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ABSTRACT

Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four
dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial
vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatio-
angular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple
measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the
spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient
measurements. Here, we describe two architectures for compressive light field imaging that require relatively few
photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall
exposure time. Our simulation study shows that, compressive light field imagers using the principal component
(PC) measurement basis require four times fewer measurements and three times shorter exposure time compared
to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.
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1. INTRODUCTION

In the computer graphics community the term light field refers to the spatio-angular distribution of light rays
in free-space emanating from a three-dimensional object volume.1,2 The light field denoted by ℓ(x, y, u, v) and
parametrized by the spatial location (x, y) and angle/slope (u, v) of each ray is therefore, a four dimensional
scalar quantity. Various optical architectures have been proposed by researchers to measure the 4D light field
of a scene, including the well-known plenoptic camera in the computer-graphics community3−5 and the integral
imager in the optics community.6−8 Both types of imager typically acquire a sampled version of the light field
in one snapshot using a two-dimensional detector array such as a CCD or a CMOS image sensor. However,
as a light field is a four dimensional function the resulting two-dimensional measurement is typically a “low-
resolution” representation with the associated spatial vs. angular resolution trade-off.9 Some recent studies have
reported success in overcoming this spatio-angular resolution trade-off by making a series of two-dimensional
measurements, scanning in either angular or spatial dimension of a light field, and synthesizing a higher-resolution
light field in post-processing.10 Note that such a scanning/sampling approach usually requires a large number
of measurements and results in long acquisition/exposure times, which can be undesirable in many applications.
Perhaps more importantly, such traditional sampling approaches do not exploit the inherent spatio-angular
redundancies present in the light field of a natural scene and result in rather photon-inefficient measurements.

In this work, we describe two separate architectures for compressive light field imaging which utilize: 1) the
correlation along the angular dimensions of a light field and 2) the correlation along the spatial dimensions of
a light field, to make compressive measurements towards the goal of synthesizing a high-resolution light field
estimate in post-processing. We expect that these angular/spatial correlations will enable light field imaging
utilizing fewer photon-efficient compressive measurements and shorter acquisition/exposure time relative to a
conventional light field imager employing non-compressive measurements. A simulation study is carried out to
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judge the efficacy of the proposed compressive imagers for two choices of compressive measurement bases: a)
principal component (PC) and b) Hadamard. The reconstruction performance of the compressive imagers is
analyzed along various system parameters, such as number of measurements and length of exposure time, and
compared with that obtained from a conventional light field imager.

2. ARCHITECTURES FOR COMPRESSIVE LIGHT FIELD IMAGING

We begin by defining a two-plane parametrization of the light field ℓ(s, t, u, v) of a three dimensional object.11

As shown in Fig. 1, consider z = 0 as the reference (s, t) plane, an observation plane (x, y) located at z = ∆z,
and the (u, v) plane at z = ∞. Thus the (u, v) coordinates represent angles or slopes. A ray emanating from
(s, t) coordinate in the reference plane at slope (u, v) intersects the observation plane at coordinate (x, y) where
x = u∆z and y = v∆z. Thus each ray can be completely specified by the (s, t) and (u, v) coordinates. The
light field ℓ(s, t, u, v) is a scalar quantity representing the radiance carried by ray with (s, t, u, v) coordinates. A
careful analysis of the measurable light field shows that it equivalent to the radiance function of a scalar field
in a wave-theory interpretation.11−13 Ref. [11] provides an excellent review of light fields from the wave-theory
perspective.

ray
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Figure 1. Two-plane ray parametrization.

