NOT (CNOT) and
Hadamard gates only. Given the fact that the CNOT gate can be
implemented using directional couplers, and Hadamard gate by
using -hybrid, the proposed encoders/decoders architectures
are suitable for implementation in integrated optics. In addition,
we propose several quantum LDPC codes based on balanced
incomplete block designs.

Index Terms—Calderbank–Shor–Steane (CSS) codes, inte-
grated optics circuits, low-density parity-check (LDPC) codes,
quantum error-correction.

I. INTRODUCTION

Q UANTUM information processing is an exciting research
area with a very wide range of applications including
quantum computing, quantum memories, quantum key

distribution (QKD), quantum metrology, quantum lithography,
and quantum communications [1]. Quantum information pro-
cessing relies on fragile superposition states, which are sensi-
tive to interactions with environment, resulting in decoherence.
Decoherence introduces errors, and thus quantum information
processing has to rely on quantum error-correction.

Inspired by the conjecture that the best quantum error-cor-
rectingcodescanberelatedto thebestclassicalcodes[1]MacKay
et al. proposed recently in [2] how to design the sparse dual-con-
taining binary codes that can be used to construct quantum
low-density parity-check (LDPC) codes belonging to the class of
Calderbank–Shor–Steane (CSS) codes [1]. Most of the construc-
tions introduced in [2] are obtained by computer search. In our
recent paper [3], we proposed a series of quantum LDPC codes
based on the balanced incomplete block designs (BIBDs) [4].

Quantum error control coding (QECC) can be implemented
in a variety of potential technologies [1]. One such realization,
based on three beryllium atomic-ion qubits, has been reported in
[5]. This QECC scheme, however, is not compatible with many
potential applications such as QKD, deep-space optical com-
munications, and free-space interchip/intrachip optical commu-
nications. A novel QECC scheme is needed that is compat-
ible with different photonic quantum applications. Given that
a controlled-NOT (CNOT) gate has recently been implemented
in silica-on-silicon waveguides [6], in this letter, we consider
the possibility for an all-optical implementation of encoders
and decoders for quantum LDPC codes based on CNOT and
Hadamard gates only. Namely, the CNOT gate can be imple-
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mented based on directional couplers [6], while the Hadamard
gate can be implemented using a -hybrid. Those two gates are
basic building blocks that can be used to implement an arbi-
trary quantum LDPC encoder/decoder, as shown in Section II.
In addition to encoder/decoder architectures for all-optical im-
plementation, we describe in Section III several quantum LDPC
codes of high quantum rate ( 0.9).

II. PHOTONIC QUANTUM LDPC ENCODERS/DECODERS

In this section, we describe encoder/decoder implementation so
that only CNOT and Hadamard gates are required. In what fol-
lows, the logical “0” is represented by a horizontal ( ) photon

and the logical “1” is represented by a vertical ( )
photon . The CSS codes [1], can be designed using a
pair of conventional linear codes satisfying the twisted property
(one code includes the dual of another code). The CSS codes
based on dual-containing codes [2] are simplest to implement.
Their (quantum) check matrix can be represented by

(1)

where , which is equivalent to ,
where is the code having as the parity check matrix,
and is its corresponding dual code. The requirement

is satisfied when rows of have an even number
of 1s, and any two of them overlap by an even number of 1s
[2]. The LDPC codes satisfying these two requirements were
designed by exhaustive computer search in [2], while in [3],
they were designed by using the combinatorial objects known
as BIBDs [4]. A BIBD is a collection of subsets of
a set of size , with a size of each subset being , so that
1) each pair of elements occurs in exactly of the subsets, and
2) every element occurs in exactly subsets. The code rate of
quantum codes is lower bounded by ,
where is the rank of -matrix, and is the codeword
length (related to the number of subsets in a BIBD). The ad-
vantages of BIBD-based quantum LDPC codes compared to
other codes include 1) high rate, 2) regular structure in corre-
sponding parity-check matrices leads to low complexity
encoders/decoders, 3) their sparse -matrices require a small
number of interactions per qubit to determine the error loca-
tion, and 4) excellent error correction capabilities. For example,

