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Abstract—We propose encoder and decoder architectures for
quantum low-density parity-check (LDPC) codes suitable for
all-optical implementation, based on controlled-NOT (CNOT) and
Hadamard gates only. Given the fact that the CNOT gate can be
implemented using directional couplers, and Hadamard gate by
using 7r-hybrid, the proposed encoders/decoders architectures
are suitable for implementation in integrated optics. In addition,
we propose several quantum LDPC codes based on balanced
incomplete block designs.

Index Terms—Calderbank—Shor-Steane (CSS) codes, inte-
grated optics circuits, low-density parity-check (LDPC) codes,
quantum error-correction.

I. INTRODUCTION

UANTUM information processing is an exciting research
Q area with a very wide range of applications including

quantum computing, quantum memories, quantum key
distribution (QKD), quantum metrology, quantum lithography,
and quantum communications [1]. Quantum information pro-
cessing relies on fragile superposition states, which are sensi-
tive to interactions with environment, resulting in decoherence.
Decoherence introduces errors, and thus quantum information
processing has to rely on quantum error-correction.

Inspired by the conjecture that the best quantum error-cor-
recting codes canberelated to the bestclassical codes [ 1] MacKay
et al. proposed recently in [2] how to design the sparse dual-con-
taining binary codes that can be used to construct quantum
low-density parity-check (LDPC) codes belonging to the class of
Calderbank—Shor—Steane (CSS) codes [1]. Most of the construc-
tions introduced in [2] are obtained by computer search. In our
recent paper [3], we proposed a series of quantum LDPC codes
based on the balanced incomplete block designs (BIBDs) [4].

Quantum error control coding (QECC) can be implemented
in a variety of potential technologies [1]. One such realization,
based on three beryllium atomic-ion qubits, has been reported in
[5]. This QECC scheme, however, is not compatible with many
potential applications such as QKD, deep-space optical com-
munications, and free-space interchip/intrachip optical commu-
nications. A novel QECC scheme is needed that is compat-
ible with different photonic quantum applications. Given that
a controlled-NOT (CNOT) gate has recently been implemented
in silica-on-silicon waveguides [6], in this letter, we consider
the possibility for an all-optical implementation of encoders
and decoders for quantum LDPC codes based on CNOT and
Hadamard gates only. Namely, the CNOT gate can be imple-
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mented based on directional couplers [6], while the Hadamard
gate can be implemented using a w-hybrid. Those two gates are
basic building blocks that can be used to implement an arbi-
trary quantum LDPC encoder/decoder, as shown in Section II.
In addition to encoder/decoder architectures for all-optical im-
plementation, we describe in Section III several quantum LDPC
codes of high quantum rate (>0.9).

II. PHOTONIC QUANTUM LDPC ENCODERS/DECODERS

In this section, we describe encoder/decoder implementation so
that only CNOT and Hadamard gates are required. In what fol-
lows, the logical “0” is represented by a horizontal (H) photon
|H) = |0) and the logical “1” is represented by a vertical (V')
photon |V) = |1). The CSS codes [1], can be designed using a
pair of conventional linear codes satisfying the twisted property
(one code includes the dual of another code). The CSS codes
based on dual-containing codes [2] are simplest to implement.
Their (quantum) check matrix can be represented by

H 0
el

where HH” = 0, which is equivalent to C~(H) C C(H),
where C'(H) is the code having H as the parity check matrix,
and C+(H) is its corresponding dual code. The requirement
HH" = 0 is satisfied when rows of H have an even number
of 1s, and any two of them overlap by an even number of 1s
[2]. The LDPC codes satisfying these two requirements were
designed by exhaustive computer search in [2], while in [3],
they were designed by using the combinatorial objects known
as BIBDs [4]. A BIBD(v, b, 1, k, A) is a collection of subsets of
a set V of size v, with a size of each subset being &, so that
1) each pair of elements occurs in exactly A of the subsets, and
2) every element occurs in exactly r subsets. The code rate of
quantum codes is lower bounded by Rg > [b — 2rank(H)]/b,
where rank(H) is the rank of H-matrix, and b is the codeword
length (related to the number of subsets in a BIBD). The ad-
vantages of BIBD-based quantum LDPC codes compared to
other codes include 1) high rate, 2) regular structure in corre-
sponding parity-check (H—) matrices leads to low complexity
encoders/decoders, 3) their sparse H-matrices require a small
number of interactions per qubit to determine the error loca-
tion, and 4) excellent error correction capabilities. For example,
H-matrix from BIBD(3,6,4,4,2) is given below and satisfies the
condition HH” = 0. The quantum check matrix corresponding
to H-matrix is given below as A-matrix