The two traditional optical architectures for measuring the light field of an object are shown in Fig. 2. Note
that in the case of the plenoptic camera the size of each lenslet together with the number of detector elements
in the image sensor determines the angular and spatial resolution of the light field measurement. Suppose the
image sensor has N ×N detector elements and the size of each lenslet is equivalent to K detector elements, then
the resulting light field measurement will have ⌊N/K⌋×⌊N/K⌋ resolution elements in the spatial dimension and
K ×K resolution elements in the angular dimension. Therefore, increasing the lenslet size decreases the spatial
resolution while improving the angular resolution of the light field and vice versa. Note that the total number
of resolution elements in the measured light field remains fixed at N × N . In the case of an integral imager a
complimentary trade-off is found in which increasing the lenslet size increases the spatial resolution at the cost
of decreasing the angular resolution.

It may argued that one can increase the light field resolution along both angular and spatial dimensions by
simply using smaller lenslets and smaller detector elements. However, such an approach would quickly reduce
the measurement signal to noise ratio (SNR), for a fixed exposure time, thereby degrading the light field fidelity.
An implementation of a similar approach using multiple data acquisitions employing an extended total exposure
time has been recently reported in Ref.[10]. In this particular measurement scheme, shown in Fig. 3, the spatial
component ℓ(s, t, ui, vi) of the light field is estimated at full sensor resolution N ×N for each angular coordinate
(ui, vi) with a conventional imager employing an amplitude-mask in its lens aperture. This amplitude-mask may
be implemented via a programmable spatial light modulation (SLM) such as a liquid crystal SLM (LC-SLM).
By scanning through various configurations of the amplitude-mask, defined on a K ×K grid, a high-resolution
light field with dimensions (N×N ,K×K) is synthesized using K2 measurements. This requires a total exposure
time that is K2 times the exposure time of a single-shot low-resolution measurement obtained with either a
plenoptic or an integral imager. Our first compressive light field imager utilizes this architecture and is described
in following sub-section.
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Figure 2. Architecture of traditional light field imager: (a) Plenoptic camera and (b) Integral imager.

2.1 Angular Compressive Light Field (ACLF) Imager

The kth image measurement gang
k (N × N matrix) corresponding to the kth amplitude-mask configuration,

denoted by Pang
k (K ×K matrix), can be expressed as

gang
k = [P ang

k (1, 1)IN×N ..P ang
k (i, j)IN×N ..P ang

k (K,K)IN×N ] · [ℓ(:, :, 1, 1)..ℓ(:, :, i, j)..ℓ(:, :,K,K)]T + nk, (1)

where P ang
k (i, j) is the (i, j) element of the Pang

k matrix, IN×N is a N × N identity matrix, ℓ(:, :, i, j) is the
spatial image of size N ×N corresponding to angular coordinate (ui, vi) of the light field and nk represents the
measurement noise matrix of size N ×N . From Eq. (1), we observe that the pixel at location (m,n) of the image
measurement gang

k can be expressed compactly as

gangk (m,n) = Pang
k · ℓang(m,n) + nk(m,n), (2)

where ℓang(m,n) = ℓ(m,n, :, :) is the angular sub-component of size (K×K) corresponding to spatial coordinate
(sm, tn) of the light field and nk(m,n) is the measurement noise at pixel location (m,n) in the kth image
measurement. Observe the pixel at location (m,n) of the kth image measurement gangk (m,n), is a projection of
the angular sub-component of the light field ℓang(m,n) onto the kth amplitude-mask projection matrix Pang

k .
Arranging, the first M image measurement pixels at location (m,n) into a vector ~gang(m,n) of length M we get

~gang(m,n) = Pang · ~ℓang(m,n)T + ~n(m,n), (3)

where Pang is a M × K2 projection matrix whose kth row vector is obtained by lexicographically arranging
the kth amplitude-mask Pang

k . The light field vector ~ℓang(m,n) of length K2 is obtained by lexicographically
arranging the angular sub-component ℓang(m,n) and noise vector ~n(m,n) of length M consists of measurement
noise at pixel location (m,n) in the M image measurements.