-matrix from BIBD(3,6,4,4,2) is given below and satisfies the
condition . The quantum check matrix corresponding
to -matrix is given below as -matrix

(2)

Similarly as in [1] and [2], we adopt the stabilizer framework.
A stabilizer group consists of a set of Pauli matrices (
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Fig. 1. (left) Quantum circuit for measurement of a single qubit � -operator,
� � �����; and (right) the equivalent circuit for measurement of�-operator.

together with multiplicative factors ), with a property
that any two operators in group commute so they can be simul-
taneously measured. In the stabilizer framework, a codeword is
defined to be a ket that is a 1 eigenket of all stabilizers ,
so that for all . Any Pauli vector on -qubits can
be written uniquely as a product of - and -operators together
with the phase factor ( 1 or ). The quantum LDPC code is
obtained by replacing ones in the left half of , in the example
above, with -operators and zeros with -operators (identity
operators), and replacing ones in the right half of with -oper-
ators and zeros with -operators. The corresponding stabilizers

are obtained by reading-off the th rows of such a modi-
fied -matrix. For example, by reading off the first row, we ob-
tain the stabilizer , and by
reading off the sixth row, we obtain

, where the subscripts are used to denote the posi-
tions of corresponding - or -operators. An interesting prop-
erty of CSS codes is that stabilizers do not mix up - and

-operators; we can, therefore, correct the qubit flip and phase
errors independently. From (1), it follows that providing the

-matrix of dual-containing code is sparse, the corresponding
-matrix will be sparse as well, while corresponding stabilizers

will be of low weight.
The quantum circuit to measure a single unitary qubit oper-

ator , based on controlled -gate, is shown in
Fig. 1(left). Because the -operator equals (up to the mul-
tiplicative phase constant ), we are only concerned with -
and -operators. Notice that either discrete or continuous error
operator can be decomposed using a discrete set of errors:
(no error); (qubit flip error); (phase flip error); and (si-
multaneous qubit and phase flip error). Based on Fig. 1(right),
we conclude that - and -operators can be measured based
on CNOT and Hadamard ( )-gates. The -gate can be im-
plemented based on a directional coupler, Y-junction,
or -hybrid, which is shown in Fig. 2(a). The output electrical
fields ( and ) are related to the input electrical fields
( and ) by and

, where is the power splitting ratio
and is the phase shift introduced by a phase trimmer. By se-
lecting and , the corresponding scattering matrix
is the same as the matrix representation of a Hadamard-gate

(3)

For example, for the vertical photon ( is the trans-
position operation), at the input of -gate, the corresponding
output is .

The corresponding integrated optics implementation of
CNOT-gate is shown in Fig. 2(b). The control qubits are de-
noted with , and target qubits are denoted by . Using the
directional coupler theory, it can be shown that target output

Fig. 2. Implementation of�- and CNOT-gates in integrated optics: (a)�-gate
based on a �-hybrid, and (b) CNOT-gate based on a directional coupler. The
syndrome quantum circuit for stabilizer � � � � � � : (c) based on �-
and controlled-� gates, and (d) based on �- and CNOT-gates.

and photons are related to the input control
photons and the input target photons by
[5], [6]

(4)

Therefore, when the control qubit is set to 1, the target qubit
is flipped [see (4)]. The CNOT gate based on the directional
coupler was implemented in [6] with an average logical basis
fidelity of %. Notice also that the CNOT-gate can
also be implemented using a hybrid as a building block. Namely
we have to set the phase shift to zero and power splitting ratios
to and , and integrate hybrids as shown in
Fig. 2(b).

Now we come to the point where we explain how to imple-
ment the quantum LDPC error detector for , based on the

- and CNOT-gates described above. Let us observe the first
stabilizer only; the whole error detector
can be obtained by corresponding concatenation of remaining
stabilizers. The transmission error is identified as an intersec-
tion of corresponding syndrome measurements. The syndrome
quantum circuit for measurement of stabilizer is shown in
Fig. 2(c) and (d). In Fig. 2(c), the quantum syndrome imple-
mentation circuit is based on - and controlled- gates, while
in Fig. 2(d), the corresponding implementation is based on -
and CNOT-gates only, and can, therefore, be implemented in in-
tegrated optics. To implement the syndrome quantum circuit for
stabilizer , we have to integrate four CNOT-gates [Fig. 2(b)]
and eight -gates [Fig. 2(a)], as shown in Fig. 2(d). The main
advantage of quantum LDPC codes compared to other classes
of quantum codes is the sparseness of quantum check matrix,
and therefore, a small number of interactions is required in cor-
responding stabilizers.

