ASSA

Clustering in Cooperative Networks

Boulat A. Bash

Don Towsley

(Department of Computer Science)

Dennis Goeckel

(Department of Electrical and Computer Engineering)

University of Massachusetts Amherst · Department of Computer Science

Introduction

- Low power ad hoc wireless networks operate on channels subject to fading
- Diversity mitigates fading
 - Redundant channels between transmitter and receiver
 - Temporal, frequency, and spatial diversity (multiantenna array)

(source: http://www.steelintheair.com)

Introduction

- Traditional diversity not feasible for many small low power devices
- Employ cooperative diversity: a cluster of coordinated single-antenna devices implementing a multi-antenna array
- Big Challenge: resource provisioning in cooperative networks

Clustering

 Cluster: collection of nodes in the network that are transmitting the same packet

- Cluster: collection of nodes in the network that are transmitting the same packet
- Static clustering:
 - Network divided into rigid clusters (by some algorithm)

- Cluster: collection of nodes in the network that are transmitting the same packet
- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 4

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 6

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 8

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 10

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 11

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 12

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 13

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 14

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 15

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 16

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 17

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 18

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 19

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 20

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 21

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 22

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)
Static Clustering

Time: 23

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 24

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 26

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

- Static clustering:
 - Network divided into rigid clusters (by some algorithm)
 - Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 28

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 29

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 30

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 31

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

Time: 32

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

Static Clustering

- Network divided into rigid clusters (by some algorithm)
- Individual nodes restricted to transmitting and receiving during their cluster's turn (time slotted by cluster)

- Recall: Cluster is a collection of nodes in the network that are transmitting the same packet
- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet

- Recall: Cluster is a collection of nodes in the network that are transmitting the same packet
- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 1 Source transmitting packet A Rest of network listening opportunistically

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

- Time: 2 Source transmitting packet A Some nodes receive A and join transmission Rest of network listening opportunistically
 - Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 4 Cluster transmitting A evolves

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 5 Cluster transmitting A evolves

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 6 Cluster transmitting A evolves

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 7 Cluster transmitting A evolves

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 8 Cluster transmitting A evolves

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

Time: 9 Source transmitting packet B Nodes that have already received A listen for B Cluster transmitting A continues evolving

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity
Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Dynamic Clustering

- Dynamic clustering:
 - Nodes join transmitting cluster opportunistically, upon decoding the packet
 - "Fluid" clusters
 - Increased complexity

Outline

- Introduction
- Clustering methods
- Our contribution: Which clustering method is better for organizing cooperation?
 - Intuitive answer
 - Evaluation system description
 - Simulation results
- Conclusion

Comparison of Clustering Methods

- Which clustering method is better for organizing cooperation?
- Dynamic clustering seems to be better, but why?
- Examine nodes making up static clusters 7&8 in example network configuration

Comparison of Clustering Methods

Dynamic Clustering Detail

Consider Dynamic Clustering on the same set of nodes

Dynamic Clustering Detail

Dynamic Clustering Detail

Better opportunity for the node to receive packet:

- 1. New, independent channel
- 2. Closer transmitter, more power received on average

Dynamic Clustering Detail

Outline

- Introduction
- Clustering methods
- Our contribution: Which clustering method is better for organizing cooperation?
 - Intuitive answer
 - Evaluation system description
 - Simulation results
- Conclusion

System Description

- **Objective**: evaluate static and dynamic clustering
- Unique Tool: large-network simulator with bitlevel physical layer implementation
 - Topology: strip network for single flows

System Description

- **Objective**: evaluate static and dynamic clustering
- Unique Tool: large-network simulator with bitlevel physical layer implementation
 - Topology: strip network for single flows

System Description

- **Objective**: evaluate static and dynamic clustering
- Unique Tool: large-network simulator with bitlevel physical layer implementation
 - Topology: strip network for single flows

- Properties
 - Mathematical tractability
 - Independence from routing protocols
 - Extendibility to certain multiple flow settings

System Description

Multiple flows: grid formed by stacking strips

Constraints and Performance

- Constraints
 - Packet size
 - Peak power (same for every node in the network)
- Performance metric: network capacity, or maximum throughput between source and destination under power constraint
 - Variables:
 - Packet injection rate at the source
 - Transmission time per node per packet
 - Normalize capacity by network resources used
 - Single-flow: divide by strip width
 - Multi-flow: divide by strip width + additional separation

Outline

- Introduction
- Clustering methods
- Our contribution: Which clustering method is better for organizing cooperation?
 - Intuitive answer
 - Evaluation system description
 - Simulation results
- Conclusion

Single flow network

Multiple flow network

Conclusions

- Dynamic clustering outperforms static in both single-flow and multi-flow cooperative networks
- Bit level simulations are comprehensive but computationally costly
 - Have analytical models that approximate (see tech report)
- Future work: adapting to changing network and workload conditions

Thank you!