The light field measurement scheme reported in Ref. [10] , makes M = K2 measurements using two different
measurement bases: 1) identity basis (i.e. Pang = IK2

×K2) and 2) a SNR optimized basis. Here we consider
a compressive measurement scheme where the number of measurements M is less than the light field angular
dimensionality K2. Note that this measurement scheme is only compressive in the angular dimension of the light
field and does not exploit any spatial correlation or sparsity information for compressive measurements. In the
next sub-section we describe a compressive Plenoptic light field imager which makes compressive measurements
along the spatial dimension of a light field.

2.2 Spatial Compressive Light Field (SCLF) Imager

As discussed earlier, the spatial resolution of a light field is limited by the lenslet size/pitch in the Plenoptic
camera, shown in Fig. 2 (a). To understand this more clearly, let us consider the sensor measurement behind
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Figure 3. Angular compressive light field imager architecture.

one lenslet at location (i, j). Mathematically, the K × K sensor measurement, denoted by vector ~gspt(i, j)
(lexicographically ordered), is given by

~gspt(i,j) = ~1K2 ·
[

~ℓspt(i,j)(1, 1)T~ℓspt(i,j)(1, 2)T ..~ℓspt(i,j)(m,n)T ..~ℓspt(i,j)(K,K)T
]

+ ~n(i,j), (4)

where the square lenslet spans K detectors in each direction, ~1K2 is an all one row vector of length K2,
~ℓspt(i,j)(m,n) = [ℓ(i−K/2, j−K/2,m, n) ℓ(i−K/2+1, j−K/2,m, n)..ℓ(i, j,m, n)..ℓ(i+K/2−1, j+K/2−1,m, n)]
and ~n(i,j) is the measurement noise vector of length K2. Thus, from Eq. (4) we infer that the sensor behind
each lenslet measures the angular sub-component of the light field that has been spatially integrated over the
full extent of that lenslet.

Now let us consider a case where we place an amplitude-mask over a lenslet (defined over a K ×K grid) as
shown in Fig. 4. This amplitude-mask may be implemented via a programmable LC-SLM or a digital mirror

array device (DMD). The resulting sensor measurement ~g
spt(i,j)
k corresponding to the kth configuration of the

amplitude-mask, defined by a K ×K matrix Pspt
k , can be expressed as

~g
spt(i,j)
k = ~P spt

k

[

~ℓspt(i,j)(1, 1)T ~ℓspt(i,j)(1, 2)T .. ~ℓspt(i,j)(m,n)T .. ~ℓspt(i,j)(K,K)T
]

+ ~n
(i,j)
k , (5)

where the row vector ~P spt
k of length K2 is obtained by lexicographically arranging matrix Pspt

k . Examining the
pixel at location (m,n) in the sensor measurement, we can express it as

g
spt(i,j)
k (m,n) = ~P spt

k · ~ℓspt(i,j)(m,n)T + n
(i,j)
k (m,n). (6)

Scanning the amplitude-mask through M distinct configurations yields a measurement vector ~gspt(i,j)(m,n) of
length M defined as

~gspt(i,j)(m,n) = Pspt · ~ℓspt(i,j)(m,n)T + ~n(i,j)(m,n), (7)

where Pspt is the M ×K2 projection matrix whose kth row vector is ~P spat
k and ~n(i,j)(m,n) is the corresponding

measurement noise vector of length M . Note that this measurement vector ~gspt(i,j)(m,n) at pixel location (m,n)

is a projection of the local (at location (i, j)) spatial sub-component of the light field ~ℓspt(i,j)(m,n) onto the
measurement basis defined by projection matrix Pspt. Here we consider a compressive measurement scheme
where the number of measurements M is less than the dimensionality (K2) of the local light field ~ℓspt(i,j)(m,n).
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Figure 4. Spatial compressive light field imager architecture.

Examining, Eq. (7) closely reveals that this measurement scheme is only compressive along the local spatial-
dimension of the light field and therefore, does not exploit any angular correlation or sparsity information for
compressive measurements. Here we use the same amplitude-mask for each lenslet. This implies that each pixel
within the sensor measurement employs the same measurement basis Pspt.