To simplify the implementation of encoders for quantum
LDPC codes, we have to put the quantum check matrix in a
systematic form by Gaussian elimination first [1]

(5)
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For a quantum CSS , we have to add -op-
erators independent of stabilizers

as follows . To
encode, we first need to prepare the system in state
(the notation stands for the tensor product), measure the
observables , and stabilize
the system with corresponding Pauli operators. To prepare the
system in state, we can use the multiphoton entangle-
ment from distant single photon sources, as described in [7].

III. QUANTUM BIBD CODES, RESULTS, AND CONCLUSION

In addition to quantum BIBD-based codes we introduced in
[3], below we describe several BIBD-based codes suitable for
quantum error correction.

Construction 1: If is a prime power and is a
primitive root of , then the following ini-
tial sets

form a BIBD
. The BIBD is formed by adding the elements

from to the initial blocks . For any even
index and even parameter (the row weight is even), the cor-
responding LDPC code is a dual-containing code .
The quantum code rate for this construction is lower bounded by

, and the minimum distance is lower bounded
by . For any odd index design we have to add
an additional block , so that the row
weight of becomes even.

Construction 2: If is a prime power and is a
primitive root of , then the following initial
sets form a BIBD

. For any even index ,
the corresponding LDPC codes are dual containing codes. The
quantum LPDC code rate is lower bounded by ,
and the minimum distance is lower bounded by .

Construction 3: If is a prime power and is a prim-
itive root of , then the following initial sets

form a BIBD
. Again for an even index , the quantum

LDPC code of rate is obtained, whose min-
imum distance is lower bounded by . Similarly as
in the previous two constructions, for any odd index design,
we have to add an additional block . The ex-
ample used in Section II belongs to this construction, and was
obtained for .

Construction 4: If 2 is a prime power and is a primitive
root of , then the following initial sets:

form a BIBD . For even ,
the quantum code rate is lower bounded by

, the codeword length is determined by , and the
minimum distance is lower bounded by .

The results of simulations are shown in Fig. 3 for 30 it-
erations in a sum-product-with-correction-term algorithm.
Bit-error-rate (BER) curves are obtained by counting the errors
only on those codewords from not belonging to and rep-
resent BER . Three quantum LDPC codes of quantum

Fig. 3. BERs against crossover probability on a binary symmetric channel.

rate above 0.9 are designed by employing Construction 1
and 2: 1) quantum LDPC code (the
parameters in brackets represent codeword length, information
word length, code rate, and lower bound on minimum distance,
respectively) from Construction 1 by setting and

, 2) quantum LDPC code from
Construction 2 by setting and , and 3) quantum
LDPC from Construction 2 by setting

and . For comparison purposes, two curves for
quantum LDPC codes from [3] are plotted as well. The BIBD
codes proposed here outperform the codes from [3] for BERs
around . The code from BIBD with index and
Construction 2 outperforms the codes with index from
both Constructions, because it has larger minimum distance.
The code with index from Construction 1 outperforms
corresponding code from Construction 2.

In conclusion, we propose encoder and decoder architec-
tures for quantum LDPC codes suitable for implementation
in integrated optics, based on CNOT and Hadamard gates
only, implemented by using directional couplers and -hy-
brids, respectively. We also propose several quantum LDPC
codes of high quantum code rate (above 0.9) based on BIBDs,
outperforming previously proposed codes. The quasi-cyclic
structure and sparseness of the parity-check matrix of proposed
LDPC codes have several advantages: 1) the quantum syn-
drome can be measured with sparse number of interactions; 2)
the quasi-cyclic structure of parity check matrix leads to low
decoder complexity compared to random codes; 3) there exist
practical decoding algorithms; 4) high quantum code rates; and
5) excellent error correction capabilities.
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