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Motivation

You want to solve the incompressible Euler equations:

ut + (u · ∇) u +∇p = 0
∇ · u = 0

Splitting the operator, you find that you must solve:

u∗ + ∆t (un · ∇) un = 0

Followed by:

un+1 + ∆t∇p = u∗ such that ∇ · un+1 = 0

Taking the divergence of both sides:

∆t ∆p = ∇ · u∗
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The Fundamental Problem

The discretization of this Poisson equation is of the form:

Ax = b

Conveniently, the matrix A is real, symmetric, and positive
definite so many solution methods exist:

LU Decomposition (Gaussian Elimination)
Cholesky Decomposition
Jacobi Iteration
Gauss-Seidel Iteration
Multigrid Relaxation
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The Conjugate Gradient Method

This method is flexible and easy to implement:

x0 = 0, r0 = b, p0 = b
for n = 1,2,3, . . .

αn = (rT
n−1rn−1)/(pT

n−1Apn−1)
xn = xn−1 + αnpn−1
rn = rn−1 − αnApn−1
break if ‖rn‖ < ε‖r0‖
βn = (rT

n rn)/(rT
n−1rn−1)

pn = rn + βnpn−1

All of the necessary operations are available in BLAS.
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Initial Results
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Sparse Matrices

More than 80% of the execution time on the GPU is spent
on matrix multiplication, an O(N2) operation. This can be
reduced to O(N) by taking advantage of sparsity.
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Shared Memory

Each row of the vector b requires two entries in x that were
used to compute the previous row, so read a portion of x
into shared memory:

extern __shared__ double s [ ] ;

s [ sx ] = x [ ix ] ;
i f ( threadIdx . x == 0 && ix−1 >= 0)

s [ sx−1] = x [ ix −1];
i f ( threadIdx . x == blockDim . x−1 && ix+1 < n)

s [ sx+1] = x [ ix +1] ;
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Sparse Matrix Results
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A Few Comments

Execution time on the CPU has been reduced ∼ 10× from
the dense GPU implementation and ∼ 100× from the dense
CPU implementation.

Matrix multiplication now accounts for less than 10% of the
execution time on the GPU.

Execution time on the GPU is independent of matrix size?!
This may be due to the execution time being dominated by
black box routines developed by NVIDIA that can hide
latency very effectively.
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Adding a Dimension

In 2D, the matrix A once again has a predictable sparsity
pattern. It also acts with high spatial locality if x is
interpreted at a matrix.
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Dense Matrix Results
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Sparse Matrix Results
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A Few More Comments

At N = 128, the dense matrix is 2GB in size. At N = 256, it
crashes my workstation.

The sparse GPU implementation is ∼ 10× faster than the
sparse CPU, ∼ 100× faster than the dense GPU, and
∼ 1000× faster than the dense CPU.

The CPU implementation is slower for all matrix sizes due
to the fact that the 2D spatial locality is not well-suited to
its cache layout.
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By the Numbers

1D Poisson:

Matrix Size 1024 2048 4096 8192 16384
Iterations 510 1019 2031 4028 7923

CPU (Dense) 0.67 5.18 41.44 337.24 —
GPU (Dense) 0.20 0.69 3.86 26.01 —

Speedup 3.35× 7.51× 10.7× 13.0× —
CPU (Sparse) 0.02 0.07 0.28 1.12 4.82

Speedup 33.5× 74.0× 148× 301× —
GPU (Sparse) 0.09 0.18 0.36 0.74 5.24

Speedup 7.44× 28.8× 115× 456× —

Matt Pennybacker, The University of Arizona Conjugate Gradient with CUDA 14/16



By the Numbers

2D Poisson:

Matrix Size 322 642 1282 2562 5122
Iterations 76 146 277 526 952

CPU (Dense) 0.05 1.58 50.78 — —
GPU (Dense) 0.02 0.14 3.71 — —

Speedup 2.50× 11.3× 13.7× — —
CPU (Sparse) — 0.02 0.14 1.12 9.33

Speedup — 79.0× 363× — —
GPU (Sparse) — 0.01 0.03 0.20 0.58

Speedup — 158× 1690× — —
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Next Steps

A preconditioner could be used to speed up convergence of
the conjugate gradient method at the expense of additional
computation. There does not appear to be documentation of
any effective implementation of a preconditioner in CUDA.

In the end, I hope to integrate these routines into a solver
for the incompressible Euler equations. Additional
investigation is necessary to determine the optimal shared
memory usage for the 3D discrete Poisson equation.

Questions?
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