Both the compressive light field imaging architectures described here employ M compressive light field mea-
surements within a total exposure time of T exp = L × T exp

0 . Here T exp
0 corresponds to the exposure time

associated with a single traditional measurement without an amplitude-mask, thus L indicates the number of
such T exp

0 exposure times that comprise the total exposure time T exp. For any L > 1 this means that the total
exposure time required by the compressive light field imager is L times longer than the traditional single-shot
light field imager. It is also important to note that T exp remains constant as M changes which has important
measurement SNR implications.

Figure 5. Light field dataset used in the simulation study: (a), (b), (c), (f), (g) comprise the training dataset and (d), (e)
comprise the testing dataset.



3. RESULTS AND DISCUSSION

The choice of the measurement basis is a key factor in determining the performance of a compressive imager. Here
we quantify the reconstruction performance of the compressive light field imagers for two choices of measurement
basis: 1) principal component (PC) or Karhunen-Loève basis and 2) binary Hadamard basis. The motivation
behind using the PC basis is that it provides information-optimal compression for Gaussian sources. We expect
that this choice of basis will exploit the inherent spatial/angular correlations (up to the second order) in the
light field to yield a sparse representation. On the other hand the Hadamard basis, though not as efficient as
the PC basis for compressing data, is chosen primarily for its photon-throughput efficiency (i.e. ratio of incident
irradiance transmitted through amplitude-mask). In this work, we use a training dataset composed of five high-
resolution light fields shown in Fig. 5, chosen from the Stanford’s light field archive14, to compute the projection
matrix that defines the PC basis. Note that the angular size of the light fields used in this study is 8×8 (K = 8).

For the ACLF imager, eigenvectors of the autocorrelation matrix of the angular component of the light field
comprise the PC projection matrix of size 64 × 64. The row vectors of the PC projection matrix are arranged
according to decreasing eigenvalues, thus the first row vector corresponds to the highest eigenvalue. Fig. 6(a)
shows the first 16 PC projection vectors arranged in decreasing order from left to right and from top to bottom.
Similarly, Fig. 6(b) shows the first 16 Hadamard projection vectors arranged in the same manner. In case of
the Hadamard projection matrix, the row vectors are sorted in order of decreasing inner product between a row
vector and a light field sample, averaged over the training dataset ensemble.

Note that because the PC and Hadamard projection matrices contain negative elements that cannot be
physically implemented using an amplitude-only mask, we use the dual-rail measurement scheme described in
Ref. [15]. To ensure that the total number of photons remains fixed for each imager and for all choices of M ,
we scale the positive and negative components of the kth row vector of a PC/Hadamard projection matrix Pang

as follows

~P ang
+ (k) = αsplit

L

K2
(~P ang

+ (k)/C+
k ) (8)

~P ang
−

(k) = (1− αsplit)
L

K2
(~P ang

−
(k)/C−

k ) (9)

where αsplit is the power-splitting ratio associated with the dual-rail implementation, L is the multiplicative

factor in the total exposure time T exp, C+(k)/C−(k) is the absolute maximum value of the ~P ang
+ (k)/ ~P ang

−
(k)

positive/negative kth row vector. Here we set αsplit = 0.5 so that the positive/negative measurement use equal

(a)

(b)

Figure 6. First 16 projection vectors from (a) PC measurement basis and (b) Hadamard measurement basis, shown here
as 8x8 images.
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Figure 7. RMSE performance of ACLF-PC imager as function of M for various exposure times specified by L.

exposure time. Also note that the scaling specified in Eqs. (8) and (9) implies that each compressive measurement
uses an equal exposure time. To reconstruct the light field data from the M compressive measurements we use
the the linear minimum mean square error (LMMSE) operator Wang that is defined as