100111
A:[Ig I I‘” H = |111001 | . 2)
011110

Similarly as in [1] and [2], we adopt the stabilizer framework.
A stabilizer group S consists of a set of Pauli matrices (X, Y, 7
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Fig. 1. (left) Quantum circuit for measurement of a single qubit U -operator,
U € {X, Z}; and (right) the equivalent circuit for measurement of Z-operator.

together with multiplicative factors 1, +7), with a property
that any two operators in group S commute so they can be simul-
taneously measured. In the stabilizer framework, a codeword is
defined to be a ket |¢) that is a 41 eigenket of all stabilizers S;,
so that S;|1) = |¢) for all i. Any Pauli vector on b-qubits can
be written uniquely as a product of X - and Z-operators together
with the phase factor (£1 or £7). The quantum LDPC code is
obtained by replacing ones in the left half of A, in the example
above, with X -operators and zeros with I-operators (identity
operators), and replacing ones in the right half of A with Z-oper-
ators and zeros with I-operators. The corresponding stabilizers
S; are obtained by reading-off the ¢th rows of such a modi-
fied A-matrix. For example, by reading off the first row, we ob-
tain the stabilizer 1 = XITXXX = X;X,X5Xg, and by
reading off the sixth row, we obtain S¢ = I[IIIIIIZZZZ1] =
Zis 797210211, where the subscripts are used to denote the posi-
tions of corresponding X - or Z-operators. An interesting prop-
erty of CSS codes is that stabilizers S; do not mix up X- and
Z-operators; we can, therefore, correct the qubit flip and phase
errors independently. From (1), it follows that providing the
H -matrix of dual-containing code is sparse, the corresponding
A-matrix will be sparse as well, while corresponding stabilizers
will be of low weight.

The quantum circuit to measure a single unitary qubit oper-
ator U € {X,Y,Z}, based on controlled U-gate, is shown in
Fig. 1(left). Because the Y -operator equals Z X (up to the mul-
tiplicative phase constant—j), we are only concerned with X -
and Z-operators. Notice that either discrete or continuous error
operator F/ can be decomposed using a discrete set of errors: [
(no error); X (qubit flip error); Z (phase flip error); and Y (si-
multaneous qubit and phase flip error). Based on Fig. 1(right),
we conclude that X- and Z-operators can be measured based
on CNOT and Hadamard (H)-gates. The H-gate can be im-
plemented based on a 50 : 50 directional coupler, Y-junction,
or m-hybrid, which is shown in Fig. 2(a). The output electrical
fields (F, 1 and F, o) are related to the input electrical fields
(Eiqn and E;2) by E,1 = (Ei1+ Ei2)V1—kand E,» =
(Ei1 + E; 5 exp(—j¢))Vk, where k is the power splitting ratio
and ¢ is the phase shift introduced by a phase trimmer. By se-
lecting k = 1/2 and ¢ = m, the corresponding scattering matrix
is the same as the matrix representation of a Hadamard-gate

1 (1 1
S

For example, for the vertical photon |1) = [01]7 (T is the trans-
position operation), at the input of H-gate, the corresponding
outputis H 1) = [11]7//(2) = (|0) + [1))/v/(2).

The corresponding integrated optics implementation of
CNOT-gate is shown in Fig. 2(b). The control qubits are de-
noted with C, and target qubits are denoted by 7T'. Using the
directional coupler theory, it can be shown that target output
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Fig.2. Implementation of H - and CNOT-gates in integrated optics: (a) H -gate
based on a w-hybrid, and (b) CNOT-gate based on a directional coupler. The
syndrome quantum circuit for stabilizer S; = X; X4X5X: (c) based on H-
and controlled-_X gates, and (d) based on H - and CNOT-gates.