Wang = Rang
ℓℓ Pang T (PangRang

ℓℓ Pang T +Rnn)
−1, (10)

where Rang
ℓℓ is the autocorrelation matrix of the angular component of the light field data and Rnn is the

autocorrelation matrix of the detector noise vector. To quantify the performance of the ACLF imagers we use
two light field samples from the testing dataset, shown in Fig. 5, that are distinct from the training dataset. The
normalized root mean square error (RMSE) metric (expressed as a percentage of the dynamic range) is used to
quantify the quality of the light field estimates. Here we use an additive white Gaussian noise (AWGN) model
to represent the detector noise in the measurement process. The noise standard deviation is set to σn = 1 where
the dynamic range (DR) of the sensor is [0− 1023] (10-bit quantization).

Figure 7 shows a plot of the reconstruction RMSE as a function of number of measurements M for the
ACLF-PC imager (PC basis). Note that the RMSE decreases initially with increasing M reaching a minima
and then starts to increase. There are two underlying mechanisms that determine this behavior of RMSE
with M : 1) truncation error 2) measurement SNR. The truncation error reduces with increasing M as more
coefficients are used to represent the light field. However, given the fixed exposure time, the signal energy in
each measurement decreases with increasing M and together with fixed detector noise this has the implication
of reduced measurement SNR. Thus the minimum RMSE is achieved when these two competing mechanisms
balance each other at Mopt number of measurements. Observe that as L increases (i.e. exposure time increases)
a lower minimum RMSE is achieved at larger values of Mopt as a result of increased signal energy and reduced
truncation error. Comparing the ACLF-PC imager performance with that of a conventional light field (CONV)
imager (where Pang = I and M = K2 = 64) at various exposure times shows nearly one to two orders of
magnitude improvement for small values of L. This is evident from the RMSE performance of the ACLF and
CONV imagers summarized in Table 1. For instance at L = 1, the ACLF-PC imager yields a RMSE= 6.5% with



4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10

M − Number of measurements

R
M

S
E

  [
%

 o
f d

yn
am

ic
 r

an
ge

]

 

 

ACLF−PC: L=8
ACLF−PC: L=16
ACLF−PC: L=22
ACLF−PC: L=32
ACLF−H: L=8
ACLF−H: L=16
ACLF−H: L=22
ACLF−H: L=32

increasing exposure time (L)M
opt

 increases

Figure 8. RMSE performance of ACLF-PC and ACLF-H imagers as function of M for four exposure times specified by L.

Mopt = 3 as compared to RMSE=400% for the CONV imager. Increasing the total exposure time by a factor
of L = 16 results in a lower RMSE=3.7% for ACLF-PC imager obtained with Mopt = 16 measurements which
is still nearly an order of magnitude less than RMSE=25% of the CONV imager.

Figure 8 shows a plot of the reconstruction RMSE vs. M , comparing the relative performance of the ACLF-
PC and ACLF-H imagers using the PC and the Hadamard basis respectively. Here we observe that for nearly
all values of L the ACLF-PC imager outperforms the ACLF-H imager in terms of the number of measurements
Mopt required to reach the minimum RMSE (refer to data in Table 1). This is due to the superior compressibility
of the PC basis despite its slightly inferior photon-throughput efficiency. For example, at L = 16 the ACLF-
PC imager achieves the minimum RMSE at Mopt = 16 as opposed to Mopt = 26 for the ACLF-H imager.
However, as the total exposure time increases with L and the measurement SNR improves leading to higher
Mopt (i.e. lower compression), the performance gap between ACLF-PC and ACLF-H narrows as the photon-
throughput advantage of the Hadamard basis becomes more dominant. It is also interesting to compare the
relative performance of these two imagers operating in non-compressive mode i.e. where M = 64 = K2. The
RMSE data in the last three rows of Table 1 shows that the Hadamard basis always achieves the best performance

Table 1. RMSE performance of ACLF imagers, operating in compressive and non-compressive modes, and the CONV
imager.

RMSE ↓ / Exposure Time → L=1 L=8 L=16 L=22 L=32 L=64

Compressive ACLF-PC(Mopt) 6.5%(3) 4.35%(13) 3.7%(16) 3.4%(17) 3.15%(22) 2.6%(30)
Compressive ACLF-H(Mopt) 6.7%(5) 4.4%(14) 4.0%(26) 3.5%(35) 3.0%(35) 2.1%(60)
Non-Compressive ACLF-PC(M = 64) 15.9% 9.35% 8.4% 7.8% 6.85% 4.6%
Non-Compressive ACLF-H(M = 64) 15.7% 9.15% 6.8% 5.5% 4.1% 2.2%
CONV (M = 64) 400% 50% 25% 18% 12.5% 6.25%



Figure 9. Reference light field images used in simulation at four different angular positions: top left at (m = 0,n = 0),
top right at (m = 0,n = 8), bottom left is at (m = 8,n = 0) and bottom right is at (m = 8,n = 8). Note the horizontal
and the vertical parallax in these images.

among all three basis (PC, Hadamard, and identity for CONV) due to its superior light throughput efficiency.
Therefore, if reduced exposure time is of primary importance in a particular application and the number of
measurement is not critical, then ACLF-H imager offers the best performance. The ACLF-H imager at L = 16
achieves nearly the same reconstruction performance as a CONV imager at L = 64, this represents a four times
reduction in the total exposure time.

So far we have presented a quantitive analysis of the ACLF and the CONV imagers. As light fields are often
used in visual applications it is also important to provide a visual image-quality based qualitative comparison of
the light field reconstructions. Figure 9 shows the reference light field images, representing the object light field,
at four different angular locations. Figure 10(a) shows a selected (and magnified) portion of the corresponding
reconstructed light field images for the ACLF-PC, ACLF-H and the CONV imagers. Observe that the ACLF-PC
imager with M = 22 and L = 16 offers comparable visual image-quality light field images (although some ringing
artifacts are visible) as the CONV imager that requires a four times longer exposure time and three times more
measurements i.e. (M = 64 and L = 64). This highlights the potential for improved performance achievable with
the ACLF imagers. Note that the light field images from the ACLF-H imager show significant ringing artifacts
indicating relatively poor compressibility on this particular light field using the Hadamard basis.

Next, we consider the spatial compressive light field (SCLF) imager described in sub-section 2.2. Here we use
the same training and testing light field datasets from the ACLF study. In case of the SCLF-PC imager, the row
vectors of the PC projection matrix correspond to eigenvectors of the autocorrelation matrix estimated using
the spatial component of the light fields from the training dataset. The row vectors of the Hadamard projection
matrix in the SCLF-H imager are sorted in a manner identical to that described in case of the ACLF-H imager. A
plot of the reconstruction RMSE vs. M for the SCLF-PC and SCLF-H imagers is shown in Fig. 11 for four values
of L. The performance trends, qualitatively similar to those for ACLF imagers, indicate the superior performance
of the SCLF-PC imager relative to the SCLF-H imager in terms of the number of measurements Mopt required
to achieve the minimum RMSE. For example with L = 16, the SCLF-PC imager requires Mopt = 11 compared to
Mopt = 23 for the SCLF-H imager to achieve the minimum RMSE. Table 2 summarizes the RMSE performance
of the SCLF and CONV imagers. It is interesting to compare the RMSE performance of the ACLF and SCLF
imagers for the same measurement basis. We note in the case of the SCLF-PC imager the RMSE performance
is better than that of ACLF-PC by nearly a factor of two for small values of L. For instance with L = 16,
SCLF-PC achieves the minimum RMSE=2.35% at Mopt = 11 compared to RMSE=3.7% at Mopt = 16 for



(a)

(b)