V' and H photons (tv,,,tH,) are related to the input control
photons (cy,cy) and the input target photons (ty,tm) by

(51, [6] L

tH,o = ﬁ tV,o = %(CV + tV) (4)
Therefore, when the control qubit cy is set to 1, the target qubit
is flipped [see (4)]. The CNOT gate based on the directional
coupler was implemented in [6] with an average logical basis
fidelity of 94.3 £ 0.2%. Notice also that the CNOT-gate can
also be implemented using a hybrid as a building block. Namely
we have to set the phase shift to zero and power splitting ratios
to k = 1/2 and k = 1/3, and integrate hybrids as shown in
Fig. 2(b).

Now we come to the point where we explain how to imple-
ment the quantum LDPC error detector for A, based on the
H- and CNOT-gates described above. Let us observe the first
stabilizer 51 = X;X4X5Xg only; the whole error detector
can be obtained by corresponding concatenation of remaining
stabilizers. The transmission error is identified as an intersec-
tion of corresponding syndrome measurements. The syndrome
quantum circuit for measurement of stabilizer Sy is shown in
Fig. 2(c) and (d). In Fig. 2(c), the quantum syndrome imple-
mentation circuit is based on H - and controlled-X gates, while
in Fig. 2(d), the corresponding implementation is based on H -
and CNOT-gates only, and can, therefore, be implemented in in-
tegrated optics. To implement the syndrome quantum circuit for
stabilizer S7, we have to integrate four CNOT-gates [Fig. 2(b)]
and eight H-gates [Fig. 2(a)], as shown in Fig. 2(d). The main
advantage of quantum LDPC codes compared to other classes
of quantum codes is the sparseness of quantum check matrix,
and therefore, a small number of interactions is required in cor-
responding stabilizers.

To simplify the implementation of encoders for quantum
LDPC codes, we have to put the quantum check matrix A in a
systematic form by Gaussian elimination first [1]

_IA1A2|B0102
A:000|DIE' )

(cv +tm)
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For a quantum CSS (N,K), we have to add K Z;-op-
erators (i = 1,2,...,K) independent of stabilizers
Si(i = 1,...,N — K) as follows Z = [000|ALo0I]. To
encode, we first need to prepare the system in [0)*V state
(the notation ® stands for the tensor product), measure the
observables Sy, Ss,...,SN_K,Z1,22,..., 2K, and stabilize
the system with corresponding Pauli operators. To prepare the
system in |0)®¥ state, we can use the multiphoton entangle-
ment from distant single photon sources, as described in [7].

III. QuaNTUM BIBD CODES, RESULTS, AND CONCLUSION

In addition to quantum BIBD-based codes we introduced in
[3], below we describe several BIBD-based codes suitable for
quantum error correction.

Construction 1: If 2(2A 4+ 1)t + 1 is a prime power and 6 is a
primitive root of GF[2(2\ + 1)t + 1], then the following ¢ ini-
tial sets S; = (97,02 g4+i . 9 = 0,1,...,t —
1) form a BIBD (2(2X + 1)t + 1,t[2(2X + 1)t + 1], (2X +
1)t,2X\ 4+ 1, ). The BIBD is formed by adding the elements
from GF[2(2\ + 1)t + 1] to the initial blocks S;. For any even
index A and even parameter ¢ (the row weight is even), the cor-
responding LDPC code is a dual-containing code (HH” = 0).
The quantum code rate for this construction is lower bounded by
Rg > (1 — 2/t), and the minimum distance is lower bounded
bY dmin > 2A + 2. For any odd index A design we have to add
an additional block (1,2,...,2(2X + 1)t + 1), so that the row
weight of H becomes even.