Figure 10. Light field image reconstructions: (a) ACLF architecture: top row (compressive:M ≪ 64,L = 16) - left image
from ACLF-PC with M = 22, right image from ACLF-H with M = 26 and bottom row (non-compressive:M = 64,L = 64)
- left image from ACLF-H and right image from CONV. (b) SCLF architecture: top row (compressive:M ≪ 64,L = 16) -
left image from SCLF-PC with M = 11, right image from SCLF-H with M = 22 and bottom row (non-compressive:M =
64,L = 64) - left image from SCLF-H and right image from CONV.
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Figure 11. RMSE performance of SCLF-PC and SCLF-H imagers as function of M for four exposure times specified by
L.

ACLF-PC imager. This suggests superior compressibility in the PC basis for the spatial component compared to
the angular component of a light field, at least in the case of the datasets used in this work. A visual inspection
of the light field reconstructions, shown in Fig. 10(b), obtained with the SCLF-PC and the SCLF-H imagers
confirms this observation. The ringing artifacts visible in the ACLF reconstruction are nearly non-existent in
the case of the SCLF reconstruction. Also note that the SCLF imagers require fewer compressive measurements
to achieve the same RMSE compared to the ACLF imagers.

Table 2. RMSE performance of SCLF imagers, operating in compressive and non-compressive modes, and the CONV
imager.

RMSE ↓ / Exposure Time → L=1 L=8 L=16 L=22 L=32 L=64

Compressive SCLF-PC(Mopt) 4.3%(3) 3.0%(8) 2.35%(11) 2.2%(14) 1.9%(22) 1.4%(27)
Compressive SCLF-H(Mopt) 4.3%(5) 2.9%(16) 2.4%(23) 2.2%(23) 1.9%(44) 1.2%(44)
Non-Compressive SCLF-PC(M = 64) 14.2% 5.65% 4.4% 3.9% 3.3% 2.3%
Non-Compressive SCLF-H(M = 64) 14.0% 5.0% 3.6% 3.1% 2.5% 1.55%
CONV (M = 64) 400 % 50% 25% 18% 12.5% 6.25%

4. CONCLUSIONS AND FUTURE WORK

We have described two architectures for compressive light field imaging which exploit the inherent redundancies
along the angular and the spatial dimension of a light field. The simulated performance of these compressive
imagers confirm the presence of strong angular and spatial correlations in light fields evident from the signifi-
cant reduction in number of measurements required by these imagers compared to a conventional imager. All
the compressive light field imagers presented here (ACLF-PC, ACLF-H, SCLF-PC, SCLF-H) yield one to two
orders of magnitude of performance improvements compared to a conventional imager for short exposure times.



Although the performance gap between the compressive imagers and a conventional imager reduces with increas-
ing exposure time, the compressive imagers still maintain a significant performance advantage. At L = 32, for
example the SCLF-PC imager still achieves a significantly lower RMSE=1.9% compared to RMSE=12.5% for
the conventional imager. We observed that operating in even a non-compressive mode the ACLF and SCLF
imagers offer significant performance improvement and achieve equivalent performance as a conventional imager
with an exposure time that is a factor of three to four times smaller. Results from our simulation study have
motivated us to implement the compressive imagers described here with goal of experimentally validating the
predicted performance improvements. We are currently in the process of implementing a compressive light field
imager and plan to report the experimental results in a future communication. Another area that requires fur-
ther attention is the development of a more accurate model of a compressive imager accounting for the various
non-idealities typically associated with a physical implementation, such as non-uniformities in the SLM device
(LC-SLM and/or DMD). Note that the class of compressive imagers presented in this work achieves compression
in either spatial or angular dimension of a light field. We believe that it is possible to further improve the
compressive performance by exploiting the joint spatio-angular correlations present in the light field. Moreover,
by employing a hybrid measurement basis described in Ref. [16] we can extend the use of a compressive light
field imager over a wider class of natural scenes. This is a direction of research we actively pursuing.
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