Construction 2: If 2(2\ — 1)t + 1 is a prime power and 6 is a
primitive root of GF[2(2A—1)t+ 1;, then the following ¢ initial
sets S; = (0,0%, 6%+ . gUA-Dt+) form a BIBD(2(2) —
1)t 4+ 1,[2(2X — 1)t + 1]¢,2X¢, 2), A). For any even index A,
the corresponding LDPC codes are dual containing codes. The
quantum LPDC code rate is lower bounded by R > (1—2/t),
and the minimum distance is lower bounded by dp,in > 2A + 1.

Construction 3: If (A — 1)t is a prime power and 6 is a prim-
itive root of GF[(A — 1)t + 1], then the following ¢ initial sets
(0,67, 61F%, ..., 0=t form a BIBD[(A — 1)t + 1, ((\ —
1)t + 1)t, A, A\, A]. Again for an even index A, the quantum
LDPC code of rate R > (1 — 2/t) is obtained, whose min-
imum distance is lower bounded by d,,;,, > A + 1. Similarly as
in the previous two constructions, for any odd index A design,
we have to add an additional block (1,2,..., (A —1)t). The ex-
ample used in Section II belongs to this construction, and was
obtained for A = ¢t = 2.

Construction4: 1f 2 k—1is a prime power and 6 is a primitive
root of GF(2k — 1), then the following initial sets:

(0,67,07F2 .. 0"F2k—4)
(007 02+1702+37"'70L+2k73)7 (Z = 07 1)

form a BIBD(2k,4(2k —1),2(2k—1),k,2(k—1)). Foreven k,
the quantum code rate is lower bounded by Rg > [1—1/(2k —
1)], the codeword length is determined by 4(2k — 1), and the
minimum distance is lower bounded by di, > &k + 1.

The results of simulations are shown in Fig. 3 for 30 it-
erations in a sum-product-with-correction-term algorithm.
Bit-error-rate (BER) curves are obtained by counting the errors
only on those codewords from C' not belonging to C* and rep-
resent BER(C'/C™). Three quantum LDPC codes of quantum
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Construction 1:
—k= (=28, .=2: LDPC(7868,7306)
Construction 2:
=38, »=2: LDPC(8702,8246)
> =24, 1=4: LDPC(8088,7416)
v=10t+1, k=5, A=2; t=24:
—e— LDPC(5784,5543)
v=6t+1, k=4, 1=2; t=30:
—A— LDPC(5430,5249)

Bit-error ratio, BER (C/C")

10* 10° 10°
Cross-over probaility, p
Fig. 3. BERs against crossover probability on a binary symmetric channel.

rate above 0.9 are designed by employing Construction 1
and 2: 1) quantum LDPC(7868, 7306,0.9285, > 6) code (the
parameters in brackets represent codeword length, information
word length, code rate, and lower bound on minimum distance,
respectively) from Construction 1 by setting ¢ = 28 and
A = 2, 2) quantum LDPC(8702, 8246,0.946, > 5) code from
Construction 2 by setting ¢t = 38 and A = 2, and 3) quantum
LDPC(8088,7416,0.917, > 9) from Construction 2 by setting
t = 24 and A = 4. For comparison purposes, two curves for
quantum LDPC codes from [3] are plotted as well. The BIBD
codes proposed here outperform the codes from [3] for BERs
around 10~7. The code from BIBD with index A = 4 and
Construction 2 outperforms the codes with index A = 2 from
both Constructions, because it has larger minimum distance.
The code with index A = 2 from Construction 1 outperforms
corresponding code from Construction 2.

In conclusion, we propose encoder and decoder architec-
tures for quantum LDPC codes suitable for implementation
in integrated optics, based on CNOT and Hadamard gates
only, implemented by using directional couplers and 7-hy-
brids, respectively. We also propose several quantum LDPC
codes of high quantum code rate (above 0.9) based on BIBDs,
outperforming previously proposed codes. The quasi-cyclic
structure and sparseness of the parity-check matrix of proposed
LDPC codes have several advantages: 1) the quantum syn-
drome can be measured with sparse number of interactions; 2)
the quasi-cyclic structure of parity check matrix leads to low
decoder complexity compared to random codes; 3) there exist
practical decoding algorithms; 4) high quantum code rates; and
5) excellent error correction capabilities.
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